qemu-e2k/target/s390x/kvm.c
Liran Alon b1115c9991 KVM: Introduce kvm_arch_destroy_vcpu()
Simiar to how kvm_init_vcpu() calls kvm_arch_init_vcpu() to perform
arch-dependent initialisation, introduce kvm_arch_destroy_vcpu()
to be called from kvm_destroy_vcpu() to perform arch-dependent
destruction.

This was added because some architectures (Such as i386)
currently do not free memory that it have allocated in
kvm_arch_init_vcpu().

Suggested-by: Maran Wilson <maran.wilson@oracle.com>
Reviewed-by: Maran Wilson <maran.wilson@oracle.com>
Signed-off-by: Liran Alon <liran.alon@oracle.com>
Message-Id: <20190619162140.133674-3-liran.alon@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-06-21 02:29:39 +02:00

2413 lines
70 KiB
C

/*
* QEMU S390x KVM implementation
*
* Copyright (c) 2009 Alexander Graf <agraf@suse.de>
* Copyright IBM Corp. 2012
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include <sys/ioctl.h>
#include <linux/kvm.h>
#include <asm/ptrace.h>
#include "qemu-common.h"
#include "cpu.h"
#include "internal.h"
#include "kvm_s390x.h"
#include "qapi/error.h"
#include "qemu/error-report.h"
#include "qemu/timer.h"
#include "qemu/units.h"
#include "qemu/mmap-alloc.h"
#include "qemu/log.h"
#include "sysemu/sysemu.h"
#include "sysemu/hw_accel.h"
#include "hw/hw.h"
#include "sysemu/device_tree.h"
#include "exec/gdbstub.h"
#include "exec/ram_addr.h"
#include "trace.h"
#include "hw/s390x/s390-pci-inst.h"
#include "hw/s390x/s390-pci-bus.h"
#include "hw/s390x/ipl.h"
#include "hw/s390x/ebcdic.h"
#include "exec/memattrs.h"
#include "hw/s390x/s390-virtio-ccw.h"
#include "hw/s390x/s390-virtio-hcall.h"
#ifndef DEBUG_KVM
#define DEBUG_KVM 0
#endif
#define DPRINTF(fmt, ...) do { \
if (DEBUG_KVM) { \
fprintf(stderr, fmt, ## __VA_ARGS__); \
} \
} while (0)
#define kvm_vm_check_mem_attr(s, attr) \
kvm_vm_check_attr(s, KVM_S390_VM_MEM_CTRL, attr)
#define IPA0_DIAG 0x8300
#define IPA0_SIGP 0xae00
#define IPA0_B2 0xb200
#define IPA0_B9 0xb900
#define IPA0_EB 0xeb00
#define IPA0_E3 0xe300
#define PRIV_B2_SCLP_CALL 0x20
#define PRIV_B2_CSCH 0x30
#define PRIV_B2_HSCH 0x31
#define PRIV_B2_MSCH 0x32
#define PRIV_B2_SSCH 0x33
#define PRIV_B2_STSCH 0x34
#define PRIV_B2_TSCH 0x35
#define PRIV_B2_TPI 0x36
#define PRIV_B2_SAL 0x37
#define PRIV_B2_RSCH 0x38
#define PRIV_B2_STCRW 0x39
#define PRIV_B2_STCPS 0x3a
#define PRIV_B2_RCHP 0x3b
#define PRIV_B2_SCHM 0x3c
#define PRIV_B2_CHSC 0x5f
#define PRIV_B2_SIGA 0x74
#define PRIV_B2_XSCH 0x76
#define PRIV_EB_SQBS 0x8a
#define PRIV_EB_PCISTB 0xd0
#define PRIV_EB_SIC 0xd1
#define PRIV_B9_EQBS 0x9c
#define PRIV_B9_CLP 0xa0
#define PRIV_B9_PCISTG 0xd0
#define PRIV_B9_PCILG 0xd2
#define PRIV_B9_RPCIT 0xd3
#define PRIV_E3_MPCIFC 0xd0
#define PRIV_E3_STPCIFC 0xd4
#define DIAG_TIMEREVENT 0x288
#define DIAG_IPL 0x308
#define DIAG_KVM_HYPERCALL 0x500
#define DIAG_KVM_BREAKPOINT 0x501
#define ICPT_INSTRUCTION 0x04
#define ICPT_PROGRAM 0x08
#define ICPT_EXT_INT 0x14
#define ICPT_WAITPSW 0x1c
#define ICPT_SOFT_INTERCEPT 0x24
#define ICPT_CPU_STOP 0x28
#define ICPT_OPEREXC 0x2c
#define ICPT_IO 0x40
#define NR_LOCAL_IRQS 32
/*
* Needs to be big enough to contain max_cpus emergency signals
* and in addition NR_LOCAL_IRQS interrupts
*/
#define VCPU_IRQ_BUF_SIZE (sizeof(struct kvm_s390_irq) * \
(max_cpus + NR_LOCAL_IRQS))
static CPUWatchpoint hw_watchpoint;
/*
* We don't use a list because this structure is also used to transmit the
* hardware breakpoints to the kernel.
