…
|
||
---|---|---|
.. | ||
i386 | ||
x86_64 | ||
LICENSE | ||
README | ||
tcg-dyngen.c | ||
tcg-op.h | ||
tcg-opc.h | ||
tcg-runtime.c | ||
tcg.c | ||
tcg.h | ||
TODO |
Tiny Code Generator - Fabrice Bellard. 1) Introduction TCG (Tiny Code Generator) began as a generic backend for a C compiler. It was simplified to be used in QEMU. It also has its roots in the QOP code generator written by Paul Brook. 2) Definitions The TCG "target" is the architecture for which we generate the code. It is of course not the same as the "target" of QEMU which is the emulated architecture. As TCG started as a generic C backend used for cross compiling, it is assumed that the TCG target is different from the host, although it is never the case for QEMU. A TCG "function" corresponds to a QEMU Translated Block (TB). A TCG "temporary" is a variable only live in a given function. Temporaries are allocated explicitly in each function. A TCG "global" is a variable which is live in all the functions. They are defined before the functions defined. A TCG global can be a memory location (e.g. a QEMU CPU register), a fixed host register (e.g. the QEMU CPU state pointer) or a memory location which is stored in a register outside QEMU TBs (not implemented yet). A TCG "basic block" corresponds to a list of instructions terminated by a branch instruction. 3) Intermediate representation 3.1) Introduction TCG instructions operate on variables which are temporaries or globals. TCG instructions and variables are strongly typed. Two types are supported: 32 bit integers and 64 bit integers. Pointers are defined as an alias to 32 bit or 64 bit integers depending on the TCG target word size. Each instruction has a fixed number of output variable operands, input variable operands and always constant operands. The notable exception is the call instruction which has a variable number of outputs and inputs. In the textual form, output operands come first, followed by input operands, followed by constant operands. The output type is included in the instruction name. Constants are prefixed with a '$'. add_i32 t0, t1, t2 (t0 <- t1 + t2) sub_i64 t2, t3, $4 (t2 <- t3 - 4) 3.2) Assumptions * Basic blocks - Basic blocks end after branches (e.g. brcond_i32 instruction), goto_tb and exit_tb instructions. - Basic blocks end before legacy dyngen operations. - Basic blocks start after the end of a previous basic block, at a set_label instruction or after a legacy dyngen operation. After the end of a basic block, temporaries at destroyed and globals are stored at their initial storage (register or memory place depending on their declarations). * Floating point types are not supported yet * Pointers: depending on the TCG target, pointer size is 32 bit or 64 bit. The type TCG_TYPE_PTR is an alias to TCG_TYPE_I32 or TCG_TYPE_I64. * Helpers: Using the tcg_gen_helper_x_y it is possible to call any function taking i32, i64 or pointer types types. Before calling an helper, all globals are stored at their canonical location and it is assumed that the function can modify them. In the future, function modifiers will be allowed to tell that the helper does not read or write some globals. On some TCG targets (e.g. x86), several calling conventions are supported. * Branches: Use the instruction 'br' to jump to a label. Use 'jmp' to jump to an explicit address. Conditional branches can only jump to labels. 