55df6fcf54
Add support for MMU protection regions that are smaller than TARGET_PAGE_SIZE. We do this by marking the TLB entry for those pages with a flag TLB_RECHECK. This flag causes us to always take the slow-path for accesses. In the slow path we can then special case them to always call tlb_fill() again, so we have the correct information for the exact address being accessed. This change allows us to handle reading and writing from small regions; we cannot deal with execution from the small region. Signed-off-by: Peter Maydell <peter.maydell@linaro.org> Reviewed-by: Richard Henderson <richard.henderson@linaro.org> Message-id: 20180620130619.11362-2-peter.maydell@linaro.org
444 lines
16 KiB
C
444 lines
16 KiB
C
/*
|
|
* Software MMU support
|
|
*
|
|
* Generate helpers used by TCG for qemu_ld/st ops and code load
|
|
* functions.
|
|
*
|
|
* Included from target op helpers and exec.c.
|
|
*
|
|
* Copyright (c) 2003 Fabrice Bellard
|
|
*
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2 of the License, or (at your option) any later version.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
#if DATA_SIZE == 8
|
|
#define SUFFIX q
|
|
#define LSUFFIX q
|
|
#define SDATA_TYPE int64_t
|
|
#define DATA_TYPE uint64_t
|
|
#elif DATA_SIZE == 4
|
|
#define SUFFIX l
|
|
#define LSUFFIX l
|
|
#define SDATA_TYPE int32_t
|
|
#define DATA_TYPE uint32_t
|
|
#elif DATA_SIZE == 2
|
|
#define SUFFIX w
|
|
#define LSUFFIX uw
|
|
#define SDATA_TYPE int16_t
|
|
#define DATA_TYPE uint16_t
|
|
#elif DATA_SIZE == 1
|
|
#define SUFFIX b
|
|
#define LSUFFIX ub
|
|
#define SDATA_TYPE int8_t
|
|
#define DATA_TYPE uint8_t
|
|
#else
|
|
#error unsupported data size
|
|
#endif
|
|
|
|
|
|
/* For the benefit of TCG generated code, we want to avoid the complication
|
|
of ABI-specific return type promotion and always return a value extended
|
|
to the register size of the host. This is tcg_target_long, except in the
|
|
case of a 32-bit host and 64-bit data, and for that we always have
|
|
uint64_t. Don't bother with this widened value for SOFTMMU_CODE_ACCESS. */
|
|
#if defined(SOFTMMU_CODE_ACCESS) || DATA_SIZE == 8
|
|
# define WORD_TYPE DATA_TYPE
|
|
# define USUFFIX SUFFIX
|
|
#else
|
|
# define WORD_TYPE tcg_target_ulong
|
|
# define USUFFIX glue(u, SUFFIX)
|
|
# define SSUFFIX glue(s, SUFFIX)
|
|
#endif
|
|
|
|
#ifdef SOFTMMU_CODE_ACCESS
|
|
#define READ_ACCESS_TYPE MMU_INST_FETCH
|
|
#define ADDR_READ addr_code
|
|
#else
|
|
#define READ_ACCESS_TYPE MMU_DATA_LOAD
|
|
#define ADDR_READ addr_read
|
|
#endif
|
|
|
|
#if DATA_SIZE == 8
|
|
# define BSWAP(X) bswap64(X)
|
|
#elif DATA_SIZE == 4
|
|
# define BSWAP(X) bswap32(X)
|
|
#elif DATA_SIZE == 2
|
|
# define BSWAP(X) bswap16(X)
|
|
#else
|
|
# define BSWAP(X) (X)
|
|
#endif
|
|
|
|
#if DATA_SIZE == 1
|
|
# define helper_le_ld_name glue(glue(helper_ret_ld, USUFFIX), MMUSUFFIX)
|
|
# define helper_be_ld_name helper_le_ld_name
|
|
# define helper_le_lds_name glue(glue(helper_ret_ld, SSUFFIX), MMUSUFFIX)
|
|
# define helper_be_lds_name helper_le_lds_name
|
|
# define helper_le_st_name glue(glue(helper_ret_st, SUFFIX), MMUSUFFIX)
|