*/
static struct kvm_hw_breakpoint *hw_breakpoints;
static int nb_hw_breakpoints;
const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
KVM_CAP_LAST_INFO
};
static int cap_sync_regs;
static int cap_async_pf;
static int cap_mem_op;
static int cap_s390_irq;
static int cap_ri;
static int cap_gs;
static int cap_hpage_1m;
static int active_cmma;
static void *legacy_s390_alloc(size_t size, uint64_t *align, bool shared);
static int kvm_s390_query_mem_limit(uint64_t *memory_limit)
{
struct kvm_device_attr attr = {
.group = KVM_S390_VM_MEM_CTRL,
.attr = KVM_S390_VM_MEM_LIMIT_SIZE,
.addr = (uint64_t) memory_limit,
};
return kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
}
int kvm_s390_set_mem_limit(uint64_t new_limit, uint64_t *hw_limit)
{
int rc;
struct kvm_device_attr attr = {
.group = KVM_S390_VM_MEM_CTRL,
.attr = KVM_S390_VM_MEM_LIMIT_SIZE,
.addr = (uint64_t) &new_limit,
};
if (!kvm_vm_check_mem_attr(kvm_state, KVM_S390_VM_MEM_LIMIT_SIZE)) {
return 0;
}
rc = kvm_s390_query_mem_limit(hw_limit);
if (rc) {
return rc;
} else if (*hw_limit < new_limit) {
return -E2BIG;
}
return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
}
int kvm_s390_cmma_active(void)
{
return active_cmma;
}
static bool kvm_s390_cmma_available(void)
{
static bool initialized, value;
if (!initialized) {
initialized = true;
value = kvm_vm_check_mem_attr(kvm_state, KVM_S390_VM_MEM_ENABLE_CMMA) &&
kvm_vm_check_mem_attr(kvm_state, KVM_S390_VM_MEM_CLR_CMMA);
}
return value;
}
void kvm_s390_cmma_reset(void)
{
int rc;
struct kvm_device_attr attr = {
.group = KVM_S390_VM_MEM_CTRL,
.attr = KVM_S390_VM_MEM_CLR_CMMA,
};
if (!kvm_s390_cmma_active()) {
return;
}
rc = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
trace_kvm_clear_cmma(rc);
}
static void kvm_s390_enable_cmma(void)
{
int rc;
struct kvm_device_attr attr = {
.group = KVM_S390_VM_MEM_CTRL,
.attr = KVM_S390_VM_MEM_ENABLE_CMMA,
};
if (cap_hpage_1m) {
warn_report("CMM will not be enabled because it is not "
"compatible with huge memory backings.");
return;
}
rc = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
active_cmma = !rc;
trace_kvm_enable_cmma(rc);
}
static void kvm_s390_set_attr(uint64_t attr)
{
struct kvm_device_attr attribute = {
.group = KVM_S390_VM_CRYPTO,
.attr = attr,
};
int ret = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attribute);
if (ret) {
error_report("Failed to set crypto device attribute %lu: %s",
attr, strerror(-ret));
}
}
static void kvm_s390_init_aes_kw(void)
{
uint64_t attr = KVM_S390_VM_CRYPTO_DISABLE_AES_KW;
if (object_property_get_bool(OBJECT(qdev_get_machine()), "aes-key-wrap",
NULL)) {
attr = KVM_S390_VM_CRYPTO_ENABLE_AES_KW;
}
if (kvm_vm_check_attr(kvm_state, KVM_S390_VM_CRYPTO, attr)) {
kvm_s390_set_attr(attr);
}
}
static void kvm_s390_init_dea_kw(void)
{
