qemu-e2k/target/microblaze/helper.c
Richard Henderson de73ee1abe target/microblaze: Move mmu parameters to MicroBlazeCPUConfig
The final 4 fields in MicroBlazeMMU are configuration constants.
Move them into MicroBlazeCPUConfig where they belong.

Remove the leading "c_" from the member names, as that presumably
implied "config", and that should not be explicit in the location.

Tested-by: Edgar E. Iglesias <edgar.iglesias@xilinx.com>
Reviewed-by: Edgar E. Iglesias <edgar.iglesias@xilinx.com>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
2020-09-07 12:58:08 -07:00

299 lines
9.0 KiB
C

/*
* MicroBlaze helper routines.
*
* Copyright (c) 2009 Edgar E. Iglesias <edgar.iglesias@gmail.com>
* Copyright (c) 2009-2012 PetaLogix Qld Pty Ltd.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "cpu.h"
#include "exec/exec-all.h"
#include "qemu/host-utils.h"
#include "exec/log.h"
#if defined(CONFIG_USER_ONLY)
void mb_cpu_do_interrupt(CPUState *cs)
{
MicroBlazeCPU *cpu = MICROBLAZE_CPU(cs);
CPUMBState *env = &cpu->env;
cs->exception_index = -1;
env->res_addr = RES_ADDR_NONE;
env->regs[14] = env->pc;
}
bool mb_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
MMUAccessType access_type, int mmu_idx,
bool probe, uintptr_t retaddr)
{
cs->exception_index = 0xaa;
cpu_loop_exit_restore(cs, retaddr);
}
#else /* !CONFIG_USER_ONLY */
bool mb_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
MMUAccessType access_type, int mmu_idx,
bool probe, uintptr_t retaddr)
{
MicroBlazeCPU *cpu = MICROBLAZE_CPU(cs);
CPUMBState *env = &cpu->env;
MicroBlazeMMULookup lu;
unsigned int hit;
int prot;
if (mmu_idx == MMU_NOMMU_IDX) {
/* MMU disabled or not available. */
address &= TARGET_PAGE_MASK;
prot = PAGE_BITS;
tlb_set_page(cs, address, address, prot, mmu_idx, TARGET_PAGE_SIZE);
return true;
}
hit = mmu_translate(cpu, &lu, address, access_type, mmu_idx);
if (likely(hit)) {
uint32_t vaddr = address & TARGET_PAGE_MASK;
uint32_t paddr = lu.paddr + vaddr - lu.vaddr;
qemu_log_mask(CPU_LOG_MMU, "MMU map mmu=%d v=%x p=%x prot=%x\n",
mmu_idx, vaddr, paddr, lu.prot);
tlb_set_page(cs, vaddr, paddr, lu.prot, mmu_idx, TARGET_PAGE_SIZE);
return true;
}
/* TLB miss. */
if (probe) {
return false;
}
qemu_log_mask(CPU_LOG_MMU, "mmu=%d miss v=%" VADDR_PRIx "\n",
mmu_idx, address);
env->ear = address;
switch (lu.err) {
case ERR_PROT:
env->esr = access_type == MMU_INST_FETCH ? 17 : 16;
env->esr |= (access_type == MMU_DATA_STORE) << 10;
break;
case ERR_MISS:
env->esr = access_type == MMU_INST_FETCH ? 19 : 18;
env->esr |= (access_type == MMU_DATA_STORE) << 10;
break;
default:
abort();
}
if (cs->exception_index == EXCP_MMU) {
cpu_abort(cs, "recursive faults\n");
}
/* TLB miss. */
cs->exception_index = EXCP_MMU;
cpu_loop_exit_restore(cs, retaddr);
}
void mb_cpu_do_interrupt(CPUState *cs)
{
MicroBlazeCPU *cpu = MICROBLAZE_CPU(cs);
CPUMBState *env = &cpu->env;
uint32_t t, msr = mb_cpu_read_msr(env);
bool set_esr;
/* IMM flag cannot propagate across a branch and into the dslot. */
assert((env->iflags & (D_FLAG | IMM_FLAG)) != (D_FLAG | IMM_FLAG));
/* BIMM flag cannot be set without D_FLAG. */
assert((env->iflags & (D_FLAG | BIMM_FLAG)) != BIMM_FLAG);
/* RTI flags are private to translate. */
assert(!(env->iflags & (DRTI_FLAG | DRTE_FLAG | DRTB_FLAG)));
switch (cs->exception_index) {
case EXCP_HW_EXCP:
if (!(cpu->cfg.pvr_regs[0] & PVR0_USE_EXC_MASK)) {
qemu_log_mask(LOG_GUEST_ERROR,
"Exception raised on system without exceptions!\n");
return;
}
qemu_log_mask(CPU_LOG_INT,
"INT: HWE at pc=%08x msr=%08x iflags=%x\n",
env->pc, msr, env->iflags);
/* Exception breaks branch + dslot sequence? */
set_esr = true;
env->esr &= ~D_FLAG;
if (env->iflags & D_FLAG) {
