41aa4e9fd8
We need some of the fields without having to poison everything else. Signed-off-by: Juan Quintela <quintela@redhat.com> Reviewed-by: Dr. David Alan Gilbert <dgilbert@redhat.com>
518 lines
17 KiB
C
518 lines
17 KiB
C
/*
|
|
* Declarations for cpu physical memory functions
|
|
*
|
|
* Copyright 2011 Red Hat, Inc. and/or its affiliates
|
|
*
|
|
* Authors:
|
|
* Avi Kivity <avi@redhat.com>
|
|
*
|
|
* This work is licensed under the terms of the GNU GPL, version 2 or
|
|
* later. See the COPYING file in the top-level directory.
|
|
*
|
|
*/
|
|
|
|
/*
|
|
* This header is for use by exec.c and memory.c ONLY. Do not include it.
|
|
* The functions declared here will be removed soon.
|
|
*/
|
|
|
|
#ifndef RAM_ADDR_H
|
|
#define RAM_ADDR_H
|
|
|
|
#ifndef CONFIG_USER_ONLY
|
|
#include "cpu.h"
|
|
#include "hw/xen/xen.h"
|
|
#include "sysemu/tcg.h"
|
|
#include "exec/ramlist.h"
|
|
#include "exec/ramblock.h"
|
|
|
|
/**
|
|
* clear_bmap_size: calculate clear bitmap size
|
|
*
|
|
* @pages: number of guest pages
|
|
* @shift: guest page number shift
|
|
*
|
|
* Returns: number of bits for the clear bitmap
|
|
*/
|
|
static inline long clear_bmap_size(uint64_t pages, uint8_t shift)
|
|
{
|
|
return DIV_ROUND_UP(pages, 1UL << shift);
|
|
}
|
|
|
|
/**
|
|
* clear_bmap_set: set clear bitmap for the page range
|
|
*
|
|
* @rb: the ramblock to operate on
|
|
* @start: the start page number
|
|
* @size: number of pages to set in the bitmap
|
|
*
|
|
* Returns: None
|
|
*/
|
|
static inline void clear_bmap_set(RAMBlock *rb, uint64_t start,
|
|
uint64_t npages)
|
|
{
|
|
uint8_t shift = rb->clear_bmap_shift;
|
|
|
|
bitmap_set_atomic(rb->clear_bmap, start >> shift,
|
|
clear_bmap_size(npages, shift));
|
|
}
|
|
|
|
/**
|
|
* clear_bmap_test_and_clear: test clear bitmap for the page, clear if set
|
|
*
|
|
* @rb: the ramblock to operate on
|
|
* @page: the page number to check
|
|
*
|
|
* Returns: true if the bit was set, false otherwise
|
|
*/
|
|
static inline bool clear_bmap_test_and_clear(RAMBlock *rb, uint64_t page)
|
|
{
|
|
uint8_t shift = rb->clear_bmap_shift;
|
|
|
|
return bitmap_test_and_clear_atomic(rb->clear_bmap, page >> shift, 1);
|
|
}
|
|
|
|
static inline bool offset_in_ramblock(RAMBlock *b, ram_addr_t offset)
|
|
{
|
|
return (b && b->host && offset < b->used_length) ? true : false;
|
|
}
|
|
|
|
static inline void *ramblock_ptr(RAMBlock *block, ram_addr_t offset)
|
|
{
|
|
assert(offset_in_ramblock(block, offset));
|
|
return (char *)block->host + offset;
|
|
}
|
|
|
|
static inline unsigned long int ramblock_recv_bitmap_offset(void *host_addr,
|
|
RAMBlock *rb)
|
|
{
|
|
uint64_t host_addr_offset =
|
|
(uint64_t)(uintptr_t)(host_addr - (void *)rb->host);
|
|
return host_addr_offset >> TARGET_PAGE_BITS;
|
|
}
|
|
|
|
bool ramblock_is_pmem(RAMBlock *rb);
|
|
|
|
long qemu_minrampagesize(void);
|
|
long qemu_maxrampagesize(void);
|
|
|
|
/**
|
|
* qemu_ram_alloc_from_file,
|
|
* qemu_ram_alloc_from_fd: Allocate a ram block from the specified backing
|
|
* file or device
|
|
*
|
|
* Parameters:
|
|
* @size: the size in bytes of the ram block
|
|
* @mr: the memory region where the ram block is
|
|
* @ram_flags: specify the properties of the ram block, which can be one
|
|
* or bit-or of following values
|
|
* - RAM_SHARED: mmap the backing file or device with MAP_SHARED
|
|
* - RAM_PMEM: the backend @mem_path or @fd is persistent memory
|
|
* Other bits are ignored.