3.3) Code Optimizations When generating instructions, you can count on at least the following optimizations: - Single instructions are simplified, e.g. and_i32 t0, t0, $0xffffffff is suppressed. - A liveness analysis is done at the basic block level. The information is used to suppress moves from a dead temporary to another one. It is also used to remove instructions which compute dead results. The later is especially useful for condition code optimization in QEMU. In the following example: add_i32 t0, t1, t2 add_i32 t0, t0, $1 mov_i32 t0, $1 only the last instruction is kept. - A macro system is supported (may get closer to function inlining some day). It is useful if the liveness analysis is likely to prove that some results of a computation are indeed not useful. With the macro system, the user can provide several alternative implementations which are used depending on the used results. It is especially useful for condition code optimization in QEMU. Here is an example: macro_2 t0, t1, $1 mov_i32 t0, $0x1234 The macro identified by the ID "$1" normally returns the values t0 and t1. Suppose its implementation is: macro_start brcond_i32 t2, $0, $TCG_COND_EQ, $1 mov_i32 t0, $2 br $2 set_label $1 mov_i32 t0, $3 set_label $2 add_i32 t1, t3, t4 macro_end If t0 is not used after the macro, the user can provide a simpler implementation: macro_start add_i32 t1, t2, t4 macro_end TCG automatically chooses the right implementation depending on which macro outputs are used after it. Note that if TCG did more expensive optimizations, macros would be less useful. In the previous example a macro is useful because the liveness analysis is done on each basic block separately. Hence TCG cannot remove the code computing 't0' even if it is not used after the first macro implementation. 3.4) Instruction Reference ********* Function call * call <ret> <params> ptr call function 'ptr' (pointer type) <ret> optional 32 bit or 64 bit return value <params> optional 32 bit or 64 bit parameters ********* Jumps/Labels * jmp t0 Absolute jump to address t0 (pointer type). * set_label $label Define label 'label' at the current program point. * br $label Jump to label. * brcond_i32/i64 cond, t0, t1, label Conditional jump if t0 cond t1 is true. cond can be: TCG_COND_EQ TCG_COND_NE TCG_COND_LT /* signed */ TCG_COND_GE /* signed */ TCG_COND_LE /* signed */ TCG_COND_GT /* signed */ TCG_COND_LTU /* unsigned */ TCG_COND_GEU /* unsigned */ TCG_COND_LEU /* unsigned */ TCG_COND_GTU /* unsigned */ ********* Arithmetic * add_i32/i64 t0, t1, t2 t0=t1+t2 * sub_i32/i64 t0, t1, t2 t0=t1-t2 * mul_i32/i64 t0, t1, t2 t0=t1*t2 * div_i32/i64 t0, t1, t2 t0=t1/t2 (signed). Undefined behavior if division by zero or overflow. * divu_i32/i64 t0, t1, t2 t0=t1/t2 (unsigned). Undefined behavior if division by zero. * rem_i32/i64 t0, t1, t2 t0=t1%t2 (signed). Undefined behavior if division by zero or overflow. * remu_i32/i64 t0, t1, t2 t0=t1%t2 (unsigned). Undefined behavior if division by zero. * and_i32/i64 t0, t1, t2 ********* Logical t0=t1&t2 * or_i32/i64 t0, t1, t2 t0=t1|t2 * xor_i32/i64 t0, t1, t2 t0=t1^t2 * shl_i32/i64 t0, t1, t2 ********* Shifts * shl_i32/i64 t0, t1, t2 t0=t1 << t2. Undefined behavior if t2 < 0 or t2 >= 32 (resp 64) * shr_i32/i64 t0, t1, t2 t0=t1 >> t2 (unsigned). Undefined behavior if t2 < 0 or t2 >= 32 (resp 64) * sar_i32/i64 t0, t1, t2 t0=t1 >> t2 (signed). Undefined behavior if t2 < 0 or t2 >= 32 (resp 64) ********* Misc * mov_i32/i64 t0, t1 t0 = t1 Move t1 to t0 (both operands must have the same type). * ext8s_i32/i64 t0, t1 ext16s_i32/i64 t0, t1 ext32s_i64 t0, t1 8, 16 or 32 bit sign extension (both operands must have the same type) * bswap16_i32 t0, t1 16 bit byte swap on a 32 bit value. The two high order bytes must be set to zero. * bswap_i32 t0, t1 32 bit byte swap * bswap_i64 t0, t1 64 bit byte swap ********* Type conversions * ext_i32_i64 t0, t1 Convert t1 (32 bit) to t0 (64 bit) and does sign extension * extu_i32_i64 t0, t1 Convert t1 (32 bit) to t0 (64 bit) and does zero extension * trunc_i64_i32 t0, t1 Truncate t1 (64 bit) to t0 (32 bit) ********* Load/Store * ld_i32/i64 t0, t1, offset ld8s_i32/i64 t0, t1, offset ld8u_i32/i64 t0, t1, offset ld16s_i32/i64 t0, t1, offset ld16u_i32/i64 t0, t1, offset ld32s_i64 t0, t1, offset ld32u_i64 t0, t1, offset t0 = read(t1 + offset) Load 8, 16, 32 or 64 bits with or without sign extension from host