qemu-e2k/hw/nvme/nvme.h
Klaus Jensen 6a33f2e920 hw/nvme: fix compliance issue wrt. iosqes/iocqes
As of prior to this patch, the controller checks the value of CC.IOCQES
and CC.IOSQES prior to enabling the controller. As reported by Ben in
GitLab issue #1691, this is not spec compliant. The controller should
only check these values when queues are created.

This patch moves these checks to nvme_create_cq(). We do not need to
check it in nvme_create_sq() since that will error out if the completion
queue is not already created.

Also, since the controller exclusively supports SQEs of size 64 bytes
and CQEs of size 16 bytes, hard code that.

Resolves: https://gitlab.com/qemu-project/qemu/-/issues/1691
Signed-off-by: Klaus Jensen <k.jensen@samsung.com>
2023-08-07 12:27:24 +02:00

681 lines
17 KiB
C

/*
* QEMU NVM Express
*
* Copyright (c) 2012 Intel Corporation
* Copyright (c) 2021 Minwoo Im
* Copyright (c) 2021 Samsung Electronics Co., Ltd.
*
* Authors:
* Keith Busch <kbusch@kernel.org>
* Klaus Jensen <k.jensen@samsung.com>
* Gollu Appalanaidu <anaidu.gollu@samsung.com>
* Dmitry Fomichev <dmitry.fomichev@wdc.com>
* Minwoo Im <minwoo.im.dev@gmail.com>
*
* This code is licensed under the GNU GPL v2 or later.
*/
#ifndef HW_NVME_NVME_H
#define HW_NVME_NVME_H
#include "qemu/uuid.h"
#include "hw/pci/pci_device.h"
#include "hw/block/block.h"
#include "block/nvme.h"
#define NVME_MAX_CONTROLLERS 256
#define NVME_MAX_NAMESPACES 256
#define NVME_EUI64_DEFAULT ((uint64_t)0x5254000000000000)
#define NVME_FDP_MAX_EVENTS 63
#define NVME_FDP_MAXPIDS 128
/*
* The controller only supports Submission and Completion Queue Entry Sizes of
* 64 and 16 bytes respectively.
*/
#define NVME_SQES 6
#define NVME_CQES 4
QEMU_BUILD_BUG_ON(NVME_MAX_NAMESPACES > NVME_NSID_BROADCAST - 1);
typedef struct NvmeCtrl NvmeCtrl;
typedef struct NvmeNamespace NvmeNamespace;
#define TYPE_NVME_BUS "nvme-bus"
OBJECT_DECLARE_SIMPLE_TYPE(NvmeBus, NVME_BUS)
typedef struct NvmeBus {
BusState parent_bus;
} NvmeBus;
#define TYPE_NVME_SUBSYS "nvme-subsys"
#define NVME_SUBSYS(obj) \
OBJECT_CHECK(NvmeSubsystem, (obj), TYPE_NVME_SUBSYS)
#define SUBSYS_SLOT_RSVD (void *)0xFFFF
typedef struct NvmeReclaimUnit {
uint64_t ruamw;
} NvmeReclaimUnit;
typedef struct NvmeRuHandle {
uint8_t ruht;
uint8_t ruha;
uint64_t event_filter;
uint8_t lbafi;
uint64_t ruamw;
/* reclaim units indexed by reclaim group */
NvmeReclaimUnit *rus;
} NvmeRuHandle;
typedef struct NvmeFdpEventBuffer {
NvmeFdpEvent events[NVME_FDP_MAX_EVENTS];
unsigned int nelems;
unsigned int start;
unsigned int next;