|
|
* @mem_path or @fd: specify the backing file or device
|
|
* @errp: pointer to Error*, to store an error if it happens
|
|
*
|
|
* Return:
|
|
* On success, return a pointer to the ram block.
|
|
* On failure, return NULL.
|
|
*/
|
|
RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
|
|
uint32_t ram_flags, const char *mem_path,
|
|
Error **errp);
|
|
RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, MemoryRegion *mr,
|
|
uint32_t ram_flags, int fd,
|
|
Error **errp);
|
|
|
|
RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
|
|
MemoryRegion *mr, Error **errp);
|
|
RAMBlock *qemu_ram_alloc(ram_addr_t size, bool share, MemoryRegion *mr,
|
|
Error **errp);
|
|
RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t max_size,
|
|
void (*resized)(const char*,
|
|
uint64_t length,
|
|
void *host),
|
|
MemoryRegion *mr, Error **errp);
|
|
void qemu_ram_free(RAMBlock *block);
|
|
|
|
int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp);
|
|
|
|
void qemu_ram_writeback(RAMBlock *block, ram_addr_t start, ram_addr_t length);
|
|
|
|
/* Clear whole block of mem */
|
|
static inline void qemu_ram_block_writeback(RAMBlock *block)
|
|
{
|
|
qemu_ram_writeback(block, 0, block->used_length);
|
|
}
|
|
|
|
#define DIRTY_CLIENTS_ALL ((1 << DIRTY_MEMORY_NUM) - 1)
|
|
#define DIRTY_CLIENTS_NOCODE (DIRTY_CLIENTS_ALL & ~(1 << DIRTY_MEMORY_CODE))
|
|
|
|
void tb_invalidate_phys_range(ram_addr_t start, ram_addr_t end);
|
|
|
|
static inline bool cpu_physical_memory_get_dirty(ram_addr_t start,
|
|
ram_addr_t length,
|
|
unsigned client)
|
|
{
|
|
DirtyMemoryBlocks *blocks;
|
|
unsigned long end, page;
|
|
unsigned long idx, offset, base;
|
|
bool dirty = false;
|
|
|
|
assert(client < DIRTY_MEMORY_NUM);
|
|
|
|
end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
|
|
page = start >> TARGET_PAGE_BITS;
|
|
|
|
WITH_RCU_READ_LOCK_GUARD() {
|
|
blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
|
|
|
|
idx = page / DIRTY_MEMORY_BLOCK_SIZE;
|
|
offset = page % DIRTY_MEMORY_BLOCK_SIZE;
|
|
base = page - offset;
|
|
while (page < end) {
|
|
unsigned long next = MIN(end, base + DIRTY_MEMORY_BLOCK_SIZE);
|
|
unsigned long num = next - base;
|
|
unsigned long found = find_next_bit(blocks->blocks[idx],
|
|
num, offset);
|
|
if (found < num) {
|
|
dirty = true;
|
|
break;
|
|
}
|
|
|
|
page = next;
|
|
idx++;
|
|
offset = 0;
|
|
base += DIRTY_MEMORY_BLOCK_SIZE;
|
|
}
|
|
}
|
|
|
|
return dirty;
|
|
}
|
|
|
|
static inline bool cpu_physical_memory_all_dirty(ram_addr_t start,
|
|
ram_addr_t length,
|
|
unsigned client)
|
|
{
|
|
DirtyMemoryBlocks *blocks;
|
|
unsigned long end, page;
|
|
unsigned long idx, offset, base;
|
|
bool dirty = true;
|
|
|
|
assert(client < DIRTY_MEMORY_NUM);
|
|
|
|
end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
|
|
page = start >> TARGET_PAGE_BITS;
|
|