|
# define helper_be_st_name helper_le_st_name
|
|
#else
|
|
# define helper_le_ld_name glue(glue(helper_le_ld, USUFFIX), MMUSUFFIX)
|
|
# define helper_be_ld_name glue(glue(helper_be_ld, USUFFIX), MMUSUFFIX)
|
|
# define helper_le_lds_name glue(glue(helper_le_ld, SSUFFIX), MMUSUFFIX)
|
|
# define helper_be_lds_name glue(glue(helper_be_ld, SSUFFIX), MMUSUFFIX)
|
|
# define helper_le_st_name glue(glue(helper_le_st, SUFFIX), MMUSUFFIX)
|
|
# define helper_be_st_name glue(glue(helper_be_st, SUFFIX), MMUSUFFIX)
|
|
#endif
|
|
|
|
#ifndef SOFTMMU_CODE_ACCESS
|
|
static inline DATA_TYPE glue(io_read, SUFFIX)(CPUArchState *env,
|
|
size_t mmu_idx, size_t index,
|
|
target_ulong addr,
|
|
uintptr_t retaddr,
|
|
bool recheck)
|
|
{
|
|
CPUIOTLBEntry *iotlbentry = &env->iotlb[mmu_idx][index];
|
|
return io_readx(env, iotlbentry, mmu_idx, addr, retaddr, recheck,
|
|
DATA_SIZE);
|
|
}
|
|
#endif
|
|
|
|
WORD_TYPE helper_le_ld_name(CPUArchState *env, target_ulong addr,
|
|
TCGMemOpIdx oi, uintptr_t retaddr)
|
|
{
|
|
unsigned mmu_idx = get_mmuidx(oi);
|
|
int index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
|
|
target_ulong tlb_addr = env->tlb_table[mmu_idx][index].ADDR_READ;
|
|
unsigned a_bits = get_alignment_bits(get_memop(oi));
|
|
uintptr_t haddr;
|
|
DATA_TYPE res;
|
|
|
|
if (addr & ((1 << a_bits) - 1)) {
|
|
cpu_unaligned_access(ENV_GET_CPU(env), addr, READ_ACCESS_TYPE,
|
|
mmu_idx, retaddr);
|
|
}
|
|
|
|
/* If the TLB entry is for a different page, reload and try again. */
|
|
if ((addr & TARGET_PAGE_MASK)
|
|
!= (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
|
|
if (!VICTIM_TLB_HIT(ADDR_READ, addr)) {
|
|
tlb_fill(ENV_GET_CPU(env), addr, DATA_SIZE, READ_ACCESS_TYPE,
|
|
mmu_idx, retaddr);
|
|
}
|
|
tlb_addr = env->tlb_table[mmu_idx][index].ADDR_READ;
|
|
}
|
|
|
|
/* Handle an IO access. */
|
|
if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) {
|
|
if ((addr & (DATA_SIZE - 1)) != 0) {
|
|
goto do_unaligned_access;
|
|
}
|
|
|
|
/* ??? Note that the io helpers always read data in the target
|
|
byte ordering. We should push the LE/BE request down into io. */
|
|
res = glue(io_read, SUFFIX)(env, mmu_idx, index, addr, retaddr,
|
|
tlb_addr & TLB_RECHECK);
|
|
res = TGT_LE(res);
|
|
return res;
|
|
}
|
|
|
|
/* Handle slow unaligned access (it spans two pages or IO). */
|
|
if (DATA_SIZE > 1
|
|
&& unlikely((addr & ~TARGET_PAGE_MASK) + DATA_SIZE - 1
|
|
>= TARGET_PAGE_SIZE)) {
|
|
target_ulong addr1, addr2;
|
|
DATA_TYPE res1, res2;
|
|
unsigned shift;
|
|
do_unaligned_access:
|
|
addr1 = addr & ~(DATA_SIZE - 1);
|
|
addr2 = addr1 + DATA_SIZE;
|
|
res1 = helper_le_ld_name(env, addr1, oi, retaddr);
|
|
res2 = helper_le_ld_name(env, addr2, oi, retaddr);
|
|
shift = (addr & (DATA_SIZE - 1)) * 8;
|
|
|
|
/* Little-endian combine. */
|
|
res = (res1 >> shift) | (res2 << ((DATA_SIZE * 8) - shift));
|
|
return res;
|
|
}
|
|
|
|
haddr = addr + env->tlb_table[mmu_idx][index].addend;
|
|
#if DATA_SIZE == 1
|
|
res = glue(glue(ld, LSUFFIX), _p)((uint8_t *)haddr);
|
|
#else
|
|