memory. offset must be a constant. * st_i32/i64 t0, t1, offset st8_i32/i64 t0, t1, offset st16_i32/i64 t0, t1, offset st32_i64 t0, t1, offset write(t0, t1 + offset) Write 8, 16, 32 or 64 bits to host memory. ********* QEMU specific operations * tb_exit t0 Exit the current TB and return the value t0 (word type). * goto_tb index Exit the current TB and jump to the TB index 'index' (constant) if the current TB was linked to this TB. Otherwise execute the next instructions. * qemu_ld_i32/i64 t0, t1, flags qemu_ld8u_i32/i64 t0, t1, flags qemu_ld8s_i32/i64 t0, t1, flags qemu_ld16u_i32/i64 t0, t1, flags qemu_ld16s_i32/i64 t0, t1, flags qemu_ld32u_i64 t0, t1, flags qemu_ld32s_i64 t0, t1, flags Load data at the QEMU CPU address t1 into t0. t1 has the QEMU CPU address type. 'flags' contains the QEMU memory index (selects user or kernel access) for example. * qemu_st_i32/i64 t0, t1, flags qemu_st8_i32/i64 t0, t1, flags qemu_st16_i32/i64 t0, t1, flags qemu_st32_i64 t0, t1, flags Store the data t0 at the QEMU CPU Address t1. t1 has the QEMU CPU address type. 'flags' contains the QEMU memory index (selects user or kernel access) for example. Note 1: Some shortcuts are defined when the last operand is known to be a constant (e.g. addi for add, movi for mov). Note 2: When using TCG, the opcodes must never be generated directly as some of them may not be available as "real" opcodes. Always use the function tcg_gen_xxx(args). 4) Backend tcg-target.h contains the target specific definitions. tcg-target.c contains the target specific code. 4.1) Assumptions The target word size (TCG_TARGET_REG_BITS) is expected to be 32 bit or 64 bit. It is expected that the pointer has the same size as the word. On a 32 bit target, all 64 bit operations are converted to 32 bits. A few specific operations must be implemented to allow it (see add2_i32, sub2_i32, brcond2_i32). Floating point operations are not supported in this version. A previous incarnation of the code generator had full support of them, but it is better to concentrate on integer operations first. On a 64 bit target, no assumption is made in TCG about the storage of the 32 bit values in 64 bit registers. 4.2) Constraints GCC like constraints are used to define the constraints of every instruction. Memory constraints are not supported in this version. Aliases are specified in the input operands as for GCC. A target can define specific register or constant constraints. If an operation uses a constant input constraint which does not allow all constants, it must also accept registers in order to have a fallback. The movi_i32 and movi_i64 operations must accept any constants. The mov_i32 and mov_i64 operations must accept any registers of the same type. The ld/st instructions must accept signed 32 bit constant offsets. It can be implemented by reserving a specific register to compute the address if the offset is too big. The ld/st instructions must accept any destination (ld) or source (st) register. 4.3) Function call assumptions - The only supported types for parameters and return value are: 32 and 64 bit integers and pointer. - The stack grows downwards. - The first N parameters are passed in registers. - The next parameters are passed on the stack by storing them as words. - Some registers are clobbered during the call. - The function can return 0 or 1 value in registers. On a 32 bit target, functions must be able to return 2 values in registers for 64 bit return type. 5) Migration from dyngen to TCG TCG is backward compatible with QEMU "dyngen" operations. It means that TCG instructions can be freely mixed with dyngen operations. It is expected that QEMU targets will be progressively fully converted to TCG. Once a target is fully converted to TCG, it will be possible to apply more optimizations because more registers will be free for the generated code. The exception model is the same as the dyngen one.