8629e77be5
Rather than recurse directly on mmu_translate, go through the same softmmu lookup that we did for the page table walk. This centralizes all knowledge of MMU_NESTED_IDX, with respect to setup of TranslationParams, to get_physical_address. Signed-off-by: Richard Henderson <richard.henderson@linaro.org> Message-Id: <20221002172956.265735-10-richard.henderson@linaro.org> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
640 lines
19 KiB
C
640 lines
19 KiB
C
/*
|
|
* x86 exception helpers - sysemu code
|
|
*
|
|
* Copyright (c) 2003 Fabrice Bellard
|
|
*
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2.1 of the License, or (at your option) any later version.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include "qemu/osdep.h"
|
|
#include "cpu.h"
|
|
#include "exec/exec-all.h"
|
|
#include "tcg/helper-tcg.h"
|
|
|
|
typedef struct TranslateParams {
|
|
target_ulong addr;
|
|
target_ulong cr3;
|
|
int pg_mode;
|
|
int mmu_idx;
|
|
int ptw_idx;
|
|
MMUAccessType access_type;
|
|
} TranslateParams;
|
|
|
|
typedef struct TranslateResult {
|
|
hwaddr paddr;
|
|
int prot;
|
|
int page_size;
|
|
} TranslateResult;
|
|
|
|
typedef enum TranslateFaultStage2 {
|
|
S2_NONE,
|
|
S2_GPA,
|
|
S2_GPT,
|
|
} TranslateFaultStage2;
|
|
|
|
typedef struct TranslateFault {
|
|
int exception_index;
|
|
int error_code;
|
|
target_ulong cr2;
|
|
TranslateFaultStage2 stage2;
|
|
} TranslateFault;
|
|
|
|
typedef struct PTETranslate {
|
|
CPUX86State *env;
|
|
TranslateFault *err;
|
|
int ptw_idx;
|
|
void *haddr;
|
|
hwaddr gaddr;
|
|
} PTETranslate;
|
|
|
|
static bool ptw_translate(PTETranslate *inout, hwaddr addr)
|
|
{
|
|
CPUTLBEntryFull *full;
|
|
int flags;
|
|
|
|
inout->gaddr = addr;
|
|
flags = probe_access_full(inout->env, addr, MMU_DATA_STORE,
|
|
inout->ptw_idx, true, &inout->haddr, &full, 0);
|
|
|
|
if (unlikely(flags & TLB_INVALID_MASK)) {
|
|
TranslateFault *err = inout->err;
|
|
|
|
assert(inout->ptw_idx == MMU_NESTED_IDX);
|
|
err->exception_index = 0; /* unused */
|
|
err->error_code = inout->env->error_code;
|
|
err->cr2 = addr;
|
|
err->stage2 = S2_GPT;
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static inline uint32_t ptw_ldl(const PTETranslate *in)
|
|
{
|
|
if (likely(in->haddr)) {
|
|
return ldl_p(in->haddr);
|
|
}
|
|
return cpu_ldl_mmuidx_ra(in->env, in->gaddr, in->ptw_idx, 0);
|
|
}
|
|
|
|
static inline uint64_t ptw_ldq(const PTETranslate *in)
|
|
{
|
|
if (likely(in->haddr)) {
|
|
return ldq_p(in->haddr);
|
|
}
|
|
return cpu_ldq_mmuidx_ra(in->env, in->gaddr, in->ptw_idx, 0);
|
|
}
|
|
|
|
/*
|
|
* Note that we can use a 32-bit cmpxchg for all page table entries,
|
|
* even 64-bit ones, because PG_PRESENT_MASK, PG_ACCESSED_MASK and
|
|
* PG_DIRTY_MASK are all in the low 32 bits.