uint64_t attr = KVM_S390_VM_CRYPTO_DISABLE_DEA_KW;
if (object_property_get_bool(OBJECT(qdev_get_machine()), "dea-key-wrap",
NULL)) {
attr = KVM_S390_VM_CRYPTO_ENABLE_DEA_KW;
}
if (kvm_vm_check_attr(kvm_state, KVM_S390_VM_CRYPTO, attr)) {
kvm_s390_set_attr(attr);
}
}
void kvm_s390_crypto_reset(void)
{
if (s390_has_feat(S390_FEAT_MSA_EXT_3)) {
kvm_s390_init_aes_kw();
kvm_s390_init_dea_kw();
}
}
void kvm_s390_set_max_pagesize(uint64_t pagesize, Error **errp)
{
if (pagesize == 4 * KiB) {
return;
}
if (!hpage_1m_allowed()) {
error_setg(errp, "This QEMU machine does not support huge page "
"mappings");
return;
}
if (pagesize != 1 * MiB) {
error_setg(errp, "Memory backing with 2G pages was specified, "
"but KVM does not support this memory backing");
return;
}
if (kvm_vm_enable_cap(kvm_state, KVM_CAP_S390_HPAGE_1M, 0)) {
error_setg(errp, "Memory backing with 1M pages was specified, "
"but KVM does not support this memory backing");
return;
}
cap_hpage_1m = 1;
}
int kvm_arch_init(MachineState *ms, KVMState *s)
{
MachineClass *mc = MACHINE_GET_CLASS(ms);
mc->default_cpu_type = S390_CPU_TYPE_NAME("host");
cap_sync_regs = kvm_check_extension(s, KVM_CAP_SYNC_REGS);
cap_async_pf = kvm_check_extension(s, KVM_CAP_ASYNC_PF);
cap_mem_op = kvm_check_extension(s, KVM_CAP_S390_MEM_OP);
cap_s390_irq = kvm_check_extension(s, KVM_CAP_S390_INJECT_IRQ);
if (!kvm_check_extension(s, KVM_CAP_S390_GMAP)
|| !kvm_check_extension(s, KVM_CAP_S390_COW)) {
phys_mem_set_alloc(legacy_s390_alloc);
}
kvm_vm_enable_cap(s, KVM_CAP_S390_USER_SIGP, 0);
kvm_vm_enable_cap(s, KVM_CAP_S390_VECTOR_REGISTERS, 0);
kvm_vm_enable_cap(s, KVM_CAP_S390_USER_STSI, 0);
if (ri_allowed()) {
if (kvm_vm_enable_cap(s, KVM_CAP_S390_RI, 0) == 0) {
cap_ri = 1;
}
}
if (cpu_model_allowed()) {
if (kvm_vm_enable_cap(s, KVM_CAP_S390_GS, 0) == 0) {
cap_gs = 1;
}
}
/*
* The migration interface for ais was introduced with kernel 4.13
* but the capability itself had been active since 4.12. As migration
* support is considered necessary let's disable ais in the 2.10
* machine.
*/
/* kvm_vm_enable_cap(s, KVM_CAP_S390_AIS, 0); */
return 0;
}
int kvm_arch_irqchip_create(MachineState *ms, KVMState *s)
{
return 0;
}
unsigned long kvm_arch_vcpu_id(CPUState *cpu)
{
return cpu->cpu_index;
}
int kvm_arch_init_vcpu(CPUState *cs)
{
S390CPU *cpu = S390_CPU(cs);
kvm_s390_set_cpu_state(cpu, cpu->env.cpu_state);
cpu->irqstate = g_malloc0(VCPU_IRQ_BUF_SIZE);
return 0;
}
int kvm_arch_destroy_vcpu(CPUState *cs)
{
S390CPU *cpu = S390_CPU(cs);
g_free(cpu->irqstate);
cpu->irqstate = NULL;
return 0;
}
void kvm_s390_reset_vcpu(S390CPU *cpu)
{
CPUState *cs = CPU(cpu);
/* The initial reset call is needed here to reset in-kernel
* vcpu data that we can't access directly from QEMU
* (i.e. with older kernels which don't support sync_regs/ONE_REG).