res = glue(glue(ld, LSUFFIX), _le_p)((uint8_t *)haddr);
|
|
#endif
|
|
return res;
|
|
}
|
|
|
|
#if DATA_SIZE > 1
|
|
WORD_TYPE helper_be_ld_name(CPUArchState *env, target_ulong addr,
|
|
TCGMemOpIdx oi, uintptr_t retaddr)
|
|
{
|
|
unsigned mmu_idx = get_mmuidx(oi);
|
|
int index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
|
|
target_ulong tlb_addr = env->tlb_table[mmu_idx][index].ADDR_READ;
|
|
unsigned a_bits = get_alignment_bits(get_memop(oi));
|
|
uintptr_t haddr;
|
|
DATA_TYPE res;
|
|
|
|
if (addr & ((1 << a_bits) - 1)) {
|
|
cpu_unaligned_access(ENV_GET_CPU(env), addr, READ_ACCESS_TYPE,
|
|
mmu_idx, retaddr);
|
|
}
|
|
|
|
/* If the TLB entry is for a different page, reload and try again. */
|
|
if ((addr & TARGET_PAGE_MASK)
|
|
!= (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
|
|
if (!VICTIM_TLB_HIT(ADDR_READ, addr)) {
|
|
tlb_fill(ENV_GET_CPU(env), addr, DATA_SIZE, READ_ACCESS_TYPE,
|
|
mmu_idx, retaddr);
|
|
}
|
|
tlb_addr = env->tlb_table[mmu_idx][index].ADDR_READ;
|
|
}
|
|
|
|
/* Handle an IO access. */
|
|
if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) {
|
|
if ((addr & (DATA_SIZE - 1)) != 0) {
|
|
goto do_unaligned_access;
|
|
}
|
|
|
|
/* ??? Note that the io helpers always read data in the target
|
|
byte ordering. We should push the LE/BE request down into io. */
|
|
res = glue(io_read, SUFFIX)(env, mmu_idx, index, addr, retaddr,
|
|
tlb_addr & TLB_RECHECK);
|
|
res = TGT_BE(res);
|
|
return res;
|
|
}
|
|
|
|
/* Handle slow unaligned access (it spans two pages or IO). */
|
|
if (DATA_SIZE > 1
|
|
&& unlikely((addr & ~TARGET_PAGE_MASK) + DATA_SIZE - 1
|
|
>= TARGET_PAGE_SIZE)) {
|
|
target_ulong addr1, addr2;
|
|
DATA_TYPE res1, res2;
|
|
unsigned shift;
|
|
do_unaligned_access:
|
|
addr1 = addr & ~(DATA_SIZE - 1);
|
|
addr2 = addr1 + DATA_SIZE;
|
|
res1 = helper_be_ld_name(env, addr1, oi, retaddr);
|
|
res2 = helper_be_ld_name(env, addr2, oi, retaddr);
|
|
shift = (addr & (DATA_SIZE - 1)) * 8;
|
|
|
|
/* Big-endian combine. */
|
|
res = (res1 << shift) | (res2 >> ((DATA_SIZE * 8) - shift));
|
|
return res;
|
|
}
|
|
|
|
haddr = addr + env->tlb_table[mmu_idx][index].addend;
|
|
res = glue(glue(ld, LSUFFIX), _be_p)((uint8_t *)haddr);
|
|
return res;
|
|
}
|
|
#endif /* DATA_SIZE > 1 */
|
|
|
|
#ifndef SOFTMMU_CODE_ACCESS
|
|
|
|
/* Provide signed versions of the load routines as well. We can of course
|
|
avoid this for 64-bit data, or for 32-bit data on 32-bit host. */
|
|
#if DATA_SIZE * 8 < TCG_TARGET_REG_BITS
|
|
WORD_TYPE helper_le_lds_name(CPUArchState *env, target_ulong addr,
|
|
TCGMemOpIdx oi, uintptr_t retaddr)
|
|
{
|
|
return (SDATA_TYPE)helper_le_ld_name(env, addr, oi, retaddr);
|
|
}
|
|
|
|
# if DATA_SIZE > 1
|
|
WORD_TYPE helper_be_lds_name(CPUArchState *env, target_ulong addr,
|
|
TCGMemOpIdx oi, uintptr_t retaddr)
|
|
{
|
|
return (SDATA_TYPE)helper_be_ld_name(env, addr, oi, retaddr);
|
|
}
|
|
# endif
|
|
#endif
|
|
|
|
static inline void glue(io_write, SUFFIX)(CPUArchState *env,
|
|
size_t mmu_idx, size_t index,
|
|
DATA_TYPE val,
|
|
target_ulong addr,
|
|
uintptr_t retaddr,