|
|
*/
|
|
static bool ptw_setl_slow(const PTETranslate *in, uint32_t old, uint32_t new)
|
|
{
|
|
uint32_t cmp;
|
|
|
|
/* Does x86 really perform a rmw cycle on mmio for ptw? */
|
|
start_exclusive();
|
|
cmp = cpu_ldl_mmuidx_ra(in->env, in->gaddr, in->ptw_idx, 0);
|
|
if (cmp == old) {
|
|
cpu_stl_mmuidx_ra(in->env, in->gaddr, new, in->ptw_idx, 0);
|
|
}
|
|
end_exclusive();
|
|
return cmp == old;
|
|
}
|
|
|
|
static inline bool ptw_setl(const PTETranslate *in, uint32_t old, uint32_t set)
|
|
{
|
|
if (set & ~old) {
|
|
uint32_t new = old | set;
|
|
if (likely(in->haddr)) {
|
|
old = cpu_to_le32(old);
|
|
new = cpu_to_le32(new);
|
|
return qatomic_cmpxchg((uint32_t *)in->haddr, old, new) == old;
|
|
}
|
|
return ptw_setl_slow(in, old, new);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static bool mmu_translate(CPUX86State *env, const TranslateParams *in,
|
|
TranslateResult *out, TranslateFault *err)
|
|
{
|
|
const int32_t a20_mask = x86_get_a20_mask(env);
|
|
const target_ulong addr = in->addr;
|
|
const int pg_mode = in->pg_mode;
|
|
const bool is_user = (in->mmu_idx == MMU_USER_IDX);
|
|
const MMUAccessType access_type = in->access_type;
|
|
uint64_t ptep, pte, rsvd_mask;
|
|
PTETranslate pte_trans = {
|
|
.env = env,
|
|
.err = err,
|
|
.ptw_idx = in->ptw_idx,
|
|
};
|
|
hwaddr pte_addr, paddr;
|
|
uint32_t pkr;
|
|
int page_size;
|
|
|
|
restart_all:
|
|
rsvd_mask = ~MAKE_64BIT_MASK(0, env_archcpu(env)->phys_bits);
|
|
rsvd_mask &= PG_ADDRESS_MASK;
|
|
if (!(pg_mode & PG_MODE_NXE)) {
|
|
rsvd_mask |= PG_NX_MASK;
|
|
}
|
|
|
|
if (pg_mode & PG_MODE_PAE) {
|
|
#ifdef TARGET_X86_64
|
|
if (pg_mode & PG_MODE_LMA) {
|
|
if (pg_mode & PG_MODE_LA57) {
|
|
/*
|
|
* Page table level 5
|
|
*/
|
|
pte_addr = ((in->cr3 & ~0xfff) +
|
|
(((addr >> 48) & 0x1ff) << 3)) & a20_mask;
|
|
if (!ptw_translate(&pte_trans, pte_addr)) {
|
|
return false;
|
|
}
|
|
restart_5:
|
|
pte = ptw_ldq(&pte_trans);
|
|
if (!(pte & PG_PRESENT_MASK)) {
|
|
goto do_fault;
|
|
}
|
|
if (pte & (rsvd_mask | PG_PSE_MASK)) {
|
|
goto do_fault_rsvd;
|
|
}
|
|
if (!ptw_setl(&pte_trans, pte, PG_ACCESSED_MASK)) {
|
|
goto restart_5;
|
|
}
|
|
ptep = pte ^ PG_NX_MASK;
|
|
} else {
|
|
pte = in->cr3;
|
|
ptep = PG_NX_MASK | PG_USER_MASK | PG_RW_MASK;
|
|
}
|
|
|
|
/*
|
|
* Page table level 4
|
|
*/
|
|
pte_addr = ((pte & PG_ADDRESS_MASK) +
|
|
(((addr >> 39) & 0x1ff) << 3)) & a20_mask;
|
|
if (!ptw_translate(&pte_trans, pte_addr)) {
|
|
return false;
|
|
}
|
|
restart_4:
|
|
pte = ptw_ldq(&pte_trans);
|
|
if (!(pte & PG_PRESENT_MASK)) {
|
|
goto do_fault;
|
|
}
|
|
if (pte & (rsvd_mask | PG_PSE_MASK)) {
|
|
goto do_fault_rsvd;
|
|
}
|
|
if (!ptw_setl(&pte_trans, pte, PG_ACCESSED_MASK)) {
|
|
goto restart_4;
|
|
}
|
|
ptep &= pte ^ PG_NX_MASK;
|
|
|
|
/*
|
|
* Page table level 3