* Before this ioctl cpu_synchronize_state() is called in common kvm
* code (kvm-all) */
if (kvm_vcpu_ioctl(cs, KVM_S390_INITIAL_RESET, NULL)) {
error_report("Initial CPU reset failed on CPU %i", cs->cpu_index);
}
}
static int can_sync_regs(CPUState *cs, int regs)
{
return cap_sync_regs && (cs->kvm_run->kvm_valid_regs & regs) == regs;
}
int kvm_arch_put_registers(CPUState *cs, int level)
{
S390CPU *cpu = S390_CPU(cs);
CPUS390XState *env = &cpu->env;
struct kvm_sregs sregs;
struct kvm_regs regs;
struct kvm_fpu fpu = {};
int r;
int i;
/* always save the PSW and the GPRS*/
cs->kvm_run->psw_addr = env->psw.addr;
cs->kvm_run->psw_mask = env->psw.mask;
if (can_sync_regs(cs, KVM_SYNC_GPRS)) {
for (i = 0; i < 16; i++) {
cs->kvm_run->s.regs.gprs[i] = env->regs[i];
cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_GPRS;
}
} else {
for (i = 0; i < 16; i++) {
regs.gprs[i] = env->regs[i];
}
r = kvm_vcpu_ioctl(cs, KVM_SET_REGS, &regs);
if (r < 0) {
return r;
}
}
if (can_sync_regs(cs, KVM_SYNC_VRS)) {
for (i = 0; i < 32; i++) {
cs->kvm_run->s.regs.vrs[i][0] = env->vregs[i][0];
cs->kvm_run->s.regs.vrs[i][1] = env->vregs[i][1];
}
cs->kvm_run->s.regs.fpc = env->fpc;
cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_VRS;
} else if (can_sync_regs(cs, KVM_SYNC_FPRS)) {
for (i = 0; i < 16; i++) {
cs->kvm_run->s.regs.fprs[i] = *get_freg(env, i);
}
cs->kvm_run->s.regs.fpc = env->fpc;
cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_FPRS;
} else {
/* Floating point */
for (i = 0; i < 16; i++) {
fpu.fprs[i] = *get_freg(env, i);
}
fpu.fpc = env->fpc;
r = kvm_vcpu_ioctl(cs, KVM_SET_FPU, &fpu);
if (r < 0) {
return r;
}
}
/* Do we need to save more than that? */
if (level == KVM_PUT_RUNTIME_STATE) {
return 0;
}
if (can_sync_regs(cs, KVM_SYNC_ARCH0)) {
cs->kvm_run->s.regs.cputm = env->cputm;
cs->kvm_run->s.regs.ckc = env->ckc;
cs->kvm_run->s.regs.todpr = env->todpr;
cs->kvm_run->s.regs.gbea = env->gbea;
cs->kvm_run->s.regs.pp = env->pp;
cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_ARCH0;
} else {
/*
* These ONE_REGS are not protected by a capability. As they are only
* necessary for migration we just trace a possible error, but don't
* return with an error return code.
*/
kvm_set_one_reg(cs, KVM_REG_S390_CPU_TIMER, &env->cputm);
kvm_set_one_reg(cs, KVM_REG_S390_CLOCK_COMP, &env->ckc);
kvm_set_one_reg(cs, KVM_REG_S390_TODPR, &env->todpr);
kvm_set_one_reg(cs, KVM_REG_S390_GBEA, &env->gbea);
kvm_set_one_reg(cs, KVM_REG_S390_PP, &env->pp);
}
if (can_sync_regs(cs, KVM_SYNC_RICCB)) {
memcpy(cs->kvm_run->s.regs.riccb, env->riccb, 64);
cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_RICCB;
}
/* pfault parameters */
if (can_sync_regs(cs, KVM_SYNC_PFAULT)) {
cs->kvm_run->s.regs.pft = env->pfault_token;
cs->kvm_run->s.regs.pfs = env->pfault_select;
cs->kvm_run->s.regs.pfc = env->pfault_compare;
cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_PFAULT;
} else if (cap_async_pf) {
r = kvm_set_one_reg(cs, KVM_REG_S390_PFTOKEN, &env->pfault_token);
if (r < 0) {
return r;
}
r = kvm_set_one_reg(cs, KVM_REG_S390_PFCOMPARE, &env->pfault_compare);
if (r < 0) {
return r;
}
r = kvm_set_one_reg(cs, KVM_REG_S390_PFSELECT, &env->pfault_select);
if (r < 0) {
return r;
}
}