|
|
bool recheck)
|
|
{
|
|
CPUIOTLBEntry *iotlbentry = &env->iotlb[mmu_idx][index];
|
|
return io_writex(env, iotlbentry, mmu_idx, val, addr, retaddr,
|
|
recheck, DATA_SIZE);
|
|
}
|
|
|
|
void helper_le_st_name(CPUArchState *env, target_ulong addr, DATA_TYPE val,
|
|
TCGMemOpIdx oi, uintptr_t retaddr)
|
|
{
|
|
unsigned mmu_idx = get_mmuidx(oi);
|
|
int index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
|
|
target_ulong tlb_addr = env->tlb_table[mmu_idx][index].addr_write;
|
|
unsigned a_bits = get_alignment_bits(get_memop(oi));
|
|
uintptr_t haddr;
|
|
|
|
if (addr & ((1 << a_bits) - 1)) {
|
|
cpu_unaligned_access(ENV_GET_CPU(env), addr, MMU_DATA_STORE,
|
|
mmu_idx, retaddr);
|
|
}
|
|
|
|
/* If the TLB entry is for a different page, reload and try again. */
|
|
if ((addr & TARGET_PAGE_MASK)
|
|
!= (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
|
|
if (!VICTIM_TLB_HIT(addr_write, addr)) {
|
|
tlb_fill(ENV_GET_CPU(env), addr, DATA_SIZE, MMU_DATA_STORE,
|
|
mmu_idx, retaddr);
|
|
}
|
|
tlb_addr = env->tlb_table[mmu_idx][index].addr_write & ~TLB_INVALID_MASK;
|
|
}
|
|
|
|
/* Handle an IO access. */
|
|
if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) {
|
|
if ((addr & (DATA_SIZE - 1)) != 0) {
|
|
goto do_unaligned_access;
|
|
}
|
|
|
|
/* ??? Note that the io helpers always read data in the target
|
|
byte ordering. We should push the LE/BE request down into io. */
|
|
val = TGT_LE(val);
|
|
glue(io_write, SUFFIX)(env, mmu_idx, index, val, addr,
|
|
retaddr, tlb_addr & TLB_RECHECK);
|
|
return;
|
|
}
|
|
|
|
/* Handle slow unaligned access (it spans two pages or IO). */
|
|
if (DATA_SIZE > 1
|
|
&& unlikely((addr & ~TARGET_PAGE_MASK) + DATA_SIZE - 1
|
|
>= TARGET_PAGE_SIZE)) {
|
|
int i, index2;
|
|
target_ulong page2, tlb_addr2;
|
|
do_unaligned_access:
|
|
/* Ensure the second page is in the TLB. Note that the first page
|
|
is already guaranteed to be filled, and that the second page
|
|
cannot evict the first. */
|
|
page2 = (addr + DATA_SIZE) & TARGET_PAGE_MASK;
|
|
index2 = (page2 >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
|
|
tlb_addr2 = env->tlb_table[mmu_idx][index2].addr_write;
|
|
if (page2 != (tlb_addr2 & (TARGET_PAGE_MASK | TLB_INVALID_MASK))
|
|
&& !VICTIM_TLB_HIT(addr_write, page2)) {
|
|
tlb_fill(ENV_GET_CPU(env), page2, DATA_SIZE, MMU_DATA_STORE,
|
|
mmu_idx, retaddr);
|
|
}
|
|
|
|
/* XXX: not efficient, but simple. */
|
|
/* This loop must go in the forward direction to avoid issues
|
|
with self-modifying code in Windows 64-bit. */
|
|
for (i = 0; i < DATA_SIZE; ++i) {
|
|
/* Little-endian extract. */
|
|
uint8_t val8 = val >> (i * 8);
|
|
glue(helper_ret_stb, MMUSUFFIX)(env, addr + i, val8,
|
|
oi, retaddr);
|
|
}
|
|
return;
|
|
}
|
|
|
|
haddr = addr + env->tlb_table[mmu_idx][index].addend;
|
|
#if DATA_SIZE == 1
|
|
glue(glue(st, SUFFIX), _p)((uint8_t *)haddr, val);
|
|
#else
|
|
glue(glue(st, SUFFIX), _le_p)((uint8_t *)haddr, val);
|
|
#endif
|
|
}
|
|
|
|
#if DATA_SIZE > 1
|
|
void helper_be_st_name(CPUArchState *env, target_ulong addr, DATA_TYPE val,
|
|