|
|
*/
|
|
pte_addr = ((pte & PG_ADDRESS_MASK) +
|
|
(((addr >> 30) & 0x1ff) << 3)) & a20_mask;
|
|
if (!ptw_translate(&pte_trans, pte_addr)) {
|
|
return false;
|
|
}
|
|
restart_3_lma:
|
|
pte = ptw_ldq(&pte_trans);
|
|
if (!(pte & PG_PRESENT_MASK)) {
|
|
goto do_fault;
|
|
}
|
|
if (pte & rsvd_mask) {
|
|
goto do_fault_rsvd;
|
|
}
|
|
if (!ptw_setl(&pte_trans, pte, PG_ACCESSED_MASK)) {
|
|
goto restart_3_lma;
|
|
}
|
|
ptep &= pte ^ PG_NX_MASK;
|
|
if (pte & PG_PSE_MASK) {
|
|
/* 1 GB page */
|
|
page_size = 1024 * 1024 * 1024;
|
|
goto do_check_protect;
|
|
}
|
|
} else
|
|
#endif
|
|
{
|
|
/*
|
|
* Page table level 3
|
|
*/
|
|
pte_addr = ((in->cr3 & ~0x1f) + ((addr >> 27) & 0x18)) & a20_mask;
|
|
if (!ptw_translate(&pte_trans, pte_addr)) {
|
|
return false;
|
|
}
|
|
rsvd_mask |= PG_HI_USER_MASK;
|
|
restart_3_nolma:
|
|
pte = ptw_ldq(&pte_trans);
|
|
if (!(pte & PG_PRESENT_MASK)) {
|
|
goto do_fault;
|
|
}
|
|
if (pte & (rsvd_mask | PG_NX_MASK)) {
|
|
goto do_fault_rsvd;
|
|
}
|
|
if (!ptw_setl(&pte_trans, pte, PG_ACCESSED_MASK)) {
|
|
goto restart_3_nolma;
|
|
}
|
|
ptep = PG_NX_MASK | PG_USER_MASK | PG_RW_MASK;
|
|
}
|
|
|
|
/*
|
|
* Page table level 2
|
|
*/
|
|
pte_addr = ((pte & PG_ADDRESS_MASK) +
|
|
(((addr >> 21) & 0x1ff) << 3)) & a20_mask;
|
|
if (!ptw_translate(&pte_trans, pte_addr)) {
|
|
return false;
|
|
}
|
|
restart_2_pae:
|
|
pte = ptw_ldq(&pte_trans);
|
|
if (!(pte & PG_PRESENT_MASK)) {
|
|
goto do_fault;
|
|
}
|
|
if (pte & rsvd_mask) {
|
|
goto do_fault_rsvd;
|
|
}
|
|
if (pte & PG_PSE_MASK) {
|
|
/* 2 MB page */
|
|
page_size = 2048 * 1024;
|
|
ptep &= pte ^ PG_NX_MASK;
|
|
goto do_check_protect;
|
|
}
|
|
if (!ptw_setl(&pte_trans, pte, PG_ACCESSED_MASK)) {
|
|
goto restart_2_pae;
|
|
}
|
|
ptep &= pte ^ PG_NX_MASK;
|
|
|
|
/*
|
|
* Page table level 1
|
|
*/
|
|
pte_addr = ((pte & PG_ADDRESS_MASK) +
|
|
(((addr >> 12) & 0x1ff) << 3)) & a20_mask;
|
|
if (!ptw_translate(&pte_trans, pte_addr)) {
|
|
return false;
|
|
}
|
|
pte = ptw_ldq(&pte_trans);
|
|
if (!(pte & PG_PRESENT_MASK)) {
|
|
goto do_fault;
|
|
}
|
|
if (pte & rsvd_mask) {
|
|
goto do_fault_rsvd;
|
|
}
|
|
/* combine pde and pte nx, user and rw protections */
|
|
ptep &= pte ^ PG_NX_MASK;
|
|
page_size = 4096;
|
|
} else {
|
|
/*
|
|
* Page table level 2
|
|
*/
|
|
pte_addr = ((in->cr3 & ~0xfff) + ((addr >> 20) & 0xffc)) & a20_mask;
|
|
if (!ptw_translate(&pte_trans, pte_addr)) {
|
|
return false;
|
|
}
|
|
restart_2_nopae:
|
|
pte = ptw_ldl(&pte_trans);
|
|
if (!(pte & PG_PRESENT_MASK)) {
|
|
goto do_fault;
|
|
}
|
|
ptep = pte | PG_NX_MASK;
|
|
|
|
/* if PSE bit is set, then we use a 4MB page */
|
|
if ((pte & PG_PSE_MASK) && (pg_mode & PG_MODE_PSE)) {
|
|
page_size = 4096 * 1024;
|
|
/*
|
|
* Bits 20-13 provide bits 39-32 of the address, bit 21 is reserved.