|
|
RCU_READ_LOCK_GUARD();
|
|
|
|
blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
|
|
|
|
idx = page / DIRTY_MEMORY_BLOCK_SIZE;
|
|
offset = page % DIRTY_MEMORY_BLOCK_SIZE;
|
|
base = page - offset;
|
|
while (page < end) {
|
|
unsigned long next = MIN(end, base + DIRTY_MEMORY_BLOCK_SIZE);
|
|
unsigned long num = next - base;
|
|
unsigned long found = find_next_zero_bit(blocks->blocks[idx], num, offset);
|
|
if (found < num) {
|
|
dirty = false;
|
|
break;
|
|
}
|
|
|
|
page = next;
|
|
idx++;
|
|
offset = 0;
|
|
base += DIRTY_MEMORY_BLOCK_SIZE;
|
|
}
|
|
|
|
return dirty;
|
|
}
|
|
|
|
static inline bool cpu_physical_memory_get_dirty_flag(ram_addr_t addr,
|
|
unsigned client)
|
|
{
|
|
return cpu_physical_memory_get_dirty(addr, 1, client);
|
|
}
|
|
|
|
static inline bool cpu_physical_memory_is_clean(ram_addr_t addr)
|
|
{
|
|
bool vga = cpu_physical_memory_get_dirty_flag(addr, DIRTY_MEMORY_VGA);
|
|
bool code = cpu_physical_memory_get_dirty_flag(addr, DIRTY_MEMORY_CODE);
|
|
bool migration =
|
|
cpu_physical_memory_get_dirty_flag(addr, DIRTY_MEMORY_MIGRATION);
|
|
return !(vga && code && migration);
|
|
}
|
|
|
|
static inline uint8_t cpu_physical_memory_range_includes_clean(ram_addr_t start,
|
|
ram_addr_t length,
|
|
uint8_t mask)
|
|
{
|
|
uint8_t ret = 0;
|
|
|
|
if (mask & (1 << DIRTY_MEMORY_VGA) &&
|
|
!cpu_physical_memory_all_dirty(start, length, DIRTY_MEMORY_VGA)) {
|
|
ret |= (1 << DIRTY_MEMORY_VGA);
|
|
}
|
|
if (mask & (1 << DIRTY_MEMORY_CODE) &&
|
|
!cpu_physical_memory_all_dirty(start, length, DIRTY_MEMORY_CODE)) {
|
|
ret |= (1 << DIRTY_MEMORY_CODE);
|
|
}
|
|
if (mask & (1 << DIRTY_MEMORY_MIGRATION) &&
|
|
!cpu_physical_memory_all_dirty(start, length, DIRTY_MEMORY_MIGRATION)) {
|
|
ret |= (1 << DIRTY_MEMORY_MIGRATION);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static inline void cpu_physical_memory_set_dirty_flag(ram_addr_t addr,
|
|
unsigned client)
|
|
{
|
|
unsigned long page, idx, offset;
|
|
DirtyMemoryBlocks *blocks;
|
|
|
|
assert(client < DIRTY_MEMORY_NUM);
|
|
|
|
page = addr >> TARGET_PAGE_BITS;
|
|
idx = page / DIRTY_MEMORY_BLOCK_SIZE;
|
|
offset = page % DIRTY_MEMORY_BLOCK_SIZE;
|
|
|
|
RCU_READ_LOCK_GUARD();
|
|
|
|
blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
|
|
|
|
set_bit_atomic(offset, blocks->blocks[idx]);
|
|
}
|
|
|
|
static inline void cpu_physical_memory_set_dirty_range(ram_addr_t start,
|
|
ram_addr_t length,
|
|
uint8_t mask)
|
|
{
|
|
DirtyMemoryBlocks *blocks[DIRTY_MEMORY_NUM];
|
|
unsigned long end, page;
|
|
unsigned long idx, offset, base;
|
|
int i;
|
|
|
|
if (!mask && !xen_enabled()) {
|
|
return;
|
|
}
|
|
|
|
end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
|
|
page = start >> TARGET_PAGE_BITS;
|
|
|
|
WITH_RCU_READ_LOCK_GUARD() {
|
|
for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
|
|