} NvmeFdpEventBuffer;
typedef struct NvmeEnduranceGroup {
uint8_t event_conf;
struct {
NvmeFdpEventBuffer host_events, ctrl_events;
uint16_t nruh;
uint16_t nrg;
uint8_t rgif;
uint64_t runs;
uint64_t hbmw;
uint64_t mbmw;
uint64_t mbe;
bool enabled;
NvmeRuHandle *ruhs;
} fdp;
} NvmeEnduranceGroup;
typedef struct NvmeSubsystem {
DeviceState parent_obj;
NvmeBus bus;
uint8_t subnqn[256];
char *serial;
NvmeCtrl *ctrls[NVME_MAX_CONTROLLERS];
NvmeNamespace *namespaces[NVME_MAX_NAMESPACES + 1];
NvmeEnduranceGroup endgrp;
struct {
char *nqn;
struct {
bool enabled;
uint64_t runs;
uint16_t nruh;
uint32_t nrg;
} fdp;
} params;
} NvmeSubsystem;
int nvme_subsys_register_ctrl(NvmeCtrl *n, Error **errp);
void nvme_subsys_unregister_ctrl(NvmeSubsystem *subsys, NvmeCtrl *n);
static inline NvmeCtrl *nvme_subsys_ctrl(NvmeSubsystem *subsys,
uint32_t cntlid)
{
if (!subsys || cntlid >= NVME_MAX_CONTROLLERS) {
return NULL;
}
if (subsys->ctrls[cntlid] == SUBSYS_SLOT_RSVD) {
return NULL;
}
return subsys->ctrls[cntlid];
}
static inline NvmeNamespace *nvme_subsys_ns(NvmeSubsystem *subsys,
uint32_t nsid)
{
if (!subsys || !nsid || nsid > NVME_MAX_NAMESPACES) {
return NULL;
}
return subsys->namespaces[nsid];
}
#define TYPE_NVME_NS "nvme-ns"
#define NVME_NS(obj) \
OBJECT_CHECK(NvmeNamespace, (obj), TYPE_NVME_NS)
typedef struct NvmeZone {
NvmeZoneDescr d;
uint64_t w_ptr;
QTAILQ_ENTRY(NvmeZone) entry;
} NvmeZone;
#define FDP_EVT_MAX 0xff
#define NVME_FDP_MAX_NS_RUHS 32u
#define FDPVSS 0
static const uint8_t nvme_fdp_evf_shifts[FDP_EVT_MAX] = {
/* Host events */
[FDP_EVT_RU_NOT_FULLY_WRITTEN] = 0,
[FDP_EVT_RU_ATL_EXCEEDED] = 1,
[FDP_EVT_CTRL_RESET_RUH] = 2,
[FDP_EVT_INVALID_PID] = 3,
/* CTRL events */
[FDP_EVT_MEDIA_REALLOC] = 32,
[FDP_EVT_RUH_IMPLICIT_RU_CHANGE] = 33,
};
typedef struct NvmeNamespaceParams {
bool detached;
bool shared;
uint32_t nsid;
QemuUUID uuid;
uint64_t eui64;
bool eui64_default;
uint16_t ms;
uint8_t mset;
uint8_t pi;
uint8_t pil;
uint8_t pif;
uint16_t mssrl;
uint32_t mcl;
uint8_t msrc;
bool zoned;
bool cross_zone_read;
uint64_t zone_size_bs;
uint64_t zone_cap_bs;
uint32_t max_active_zones;
uint32_t max_open_zones;
uint32_t zd_extension_size;
uint32_t numzrwa;
uint64_t zrwas;
uint64_t zrwafg;
struct {
char *ruhs;
} fdp;
} NvmeNamespaceParams;
typedef struct NvmeNamespace {
DeviceState parent_obj;
BlockConf blkconf;
int32_t bootindex;
int64_t size;
int64_t moff;
NvmeIdNs id_ns;
NvmeIdNsNvm id_ns_nvm;
NvmeLBAF lbaf;
unsigned int nlbaf;
size_t lbasz;
const uint32_t *iocs;
uint8_t csi;
uint16_t status;
int attached;