env->esr |= D_FLAG;
env->btr = env->btarget;
}
/* Exception in progress. */
msr |= MSR_EIP;
env->regs[17] = env->pc + 4;
env->pc = cpu->cfg.base_vectors + 0x20;
break;
case EXCP_MMU:
qemu_log_mask(CPU_LOG_INT,
"INT: MMU at pc=%08x msr=%08x "
"ear=%" PRIx64 " iflags=%x\n",
env->pc, msr, env->ear, env->iflags);
/* Exception breaks branch + dslot sequence? */
set_esr = true;
env->esr &= ~D_FLAG;
if (env->iflags & D_FLAG) {
env->esr |= D_FLAG;
env->btr = env->btarget;
/* Reexecute the branch. */
env->regs[17] = env->pc - (env->iflags & BIMM_FLAG ? 8 : 4);
} else if (env->iflags & IMM_FLAG) {
/* Reexecute the imm. */
env->regs[17] = env->pc - 4;
} else {
env->regs[17] = env->pc;
}
/* Exception in progress. */
msr |= MSR_EIP;
env->pc = cpu->cfg.base_vectors + 0x20;
break;
case EXCP_IRQ:
assert(!(msr & (MSR_EIP | MSR_BIP)));
assert(msr & MSR_IE);
assert(!(env->iflags & (D_FLAG | IMM_FLAG)));
qemu_log_mask(CPU_LOG_INT,
"INT: DEV at pc=%08x msr=%08x iflags=%x\n",
env->pc, msr, env->iflags);
set_esr = false;
/* Disable interrupts. */
msr &= ~MSR_IE;
env->regs[14] = env->pc;
env->pc = cpu->cfg.base_vectors + 0x10;
break;
case EXCP_HW_BREAK:
assert(!(env->iflags & (D_FLAG | IMM_FLAG)));
qemu_log_mask(CPU_LOG_INT,
"INT: BRK at pc=%08x msr=%08x iflags=%x\n",
env->pc, msr, env->iflags);
set_esr = false;
/* Break in progress. */
msr |= MSR_BIP;
env->regs[16] = env->pc;
env->pc = cpu->cfg.base_vectors + 0x18;
break;
default:
cpu_abort(cs, "unhandled exception type=%d\n", cs->exception_index);
/* not reached */
}
/* Save previous mode, disable mmu, disable user-mode. */
t = (msr & (MSR_VM | MSR_UM)) << 1;
msr &= ~(MSR_VMS | MSR_UMS | MSR_VM | MSR_UM);
msr |= t;
mb_cpu_write_msr(env, msr);
env->res_addr = RES_ADDR_NONE;
env->iflags = 0;
if (!set_esr) {
qemu_log_mask(CPU_LOG_INT,
" to pc=%08x msr=%08x\n", env->pc, msr);
} else if (env->esr & D_FLAG) {
qemu_log_mask(CPU_LOG_INT,
" to pc=%08x msr=%08x esr=%04x btr=%08x\n",
env->pc, msr, env->esr, env->btr);
} else {
qemu_log_mask(CPU_LOG_INT,
" to pc=%08x msr=%08x esr=%04x\n",
env->pc, msr, env->esr);
}
}
hwaddr mb_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
{
MicroBlazeCPU *cpu = MICROBLAZE_CPU(cs);
CPUMBState *env = &cpu->env;
target_ulong vaddr, paddr = 0;
MicroBlazeMMULookup lu;
int mmu_idx = cpu_mmu_index(env, false);
unsigned int hit;
if (mmu_idx != MMU_NOMMU_IDX) {
hit = mmu_translate(cpu, &lu, addr, 0, 0);
if (hit) {
vaddr = addr & TARGET_PAGE_MASK;
paddr = lu.paddr + vaddr - lu.vaddr;
} else
paddr = 0; /* ???. */
} else
paddr = addr & TARGET_PAGE_MASK;
return paddr;
}
#endif
bool mb_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
{
MicroBlazeCPU *cpu = MICROBLAZE_CPU(cs);
CPUMBState *env = &cpu->env;
if ((interrupt_request & CPU_INTERRUPT_HARD)
&& (env->msr & MSR_IE)
&& !(env->msr & (MSR_EIP | MSR_BIP))
&& !(env->iflags & (D_FLAG | IMM_FLAG))) {
cs->exception_index = EXCP_IRQ;
mb_cpu_do_interrupt(cs);
return true;
}
return false;
}
void mb_cpu_do_unaligned_access(CPUState *cs, vaddr addr,
MMUAccessType access_type,
int mmu_idx, uintptr_t retaddr)
{
MicroBlazeCPU *cpu = MICROBLAZE_CPU(cs);
uint32_t esr, iflags;
/* Recover the pc and iflags from the corresponding insn_start. */
cpu_restore_state(cs, retaddr, true);
iflags = cpu->env.iflags;
qemu_log_mask(CPU_LOG_INT,
"Unaligned access addr=" TARGET_FMT_lx " pc=%x iflags=%x\n",
(target_ulong)addr, cpu->env.pc, iflags);
esr = ESR_EC_UNALIGNED_DATA;
if (likely(iflags & ESR_ESS_FLAG)) {
esr |= iflags & ESR_ESS_MASK;
} else {
qemu_log_mask(LOG_UNIMP, "Unaligned access without ESR_ESS_FLAG\n");
}
cpu->env.ear = addr;
cpu->env.esr = esr;
cs->exception_index = EXCP_HW_EXCP;
cpu_loop_exit(cs);
}