TCGMemOpIdx oi, uintptr_t retaddr)
|
|
{
|
|
unsigned mmu_idx = get_mmuidx(oi);
|
|
int index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
|
|
target_ulong tlb_addr = env->tlb_table[mmu_idx][index].addr_write;
|
|
unsigned a_bits = get_alignment_bits(get_memop(oi));
|
|
uintptr_t haddr;
|
|
|
|
if (addr & ((1 << a_bits) - 1)) {
|
|
cpu_unaligned_access(ENV_GET_CPU(env), addr, MMU_DATA_STORE,
|
|
mmu_idx, retaddr);
|
|
}
|
|
|
|
/* If the TLB entry is for a different page, reload and try again. */
|
|
if ((addr & TARGET_PAGE_MASK)
|
|
!= (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
|
|
if (!VICTIM_TLB_HIT(addr_write, addr)) {
|
|
tlb_fill(ENV_GET_CPU(env), addr, DATA_SIZE, MMU_DATA_STORE,
|
|
mmu_idx, retaddr);
|
|
}
|
|
tlb_addr = env->tlb_table[mmu_idx][index].addr_write & ~TLB_INVALID_MASK;
|
|
}
|
|
|
|
/* Handle an IO access. */
|
|
if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) {
|
|
if ((addr & (DATA_SIZE - 1)) != 0) {
|
|
goto do_unaligned_access;
|
|
}
|
|
|
|
/* ??? Note that the io helpers always read data in the target
|
|
byte ordering. We should push the LE/BE request down into io. */
|
|
val = TGT_BE(val);
|
|
glue(io_write, SUFFIX)(env, mmu_idx, index, val, addr, retaddr,
|
|
tlb_addr & TLB_RECHECK);
|
|
return;
|
|
}
|
|
|
|
/* Handle slow unaligned access (it spans two pages or IO). */
|
|
if (DATA_SIZE > 1
|
|
&& unlikely((addr & ~TARGET_PAGE_MASK) + DATA_SIZE - 1
|
|
>= TARGET_PAGE_SIZE)) {
|
|
int i, index2;
|
|
target_ulong page2, tlb_addr2;
|
|
do_unaligned_access:
|
|
/* Ensure the second page is in the TLB. Note that the first page
|
|
is already guaranteed to be filled, and that the second page
|
|
cannot evict the first. */
|
|
page2 = (addr + DATA_SIZE) & TARGET_PAGE_MASK;
|
|
index2 = (page2 >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
|
|
tlb_addr2 = env->tlb_table[mmu_idx][index2].addr_write;
|
|
if (page2 != (tlb_addr2 & (TARGET_PAGE_MASK | TLB_INVALID_MASK))
|
|
&& !VICTIM_TLB_HIT(addr_write, page2)) {
|
|
tlb_fill(ENV_GET_CPU(env), page2, DATA_SIZE, MMU_DATA_STORE,
|
|
mmu_idx, retaddr);
|
|
}
|
|
|
|
/* XXX: not efficient, but simple */
|
|
/* This loop must go in the forward direction to avoid issues
|
|
with self-modifying code. */
|
|
for (i = 0; i < DATA_SIZE; ++i) {
|
|
/* Big-endian extract. */
|
|
uint8_t val8 = val >> (((DATA_SIZE - 1) * 8) - (i * 8));
|
|
glue(helper_ret_stb, MMUSUFFIX)(env, addr + i, val8,
|
|
oi, retaddr);
|
|
}
|
|
return;
|
|
}
|
|
|
|
haddr = addr + env->tlb_table[mmu_idx][index].addend;
|
|
glue(glue(st, SUFFIX), _be_p)((uint8_t *)haddr, val);
|
|
}
|
|
#endif /* DATA_SIZE > 1 */
|
|
#endif /* !defined(SOFTMMU_CODE_ACCESS) */
|
|
|
|
#undef READ_ACCESS_TYPE
|
|
#undef DATA_TYPE
|
|
#undef SUFFIX
|
|
#undef LSUFFIX
|
|
#undef DATA_SIZE
|
|
#undef ADDR_READ
|
|
#undef WORD_TYPE
|
|
#undef SDATA_TYPE
|
|
#undef USUFFIX
|
|
#undef SSUFFIX
|
|
#undef BSWAP
|
|
#undef helper_le_ld_name
|
|
#undef helper_be_ld_name
|
|
#undef helper_le_lds_name
|
|
#undef helper_be_lds_name
|
|
#undef helper_le_st_name
|
|
#undef helper_be_st_name
|