uint8_t pif;
struct {
uint16_t zrwas;
uint16_t zrwafg;
uint32_t numzrwa;
} zns;
QTAILQ_ENTRY(NvmeNamespace) entry;
NvmeIdNsZoned *id_ns_zoned;
NvmeZone *zone_array;
QTAILQ_HEAD(, NvmeZone) exp_open_zones;
QTAILQ_HEAD(, NvmeZone) imp_open_zones;
QTAILQ_HEAD(, NvmeZone) closed_zones;
QTAILQ_HEAD(, NvmeZone) full_zones;
uint32_t num_zones;
uint64_t zone_size;
uint64_t zone_capacity;
uint32_t zone_size_log2;
uint8_t *zd_extensions;
int32_t nr_open_zones;
int32_t nr_active_zones;
NvmeNamespaceParams params;
NvmeSubsystem *subsys;
NvmeEnduranceGroup *endgrp;
struct {
uint32_t err_rec;
} features;
struct {
uint16_t nphs;
/* reclaim unit handle identifiers indexed by placement handle */
uint16_t *phs;
} fdp;
} NvmeNamespace;
static inline uint32_t nvme_nsid(NvmeNamespace *ns)
{
if (ns) {
return ns->params.nsid;
}
return 0;
}
static inline size_t nvme_l2b(NvmeNamespace *ns, uint64_t lba)
{
return lba << ns->lbaf.ds;
}
static inline size_t nvme_m2b(NvmeNamespace *ns, uint64_t lba)
{
return ns->lbaf.ms * lba;
}
static inline int64_t nvme_moff(NvmeNamespace *ns, uint64_t lba)
{
return ns->moff + nvme_m2b(ns, lba);
}
static inline bool nvme_ns_ext(NvmeNamespace *ns)
{
return !!NVME_ID_NS_FLBAS_EXTENDED(ns->id_ns.flbas);
}
static inline NvmeZoneState nvme_get_zone_state(NvmeZone *zone)
{
return zone->d.zs >> 4;
}
static inline void nvme_set_zone_state(NvmeZone *zone, NvmeZoneState state)
{
zone->d.zs = state << 4;
}
static inline uint64_t nvme_zone_rd_boundary(NvmeNamespace *ns, NvmeZone *zone)
{
return zone->d.zslba + ns->zone_size;
}
static inline uint64_t nvme_zone_wr_boundary(NvmeZone *zone)
{
return zone->d.zslba + zone->d.zcap;
}
static inline bool nvme_wp_is_valid(NvmeZone *zone)
{
uint8_t st = nvme_get_zone_state(zone);
return st != NVME_ZONE_STATE_FULL &&
st != NVME_ZONE_STATE_READ_ONLY &&
st != NVME_ZONE_STATE_OFFLINE;
}
static inline uint8_t *nvme_get_zd_extension(NvmeNamespace *ns,
uint32_t zone_idx)
{
return &ns->zd_extensions[zone_idx * ns->params.zd_extension_size];
}
static inline void nvme_aor_inc_open(NvmeNamespace *ns)
{
assert(ns->nr_open_zones >= 0);
if (ns->params.max_open_zones) {
ns->nr_open_zones++;
assert(ns->nr_open_zones <= ns->params.max_open_zones);
}
}
static inline void nvme_aor_dec_open(NvmeNamespace *ns)
{
if (ns->params.max_open_zones) {
assert(ns->nr_open_zones > 0);
ns->nr_open_zones--;
}
assert(ns->nr_open_zones >= 0);
}
static inline void nvme_aor_inc_active(NvmeNamespace *ns)
{
assert(ns->nr_active_zones >= 0);
if (ns->params.max_active_zones) {
ns->nr_active_zones++;