|
|
* Leave bits 20-13 in place for setting accessed/dirty bits below.
|
|
*/
|
|
pte = (uint32_t)pte | ((pte & 0x1fe000LL) << (32 - 13));
|
|
rsvd_mask = 0x200000;
|
|
goto do_check_protect_pse36;
|
|
}
|
|
if (!ptw_setl(&pte_trans, pte, PG_ACCESSED_MASK)) {
|
|
goto restart_2_nopae;
|
|
}
|
|
|
|
/*
|
|
* Page table level 1
|
|
*/
|
|
pte_addr = ((pte & ~0xfffu) + ((addr >> 10) & 0xffc)) & a20_mask;
|
|
if (!ptw_translate(&pte_trans, pte_addr)) {
|
|
return false;
|
|
}
|
|
pte = ptw_ldl(&pte_trans);
|
|
if (!(pte & PG_PRESENT_MASK)) {
|
|
goto do_fault;
|
|
}
|
|
/* combine pde and pte user and rw protections */
|
|
ptep &= pte | PG_NX_MASK;
|
|
page_size = 4096;
|
|
rsvd_mask = 0;
|
|
}
|
|
|
|
do_check_protect:
|
|
rsvd_mask |= (page_size - 1) & PG_ADDRESS_MASK & ~PG_PSE_PAT_MASK;
|
|
do_check_protect_pse36:
|
|
if (pte & rsvd_mask) {
|
|
goto do_fault_rsvd;
|
|
}
|
|
ptep ^= PG_NX_MASK;
|
|
|
|
/* can the page can be put in the TLB? prot will tell us */
|
|
if (is_user && !(ptep & PG_USER_MASK)) {
|
|
goto do_fault_protect;
|
|
}
|
|
|
|
int prot = 0;
|
|
if (in->mmu_idx != MMU_KSMAP_IDX || !(ptep & PG_USER_MASK)) {
|
|
prot |= PAGE_READ;
|
|
if ((ptep & PG_RW_MASK) || !(is_user || (pg_mode & PG_MODE_WP))) {
|
|
prot |= PAGE_WRITE;
|
|
}
|
|
}
|
|
if (!(ptep & PG_NX_MASK) &&
|
|
(is_user ||
|
|
!((pg_mode & PG_MODE_SMEP) && (ptep & PG_USER_MASK)))) {
|
|
prot |= PAGE_EXEC;
|
|
}
|
|
|
|
if (ptep & PG_USER_MASK) {
|
|
pkr = pg_mode & PG_MODE_PKE ? env->pkru : 0;
|
|
} else {
|
|
pkr = pg_mode & PG_MODE_PKS ? env->pkrs : 0;
|
|
}
|
|
if (pkr) {
|
|
uint32_t pk = (pte & PG_PKRU_MASK) >> PG_PKRU_BIT;
|
|
uint32_t pkr_ad = (pkr >> pk * 2) & 1;
|
|
uint32_t pkr_wd = (pkr >> pk * 2) & 2;
|
|
uint32_t pkr_prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
|
|
|
|
if (pkr_ad) {
|
|
pkr_prot &= ~(PAGE_READ | PAGE_WRITE);
|
|
} else if (pkr_wd && (is_user || (pg_mode & PG_MODE_WP))) {
|
|
pkr_prot &= ~PAGE_WRITE;
|
|
}
|
|
if ((pkr_prot & (1 << access_type)) == 0) {
|
|
goto do_fault_pk_protect;
|
|
}
|
|
prot &= pkr_prot;
|
|
}
|
|
|
|
if ((prot & (1 << access_type)) == 0) {
|
|
goto do_fault_protect;
|
|
}
|
|
|
|
/* yes, it can! */
|
|
{
|
|
uint32_t set = PG_ACCESSED_MASK;
|
|
if (access_type == MMU_DATA_STORE) {
|
|
set |= PG_DIRTY_MASK;
|
|
} else if (!(pte & PG_DIRTY_MASK)) {
|
|
/*
|
|
* Only set write access if already dirty...
|
|
* otherwise wait for dirty access.
|
|
*/
|
|
prot &= ~PAGE_WRITE;
|
|
}
|
|
if (!ptw_setl(&pte_trans, pte, set)) {
|
|
/*
|
|
* We can arrive here from any of 3 levels and 2 formats.