blocks[i] = atomic_rcu_read(&ram_list.dirty_memory[i]);
|
|
}
|
|
|
|
idx = page / DIRTY_MEMORY_BLOCK_SIZE;
|
|
offset = page % DIRTY_MEMORY_BLOCK_SIZE;
|
|
base = page - offset;
|
|
while (page < end) {
|
|
unsigned long next = MIN(end, base + DIRTY_MEMORY_BLOCK_SIZE);
|
|
|
|
if (likely(mask & (1 << DIRTY_MEMORY_MIGRATION))) {
|
|
bitmap_set_atomic(blocks[DIRTY_MEMORY_MIGRATION]->blocks[idx],
|
|
offset, next - page);
|
|
}
|
|
if (unlikely(mask & (1 << DIRTY_MEMORY_VGA))) {
|
|
bitmap_set_atomic(blocks[DIRTY_MEMORY_VGA]->blocks[idx],
|
|
offset, next - page);
|
|
}
|
|
if (unlikely(mask & (1 << DIRTY_MEMORY_CODE))) {
|
|
bitmap_set_atomic(blocks[DIRTY_MEMORY_CODE]->blocks[idx],
|
|
offset, next - page);
|
|
}
|
|
|
|
page = next;
|
|
idx++;
|
|
offset = 0;
|
|
base += DIRTY_MEMORY_BLOCK_SIZE;
|
|
}
|
|
}
|
|
|
|
xen_hvm_modified_memory(start, length);
|
|
}
|
|
|
|
#if !defined(_WIN32)
|
|
static inline void cpu_physical_memory_set_dirty_lebitmap(unsigned long *bitmap,
|
|
ram_addr_t start,
|
|
ram_addr_t pages)
|
|
{
|
|
unsigned long i, j;
|
|
unsigned long page_number, c;
|
|
hwaddr addr;
|
|
ram_addr_t ram_addr;
|
|
unsigned long len = (pages + HOST_LONG_BITS - 1) / HOST_LONG_BITS;
|
|
unsigned long hpratio = qemu_real_host_page_size / TARGET_PAGE_SIZE;
|
|
unsigned long page = BIT_WORD(start >> TARGET_PAGE_BITS);
|
|
|
|
/* start address is aligned at the start of a word? */
|
|
if ((((page * BITS_PER_LONG) << TARGET_PAGE_BITS) == start) &&
|
|
(hpratio == 1)) {
|
|
unsigned long **blocks[DIRTY_MEMORY_NUM];
|
|
unsigned long idx;
|
|
unsigned long offset;
|
|
long k;
|
|
long nr = BITS_TO_LONGS(pages);
|
|
|
|
idx = (start >> TARGET_PAGE_BITS) / DIRTY_MEMORY_BLOCK_SIZE;
|
|
offset = BIT_WORD((start >> TARGET_PAGE_BITS) %
|
|
DIRTY_MEMORY_BLOCK_SIZE);
|
|
|
|
WITH_RCU_READ_LOCK_GUARD() {
|
|
for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
|
|
blocks[i] = atomic_rcu_read(&ram_list.dirty_memory[i])->blocks;
|
|
}
|
|
|
|
for (k = 0; k < nr; k++) {
|
|
if (bitmap[k]) {
|
|
unsigned long temp = leul_to_cpu(bitmap[k]);
|
|
|
|
atomic_or(&blocks[DIRTY_MEMORY_VGA][idx][offset], temp);
|
|
|
|
if (global_dirty_log) {
|
|
atomic_or(&blocks[DIRTY_MEMORY_MIGRATION][idx][offset],
|
|
temp);
|
|
}
|
|
|
|
if (tcg_enabled()) {
|
|
atomic_or(&blocks[DIRTY_MEMORY_CODE][idx][offset],
|
|
temp);
|
|
}
|
|
}
|
|
|
|
if (++offset >= BITS_TO_LONGS(DIRTY_MEMORY_BLOCK_SIZE)) {
|
|
offset = 0;
|
|
idx++;
|
|
}
|
|
}
|
|
}
|
|
|
|
xen_hvm_modified_memory(start, pages << TARGET_PAGE_BITS);
|
|
} else {
|
|
uint8_t clients = tcg_enabled() ? DIRTY_CLIENTS_ALL : DIRTY_CLIENTS_NOCODE;
|
|
|
|
if (!global_dirty_log) {
|
|
clients &= ~(1 << DIRTY_MEMORY_MIGRATION);
|
|
}
|
|
|
|
/*
|
|
* bitmap-traveling is faster than memory-traveling (for addr...)
|
|
* especially when most of the memory is not dirty.