/* access registers and control registers*/
if (can_sync_regs(cs, KVM_SYNC_ACRS | KVM_SYNC_CRS)) {
for (i = 0; i < 16; i++) {
cs->kvm_run->s.regs.acrs[i] = env->aregs[i];
cs->kvm_run->s.regs.crs[i] = env->cregs[i];
}
cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_ACRS;
cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_CRS;
} else {
for (i = 0; i < 16; i++) {
sregs.acrs[i] = env->aregs[i];
sregs.crs[i] = env->cregs[i];
}
r = kvm_vcpu_ioctl(cs, KVM_SET_SREGS, &sregs);
if (r < 0) {
return r;
}
}
if (can_sync_regs(cs, KVM_SYNC_GSCB)) {
memcpy(cs->kvm_run->s.regs.gscb, env->gscb, 32);
cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_GSCB;
}
if (can_sync_regs(cs, KVM_SYNC_BPBC)) {
cs->kvm_run->s.regs.bpbc = env->bpbc;
cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_BPBC;
}
if (can_sync_regs(cs, KVM_SYNC_ETOKEN)) {
cs->kvm_run->s.regs.etoken = env->etoken;
cs->kvm_run->s.regs.etoken_extension = env->etoken_extension;
cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_ETOKEN;
}
/* Finally the prefix */
if (can_sync_regs(cs, KVM_SYNC_PREFIX)) {
cs->kvm_run->s.regs.prefix = env->psa;
cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_PREFIX;
} else {
/* prefix is only supported via sync regs */
}
return 0;
}
int kvm_arch_get_registers(CPUState *cs)
{
S390CPU *cpu = S390_CPU(cs);
CPUS390XState *env = &cpu->env;
struct kvm_sregs sregs;
struct kvm_regs regs;
struct kvm_fpu fpu;
int i, r;
/* get the PSW */
env->psw.addr = cs->kvm_run->psw_addr;
env->psw.mask = cs->kvm_run->psw_mask;
/* the GPRS */
if (can_sync_regs(cs, KVM_SYNC_GPRS)) {
for (i = 0; i < 16; i++) {
env->regs[i] = cs->kvm_run->s.regs.gprs[i];
}
} else {
r = kvm_vcpu_ioctl(cs, KVM_GET_REGS, &regs);
if (r < 0) {
return r;
}
for (i = 0; i < 16; i++) {
env->regs[i] = regs.gprs[i];
}
}
/* The ACRS and CRS */
if (can_sync_regs(cs, KVM_SYNC_ACRS | KVM_SYNC_CRS)) {
for (i = 0; i < 16; i++) {
env->aregs[i] = cs->kvm_run->s.regs.acrs[i];
env->cregs[i] = cs->kvm_run->s.regs.crs[i];
}
} else {
r = kvm_vcpu_ioctl(cs, KVM_GET_SREGS, &sregs);
if (r < 0) {
return r;
}
for (i = 0; i < 16; i++) {
env->aregs[i] = sregs.acrs[i];
env->cregs[i] = sregs.crs[i];
}
}
/* Floating point and vector registers */
if (can_sync_regs(cs, KVM_SYNC_VRS)) {
for (i = 0; i < 32; i++) {
env->vregs[i][0] = cs->kvm_run->s.regs.vrs[i][0];
env->vregs[i][1] = cs->kvm_run->s.regs.vrs[i][1];
}
env->fpc = cs->kvm_run->s.regs.fpc;
} else if (can_sync_regs(cs, KVM_SYNC_FPRS)) {
for (i = 0; i < 16; i++) {
*get_freg(env, i) = cs->kvm_run->s.regs.fprs[i];
}
env->fpc = cs->kvm_run->s.regs.fpc;
} else {
r = kvm_vcpu_ioctl(cs, KVM_GET_FPU, &fpu);
if (r < 0) {
return r;
}
for (i = 0; i < 16; i++) {
*get_freg(env, i) = fpu.fprs[i];
}
env->fpc = fpu.fpc;
}
/* The prefix */
if (can_sync_regs(cs, KVM_SYNC_PREFIX)) {
env->psa = cs->kvm_run->s.regs.prefix;
}
if (can_sync_regs(cs, KVM_SYNC_ARCH0)) {
env->cputm = cs->kvm_run->s.regs.cputm;
env->ckc = cs->kvm_run->s.regs.ckc;
env->todpr = cs->kvm_run->s.regs.todpr;
env->gbea = cs->kvm_run->s.regs.gbea;
env->pp = cs->kvm_run->s.regs.pp;
} else {
/*
* These ONE_REGS are not protected by a capability. As they are only
* necessary for migration we just trace a possible error, but don't
* return with an error return code.