|
|
* The only safe thing is to restart the entire lookup.
|
|
*/
|
|
goto restart_all;
|
|
}
|
|
}
|
|
|
|
/* align to page_size */
|
|
paddr = (pte & a20_mask & PG_ADDRESS_MASK & ~(page_size - 1))
|
|
| (addr & (page_size - 1));
|
|
|
|
if (in->ptw_idx == MMU_NESTED_IDX) {
|
|
CPUTLBEntryFull *full;
|
|
int flags, nested_page_size;
|
|
|
|
flags = probe_access_full(env, paddr, access_type,
|
|
MMU_NESTED_IDX, true,
|
|
&pte_trans.haddr, &full, 0);
|
|
if (unlikely(flags & TLB_INVALID_MASK)) {
|
|
err->exception_index = 0; /* unused */
|
|
err->error_code = env->error_code;
|
|
err->cr2 = paddr;
|
|
err->stage2 = S2_GPA;
|
|
return false;
|
|
}
|
|
|
|
/* Merge stage1 & stage2 protection bits. */
|
|
prot &= full->prot;
|
|
|
|
/* Re-verify resulting protection. */
|
|
if ((prot & (1 << access_type)) == 0) {
|
|
goto do_fault_protect;
|
|
}
|
|
|
|
/* Merge stage1 & stage2 addresses to final physical address. */
|
|
nested_page_size = 1 << full->lg_page_size;
|
|
paddr = (full->phys_addr & ~(nested_page_size - 1))
|
|
| (paddr & (nested_page_size - 1));
|
|
|
|
/*
|
|
* Use the larger of stage1 & stage2 page sizes, so that
|
|
* invalidation works.
|
|
*/
|
|
if (nested_page_size > page_size) {
|
|
page_size = nested_page_size;
|
|
}
|
|
}
|
|
|
|
out->paddr = paddr;
|
|
out->prot = prot;
|
|
out->page_size = page_size;
|
|
return true;
|
|
|
|
int error_code;
|
|
do_fault_rsvd:
|
|
error_code = PG_ERROR_RSVD_MASK;
|
|
goto do_fault_cont;
|
|
do_fault_protect:
|
|
error_code = PG_ERROR_P_MASK;
|
|
goto do_fault_cont;
|
|
do_fault_pk_protect:
|
|
assert(access_type != MMU_INST_FETCH);
|
|
error_code = PG_ERROR_PK_MASK | PG_ERROR_P_MASK;
|
|
goto do_fault_cont;
|
|
do_fault:
|
|
error_code = 0;
|
|
do_fault_cont:
|
|
if (is_user) {
|
|
error_code |= PG_ERROR_U_MASK;
|
|
}
|
|
switch (access_type) {
|
|
case MMU_DATA_LOAD:
|
|
break;
|
|
case MMU_DATA_STORE:
|
|
error_code |= PG_ERROR_W_MASK;
|
|
break;
|
|
case MMU_INST_FETCH:
|
|
if (pg_mode & (PG_MODE_NXE | PG_MODE_SMEP)) {
|
|
error_code |= PG_ERROR_I_D_MASK;
|
|
}
|
|
break;
|
|
}
|
|
err->exception_index = EXCP0E_PAGE;
|
|
err->error_code = error_code;
|
|
err->cr2 = addr;
|
|
err->stage2 = S2_NONE;
|
|
return false;
|
|
}
|
|
|
|
static G_NORETURN void raise_stage2(CPUX86State *env, TranslateFault *err,
|
|
uintptr_t retaddr)
|
|
{
|
|
uint64_t exit_info_1 = err->error_code;
|
|
|
|
switch (err->stage2) {
|
|
case S2_GPT:
|
|
exit_info_1 |= SVM_NPTEXIT_GPT;
|
|
break;
|
|
case S2_GPA:
|
|
exit_info_1 |= SVM_NPTEXIT_GPA;
|
|
break;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
|
|
x86_stq_phys(env_cpu(env),
|
|
env->vm_vmcb + offsetof(struct vmcb, control.exit_info_2),
|
|
err->cr2);
|
|
cpu_vmexit(env, SVM_EXIT_NPF, exit_info_1, retaddr);
|
|
}
|
|
|
|
static bool get_physical_address(CPUX86State *env, vaddr addr,
|
|
MMUAccessType access_type, int mmu_idx,
|
|
TranslateResult *out, TranslateFault *err)
|
|
{
|
|
TranslateParams in;
|
|