assert(ns->nr_active_zones <= ns->params.max_active_zones);
}
}
static inline void nvme_aor_dec_active(NvmeNamespace *ns)
{
if (ns->params.max_active_zones) {
assert(ns->nr_active_zones > 0);
ns->nr_active_zones--;
assert(ns->nr_active_zones >= ns->nr_open_zones);
}
assert(ns->nr_active_zones >= 0);
}
static inline void nvme_fdp_stat_inc(uint64_t *a, uint64_t b)
{
uint64_t ret = *a + b;
*a = ret < *a ? UINT64_MAX : ret;
}
void nvme_ns_init_format(NvmeNamespace *ns);
int nvme_ns_setup(NvmeNamespace *ns, Error **errp);
void nvme_ns_drain(NvmeNamespace *ns);
void nvme_ns_shutdown(NvmeNamespace *ns);
void nvme_ns_cleanup(NvmeNamespace *ns);
typedef struct NvmeAsyncEvent {
QTAILQ_ENTRY(NvmeAsyncEvent) entry;
NvmeAerResult result;
} NvmeAsyncEvent;
enum {
NVME_SG_ALLOC = 1 << 0,
NVME_SG_DMA = 1 << 1,
};
typedef struct NvmeSg {
int flags;
union {
QEMUSGList qsg;
QEMUIOVector iov;
};
} NvmeSg;
typedef enum NvmeTxDirection {
NVME_TX_DIRECTION_TO_DEVICE = 0,
NVME_TX_DIRECTION_FROM_DEVICE = 1,
} NvmeTxDirection;
typedef struct NvmeRequest {
struct NvmeSQueue *sq;
struct NvmeNamespace *ns;
BlockAIOCB *aiocb;
uint16_t status;
void *opaque;
NvmeCqe cqe;
NvmeCmd cmd;
BlockAcctCookie acct;
NvmeSg sg;
QTAILQ_ENTRY(NvmeRequest)entry;
} NvmeRequest;
typedef struct NvmeBounceContext {
NvmeRequest *req;
struct {
QEMUIOVector iov;
uint8_t *bounce;
} data, mdata;
} NvmeBounceContext;
static inline const char *nvme_adm_opc_str(uint8_t opc)
{
switch (opc) {
case NVME_ADM_CMD_DELETE_SQ: return "NVME_ADM_CMD_DELETE_SQ";
case NVME_ADM_CMD_CREATE_SQ: return "NVME_ADM_CMD_CREATE_SQ";
case NVME_ADM_CMD_GET_LOG_PAGE: return "NVME_ADM_CMD_GET_LOG_PAGE";
case NVME_ADM_CMD_DELETE_CQ: return "NVME_ADM_CMD_DELETE_CQ";
case NVME_ADM_CMD_CREATE_CQ: return "NVME_ADM_CMD_CREATE_CQ";
case NVME_ADM_CMD_IDENTIFY: return "NVME_ADM_CMD_IDENTIFY";
case NVME_ADM_CMD_ABORT: return "NVME_ADM_CMD_ABORT";
case NVME_ADM_CMD_SET_FEATURES: return "NVME_ADM_CMD_SET_FEATURES";
case NVME_ADM_CMD_GET_FEATURES: return "NVME_ADM_CMD_GET_FEATURES";
case NVME_ADM_CMD_ASYNC_EV_REQ: return "NVME_ADM_CMD_ASYNC_EV_REQ";
case NVME_ADM_CMD_NS_ATTACHMENT: return "NVME_ADM_CMD_NS_ATTACHMENT";
case NVME_ADM_CMD_DIRECTIVE_SEND: return "NVME_ADM_CMD_DIRECTIVE_SEND";
case NVME_ADM_CMD_VIRT_MNGMT: return "NVME_ADM_CMD_VIRT_MNGMT";
case NVME_ADM_CMD_DIRECTIVE_RECV: return "NVME_ADM_CMD_DIRECTIVE_RECV";
case NVME_ADM_CMD_DBBUF_CONFIG: return "NVME_ADM_CMD_DBBUF_CONFIG";
case NVME_ADM_CMD_FORMAT_NVM: return "NVME_ADM_CMD_FORMAT_NVM";
default: return "NVME_ADM_CMD_UNKNOWN";
}
}