|
|
*/
|
|
for (i = 0; i < len; i++) {
|
|
if (bitmap[i] != 0) {
|
|
c = leul_to_cpu(bitmap[i]);
|
|
do {
|
|
j = ctzl(c);
|
|
c &= ~(1ul << j);
|
|
page_number = (i * HOST_LONG_BITS + j) * hpratio;
|
|
addr = page_number * TARGET_PAGE_SIZE;
|
|
ram_addr = start + addr;
|
|
cpu_physical_memory_set_dirty_range(ram_addr,
|
|
TARGET_PAGE_SIZE * hpratio, clients);
|
|
} while (c != 0);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
#endif /* not _WIN32 */
|
|
|
|
bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
|
|
ram_addr_t length,
|
|
unsigned client);
|
|
|
|
DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty
|
|
(MemoryRegion *mr, hwaddr offset, hwaddr length, unsigned client);
|
|
|
|
bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap,
|
|
ram_addr_t start,
|
|
ram_addr_t length);
|
|
|
|
static inline void cpu_physical_memory_clear_dirty_range(ram_addr_t start,
|
|
ram_addr_t length)
|
|
{
|
|
cpu_physical_memory_test_and_clear_dirty(start, length, DIRTY_MEMORY_MIGRATION);
|
|
cpu_physical_memory_test_and_clear_dirty(start, length, DIRTY_MEMORY_VGA);
|
|
cpu_physical_memory_test_and_clear_dirty(start, length, DIRTY_MEMORY_CODE);
|
|
}
|
|
|
|
|
|
/* Called with RCU critical section */
|
|
static inline
|
|
uint64_t cpu_physical_memory_sync_dirty_bitmap(RAMBlock *rb,
|
|
ram_addr_t start,
|
|
ram_addr_t length,
|
|
uint64_t *real_dirty_pages)
|
|
{
|
|
ram_addr_t addr;
|
|
unsigned long word = BIT_WORD((start + rb->offset) >> TARGET_PAGE_BITS);
|
|
uint64_t num_dirty = 0;
|
|
unsigned long *dest = rb->bmap;
|
|
|
|
/* start address and length is aligned at the start of a word? */
|
|
if (((word * BITS_PER_LONG) << TARGET_PAGE_BITS) ==
|
|
(start + rb->offset) &&
|
|
!(length & ((BITS_PER_LONG << TARGET_PAGE_BITS) - 1))) {
|
|
int k;
|
|
int nr = BITS_TO_LONGS(length >> TARGET_PAGE_BITS);
|
|
unsigned long * const *src;
|
|
unsigned long idx = (word * BITS_PER_LONG) / DIRTY_MEMORY_BLOCK_SIZE;
|
|
unsigned long offset = BIT_WORD((word * BITS_PER_LONG) %
|
|
DIRTY_MEMORY_BLOCK_SIZE);
|
|
unsigned long page = BIT_WORD(start >> TARGET_PAGE_BITS);
|
|
|
|
src = atomic_rcu_read(
|
|
&ram_list.dirty_memory[DIRTY_MEMORY_MIGRATION])->blocks;
|
|
|
|
for (k = page; k < page + nr; k++) {
|
|
if (src[idx][offset]) {
|
|
unsigned long bits = atomic_xchg(&src[idx][offset], 0);
|
|
unsigned long new_dirty;
|
|
*real_dirty_pages += ctpopl(bits);
|
|
new_dirty = ~dest[k];
|
|
dest[k] |= bits;
|
|
new_dirty &= bits;
|
|
num_dirty += ctpopl(new_dirty);
|
|
}
|
|
|
|
if (++offset >= BITS_TO_LONGS(DIRTY_MEMORY_BLOCK_SIZE)) {
|
|
offset = 0;
|
|
idx++;
|
|
}
|
|
}
|
|
|
|
if (rb->clear_bmap) {
|
|
/*
|
|
* Postpone the dirty bitmap clear to the point before we
|
|
* really send the pages, also we will split the clear
|
|
* dirty procedure into smaller chunks.
|
|
*/
|
|
clear_bmap_set(rb, start >> TARGET_PAGE_BITS,
|
|
length >> TARGET_PAGE_BITS);
|
|
} else {
|
|
/* Slow path - still do that in a huge chunk */
|
|
memory_region_clear_dirty_bitmap(rb->mr, start, length);
|
|
}
|
|
} else {
|
|
ram_addr_t offset = rb->offset;
|
|
|
|
for (addr = 0; addr < length; addr += TARGET_PAGE_SIZE) {
|
|
if (cpu_physical_memory_test_and_clear_dirty(
|
|
start + addr + offset,
|
|
TARGET_PAGE_SIZE,
|
|
DIRTY_MEMORY_MIGRATION)) {
|
|
*real_dirty_pages += 1;
|
|
long k = (start + addr) >> TARGET_PAGE_BITS;
|
|
if (!test_and_set_bit(k, dest)) {
|
|
num_dirty++;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return num_dirty;
|
|
}
|
|
#endif
|
|
#endif
|