bool use_stage2 = env->hflags2 & HF2_NPT_MASK;
|
|
|
|
in.addr = addr;
|
|
in.access_type = access_type;
|
|
|
|
switch (mmu_idx) {
|
|
case MMU_PHYS_IDX:
|
|
break;
|
|
|
|
case MMU_NESTED_IDX:
|
|
if (likely(use_stage2)) {
|
|
in.cr3 = env->nested_cr3;
|
|
in.pg_mode = env->nested_pg_mode;
|
|
in.mmu_idx = MMU_USER_IDX;
|
|
in.ptw_idx = MMU_PHYS_IDX;
|
|
|
|
if (!mmu_translate(env, &in, out, err)) {
|
|
err->stage2 = S2_GPA;
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
in.cr3 = env->cr[3];
|
|
in.mmu_idx = mmu_idx;
|
|
in.ptw_idx = use_stage2 ? MMU_NESTED_IDX : MMU_PHYS_IDX;
|
|
in.pg_mode = get_pg_mode(env);
|
|
|
|
if (likely(in.pg_mode)) {
|
|
if (in.pg_mode & PG_MODE_LMA) {
|
|
/* test virtual address sign extension */
|
|
int shift = in.pg_mode & PG_MODE_LA57 ? 56 : 47;
|
|
int64_t sext = (int64_t)addr >> shift;
|
|
if (sext != 0 && sext != -1) {
|
|
err->exception_index = EXCP0D_GPF;
|
|
err->error_code = 0;
|
|
err->cr2 = addr;
|
|
return false;
|
|
}
|
|
}
|
|
return mmu_translate(env, &in, out, err);
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* Translation disabled. */
|
|
out->paddr = addr & x86_get_a20_mask(env);
|
|
#ifdef TARGET_X86_64
|
|
if (!(env->hflags & HF_LMA_MASK)) {
|
|
/* Without long mode we can only address 32bits in real mode */
|
|
out->paddr = (uint32_t)out->paddr;
|
|
}
|
|
#endif
|
|
out->prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
|
|
out->page_size = TARGET_PAGE_SIZE;
|
|
return true;
|
|
}
|
|
|
|
bool x86_cpu_tlb_fill(CPUState *cs, vaddr addr, int size,
|
|
MMUAccessType access_type, int mmu_idx,
|
|
bool probe, uintptr_t retaddr)
|
|
{
|
|
CPUX86State *env = cs->env_ptr;
|
|
TranslateResult out;
|
|
TranslateFault err;
|
|
|
|
if (get_physical_address(env, addr, access_type, mmu_idx, &out, &err)) {
|
|
/*
|
|
* Even if 4MB pages, we map only one 4KB page in the cache to
|
|
* avoid filling it too fast.
|
|
*/
|
|
assert(out.prot & (1 << access_type));
|
|
tlb_set_page_with_attrs(cs, addr & TARGET_PAGE_MASK,
|
|
out.paddr & TARGET_PAGE_MASK,
|
|
cpu_get_mem_attrs(env),
|
|
out.prot, mmu_idx, out.page_size);
|
|
return true;
|
|
}
|
|
|
|
if (probe) {
|
|
/* This will be used if recursing for stage2 translation. */
|
|
env->error_code = err.error_code;
|
|
return false;
|
|
}
|
|
|
|
if (err.stage2 != S2_NONE) {
|
|
raise_stage2(env, &err, retaddr);
|
|
}
|
|
|
|
if (env->intercept_exceptions & (1 << err.exception_index)) {
|
|
/* cr2 is not modified in case of exceptions */
|
|
x86_stq_phys(cs, env->vm_vmcb +
|
|
offsetof(struct vmcb, control.exit_info_2),
|
|
err.cr2);
|
|
} else {
|
|
env->cr[2] = err.cr2;
|
|
}
|
|
raise_exception_err_ra(env, err.exception_index, err.error_code, retaddr);
|
|
}
|
|
|
|
G_NORETURN void x86_cpu_do_unaligned_access(CPUState *cs, vaddr vaddr,
|
|
MMUAccessType access_type,
|
|
int mmu_idx, uintptr_t retaddr)
|
|
{
|
|
X86CPU *cpu = X86_CPU(cs);
|
|
handle_unaligned_access(&cpu->env, vaddr, access_type, retaddr);
|
|
}
|