static inline const char *nvme_io_opc_str(uint8_t opc)
{
switch (opc) {
case NVME_CMD_FLUSH: return "NVME_NVM_CMD_FLUSH";
case NVME_CMD_WRITE: return "NVME_NVM_CMD_WRITE";
case NVME_CMD_READ: return "NVME_NVM_CMD_READ";
case NVME_CMD_COMPARE: return "NVME_NVM_CMD_COMPARE";
case NVME_CMD_WRITE_ZEROES: return "NVME_NVM_CMD_WRITE_ZEROES";
case NVME_CMD_DSM: return "NVME_NVM_CMD_DSM";
case NVME_CMD_VERIFY: return "NVME_NVM_CMD_VERIFY";
case NVME_CMD_COPY: return "NVME_NVM_CMD_COPY";
case NVME_CMD_ZONE_MGMT_SEND: return "NVME_ZONED_CMD_MGMT_SEND";
case NVME_CMD_ZONE_MGMT_RECV: return "NVME_ZONED_CMD_MGMT_RECV";
case NVME_CMD_ZONE_APPEND: return "NVME_ZONED_CMD_ZONE_APPEND";
default: return "NVME_NVM_CMD_UNKNOWN";
}
}
typedef struct NvmeSQueue {
struct NvmeCtrl *ctrl;
uint16_t sqid;
uint16_t cqid;
uint32_t head;
uint32_t tail;
uint32_t size;
uint64_t dma_addr;
uint64_t db_addr;
uint64_t ei_addr;
QEMUBH *bh;
EventNotifier notifier;
bool ioeventfd_enabled;
NvmeRequest *io_req;
QTAILQ_HEAD(, NvmeRequest) req_list;
QTAILQ_HEAD(, NvmeRequest) out_req_list;
QTAILQ_ENTRY(NvmeSQueue) entry;
} NvmeSQueue;
typedef struct NvmeCQueue {
struct NvmeCtrl *ctrl;
uint8_t phase;
uint16_t cqid;
uint16_t irq_enabled;
uint32_t head;
uint32_t tail;
uint32_t vector;
uint32_t size;
uint64_t dma_addr;
uint64_t db_addr;
uint64_t ei_addr;
QEMUBH *bh;
EventNotifier notifier;
bool ioeventfd_enabled;
QTAILQ_HEAD(, NvmeSQueue) sq_list;
QTAILQ_HEAD(, NvmeRequest) req_list;
} NvmeCQueue;
#define TYPE_NVME "nvme"
#define NVME(obj) \
OBJECT_CHECK(NvmeCtrl, (obj), TYPE_NVME)
typedef struct NvmeParams {
char *serial;
uint32_t num_queues; /* deprecated since 5.1 */
uint32_t max_ioqpairs;
uint16_t msix_qsize;
uint32_t cmb_size_mb;
uint8_t aerl;
uint32_t aer_max_queued;
uint8_t mdts;
uint8_t vsl;
bool use_intel_id;
uint8_t zasl;
bool auto_transition_zones;
bool legacy_cmb;
bool ioeventfd;
uint8_t sriov_max_vfs;
uint16_t sriov_vq_flexible;
uint16_t sriov_vi_flexible;
uint8_t sriov_max_vq_per_vf;
uint8_t sriov_max_vi_per_vf;
} NvmeParams;
typedef struct NvmeCtrl {
PCIDevice parent_obj;
MemoryRegion bar0;
MemoryRegion iomem;
NvmeBar bar;
NvmeParams params;
NvmeBus bus;
uint16_t cntlid;
bool qs_created;
uint32_t page_size;
uint16_t page_bits;
uint16_t max_prp_ents;
uint32_t max_q_ents;
uint8_t outstanding_aers;
uint32_t irq_status;
int cq_pending;
uint64_t host_timestamp; /* Timestamp sent by the host */
uint64_t timestamp_set_qemu_clock_ms; /* QEMU clock time */
uint64_t starttime_ms;
uint16_t temperature;
uint8_t smart_critical_warning;
uint32_t conf_msix_qsize;
