qemu-e2k/target/lm32
Peter Maydell 781c67ca55 cpu: Use DeviceClass reset instead of a special CPUClass reset
The CPUClass has a 'reset' method.  This is a legacy from when
TYPE_CPU used not to inherit from TYPE_DEVICE.  We don't need it any
more, as we can simply use the TYPE_DEVICE reset.  The 'cpu_reset()'
function is kept as the API which most places use to reset a CPU; it
is now a wrapper which calls device_cold_reset() and then the
tracepoint function.

This change should not cause CPU objects to be reset more often
than they are at the moment, because:
 * nobody is directly calling device_cold_reset() or
   qdev_reset_all() on CPU objects
 * no CPU object is on a qbus, so they will not be reset either
   by somebody calling qbus_reset_all()/bus_cold_reset(), or
   by the main "reset sysbus and everything in the qbus tree"
   reset that most devices are reset by

Note that this does not change the need for each machine or whatever
to use qemu_register_reset() to arrange to call cpu_reset() -- that
is necessary because CPU objects are not on any qbus, so they don't
get reset when the qbus tree rooted at the sysbus bus is reset, and
this isn't being changed here.

All the changes to the files under target/ were made using the
included Coccinelle script, except:

(1) the deletion of the now-inaccurate and not terribly useful
"CPUClass::reset" comments was done with a perl one-liner afterwards:
  perl -n -i -e '/ CPUClass::reset/ or print' target/*/*.c

(2) this bit of the s390 change was done by hand, because the
Coccinelle script is not sophisticated enough to handle the
parent_reset call being inside another function:

| @@ -96,8 +96,9 @@ static void s390_cpu_reset(CPUState *s, cpu_reset_type type)
|     S390CPU *cpu = S390_CPU(s);
|     S390CPUClass *scc = S390_CPU_GET_CLASS(cpu);
|     CPUS390XState *env = &cpu->env;
|+    DeviceState *dev = DEVICE(s);
|
|-    scc->parent_reset(s);
|+    scc->parent_reset(dev);
|     cpu->env.sigp_order = 0;
|     s390_cpu_set_state(S390_CPU_STATE_STOPPED, cpu);

Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Message-Id: <20200303100511.5498-1-peter.maydell@linaro.org>
Reviewed-by: Philippe Mathieu-Daudé <philmd@redhat.com>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Tested-by: Philippe Mathieu-Daudé <philmd@redhat.com>
Signed-off-by: Eduardo Habkost <ehabkost@redhat.com>
2020-03-17 19:48:10 -04:00
..
cpu-param.h tcg: Split out target/arch/cpu-param.h 2019-06-10 07:03:34 -07:00
cpu-qom.h cpu: Use DeviceClass reset instead of a special CPUClass reset 2020-03-17 19:48:10 -04:00
cpu.c cpu: Use DeviceClass reset instead of a special CPUClass reset 2020-03-17 19:48:10 -04:00
cpu.h migration: Move the VMStateDescription typedef to typedefs.h 2019-08-16 13:31:52 +02:00
gdbstub.c Include qemu-common.h exactly where needed 2019-06-12 13:20:20 +02:00
helper.c Clean up inclusion of sysemu/sysemu.h 2019-08-16 13:31:53 +02:00
helper.h
lm32-semi.c
machine.c Include hw/boards.h a bit less 2019-08-16 13:31:53 +02:00
Makefile.objs
op_helper.c sysemu: Split sysemu/runstate.h off sysemu/sysemu.h 2019-08-16 13:37:36 +02:00
README
TODO
translate.c tcg: Search includes from the project root source directory 2020-01-15 15:13:10 -10:00

LatticeMico32 target
--------------------

General
-------
All opcodes including the JUART CSRs are supported.


JTAG UART
---------
JTAG UART is routed to a serial console device. For the current boards it
is the second one. Ie to enable it in the qemu virtual console window use
the following command line parameters:
  -serial vc -serial vc
This will make serial0 (the lm32_uart) and serial1 (the JTAG UART)
available as virtual consoles.


Semihosting
-----------
Semihosting on this target is supported. Some system calls like read, write
and exit are executed on the host if semihosting is enabled. See
target/lm32-semi.c for all supported system calls. Emulation aware programs
can use this mechanism to shut down the virtual machine and print to the
host console. See the tcg tests for an example.


Special instructions
--------------------
The translation recognizes one special instruction to halt the cpu:
  and r0, r0, r0
On real hardware this instruction is a nop. It is not used by GCC and
should (hopefully) not be used within hand-crafted assembly.
Insert this instruction in your idle loop to reduce the cpu load on the
host.


Ignoring the MSB of the address bus
-----------------------------------
Some SoC ignores the MSB on the address bus. Thus creating a shadow memory
area. As a general rule, 0x00000000-0x7fffffff is cached, whereas
0x80000000-0xffffffff is not cached and used to access IO devices. This
behaviour can be enabled with:
  cpu_lm32_set_phys_msb_ignore(env, 1);