uint32_t conf_ioqpairs;
uint64_t dbbuf_dbs;
uint64_t dbbuf_eis;
bool dbbuf_enabled;
struct {
MemoryRegion mem;
uint8_t *buf;
bool cmse;
hwaddr cba;
} cmb;
struct {
HostMemoryBackend *dev;
bool cmse;
hwaddr cba;
} pmr;
uint8_t aer_mask;
NvmeRequest **aer_reqs;
QTAILQ_HEAD(, NvmeAsyncEvent) aer_queue;
int aer_queued;
uint32_t dmrsl;
/* Namespace ID is started with 1 so bitmap should be 1-based */
#define NVME_CHANGED_NSID_SIZE (NVME_MAX_NAMESPACES + 1)
DECLARE_BITMAP(changed_nsids, NVME_CHANGED_NSID_SIZE);
NvmeSubsystem *subsys;
NvmeNamespace namespace;
NvmeNamespace *namespaces[NVME_MAX_NAMESPACES + 1];
NvmeSQueue **sq;
NvmeCQueue **cq;
NvmeSQueue admin_sq;
NvmeCQueue admin_cq;
NvmeIdCtrl id_ctrl;
struct {
struct {
uint16_t temp_thresh_hi;
uint16_t temp_thresh_low;
};
uint32_t async_config;
NvmeHostBehaviorSupport hbs;
} features;
NvmePriCtrlCap pri_ctrl_cap;
NvmeSecCtrlList sec_ctrl_list;
struct {
uint16_t vqrfap;
uint16_t virfap;
} next_pri_ctrl_cap; /* These override pri_ctrl_cap after reset */
} NvmeCtrl;
typedef enum NvmeResetType {
NVME_RESET_FUNCTION = 0,
NVME_RESET_CONTROLLER = 1,
} NvmeResetType;
static inline NvmeNamespace *nvme_ns(NvmeCtrl *n, uint32_t nsid)
{
if (!nsid || nsid > NVME_MAX_NAMESPACES) {
return NULL;
}
return n->namespaces[nsid];
}
static inline NvmeCQueue *nvme_cq(NvmeRequest *req)
{
NvmeSQueue *sq = req->sq;
NvmeCtrl *n = sq->ctrl;
return n->cq[sq->cqid];
}
static inline NvmeCtrl *nvme_ctrl(NvmeRequest *req)
{
NvmeSQueue *sq = req->sq;
return sq->ctrl;
}
static inline uint16_t nvme_cid(NvmeRequest *req)
{
if (!req) {
return 0xffff;
}
return le16_to_cpu(req->cqe.cid);
}
static inline NvmeSecCtrlEntry *nvme_sctrl(NvmeCtrl *n)
{
PCIDevice *pci_dev = &n->parent_obj;
NvmeCtrl *pf = NVME(pcie_sriov_get_pf(pci_dev));
if (pci_is_vf(pci_dev)) {
return &pf->sec_ctrl_list.sec[pcie_sriov_vf_number(pci_dev)];
}
return NULL;
}
static inline NvmeSecCtrlEntry *nvme_sctrl_for_cntlid(NvmeCtrl *n,
uint16_t cntlid)
{
NvmeSecCtrlList *list = &n->sec_ctrl_list;
uint8_t i;
for (i = 0; i < list->numcntl; i++) {
if (le16_to_cpu(list->sec[i].scid) == cntlid) {
return &list->sec[i];
}
}
return NULL;
}
void nvme_attach_ns(NvmeCtrl *n, NvmeNamespace *ns);
uint16_t nvme_bounce_data(NvmeCtrl *n, void *ptr, uint32_t len,
NvmeTxDirection dir, NvmeRequest *req);
uint16_t nvme_bounce_mdata(NvmeCtrl *n, void *ptr, uint32_t len,
NvmeTxDirection dir, NvmeRequest *req);
void nvme_rw_complete_cb(void *opaque, int ret);
uint16_t nvme_map_dptr(NvmeCtrl *n, NvmeSg *sg, size_t len,
NvmeCmd *cmd);
#endif /* HW_NVME_NVME_H */