*/
kvm_get_one_reg(cs, KVM_REG_S390_CPU_TIMER, &env->cputm);
kvm_get_one_reg(cs, KVM_REG_S390_CLOCK_COMP, &env->ckc);
kvm_get_one_reg(cs, KVM_REG_S390_TODPR, &env->todpr);
kvm_get_one_reg(cs, KVM_REG_S390_GBEA, &env->gbea);
kvm_get_one_reg(cs, KVM_REG_S390_PP, &env->pp);
}
if (can_sync_regs(cs, KVM_SYNC_RICCB)) {
memcpy(env->riccb, cs->kvm_run->s.regs.riccb, 64);
}
if (can_sync_regs(cs, KVM_SYNC_GSCB)) {
memcpy(env->gscb, cs->kvm_run->s.regs.gscb, 32);
}
if (can_sync_regs(cs, KVM_SYNC_BPBC)) {
env->bpbc = cs->kvm_run->s.regs.bpbc;
}
if (can_sync_regs(cs, KVM_SYNC_ETOKEN)) {
env->etoken = cs->kvm_run->s.regs.etoken;
env->etoken_extension = cs->kvm_run->s.regs.etoken_extension;
}
/* pfault parameters */
if (can_sync_regs(cs, KVM_SYNC_PFAULT)) {
env->pfault_token = cs->kvm_run->s.regs.pft;
env->pfault_select = cs->kvm_run->s.regs.pfs;
env->pfault_compare = cs->kvm_run->s.regs.pfc;
} else if (cap_async_pf) {
r = kvm_get_one_reg(cs, KVM_REG_S390_PFTOKEN, &env->pfault_token);
if (r < 0) {
return r;
}
r = kvm_get_one_reg(cs, KVM_REG_S390_PFCOMPARE, &env->pfault_compare);
if (r < 0) {
return r;
}
r = kvm_get_one_reg(cs, KVM_REG_S390_PFSELECT, &env->pfault_select);
if (r < 0) {
return r;
}
}
return 0;
}
int kvm_s390_get_clock(uint8_t *tod_high, uint64_t *tod_low)
{
int r;
struct kvm_device_attr attr = {
.group = KVM_S390_VM_TOD,
.attr = KVM_S390_VM_TOD_LOW,
.addr = (uint64_t)tod_low,
};
r = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
if (r) {
return r;
}
attr.attr = KVM_S390_VM_TOD_HIGH;
attr.addr = (uint64_t)tod_high;
return kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
}
int kvm_s390_get_clock_ext(uint8_t *tod_high, uint64_t *tod_low)
{
int r;
struct kvm_s390_vm_tod_clock gtod;
struct kvm_device_attr attr = {
.group = KVM_S390_VM_TOD,
.attr = KVM_S390_VM_TOD_EXT,
.addr = (uint64_t)&gtod,
};
r = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
*tod_high = gtod.epoch_idx;
*tod_low = gtod.tod;
return r;
}
int kvm_s390_set_clock(uint8_t tod_high, uint64_t tod_low)
{
int r;
struct kvm_device_attr attr = {
.group = KVM_S390_VM_TOD,
.attr = KVM_S390_VM_TOD_LOW,
.addr = (uint64_t)&tod_low,
};
r = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
if (r) {
return r;
}
attr.attr = KVM_S390_VM_TOD_HIGH;
attr.addr = (uint64_t)&tod_high;
return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
}
int kvm_s390_set_clock_ext(uint8_t tod_high, uint64_t tod_low)
{
struct kvm_s390_vm_tod_clock gtod = {
.epoch_idx = tod_high,
.tod = tod_low,
};
struct kvm_device_attr attr = {
.group = KVM_S390_VM_TOD,
.attr = KVM_S390_VM_TOD_EXT,
.addr = (uint64_t)&gtod,
};
return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
}
/**
* kvm_s390_mem_op:
* @addr: the logical start address in guest memory
* @ar: the access register number
* @hostbuf: buffer in host memory. NULL = do only checks w/o copying
* @len: length that should be transferred
* @is_write: true = write, false = read
* Returns: 0 on success, non-zero if an exception or error occurred
*
* Use KVM ioctl to read/write from/to guest memory. An access exception
* is injected into the vCPU in case of translation errors.
*/
int kvm_s390_mem_op(S390CPU *cpu, vaddr addr, uint8_t ar, void *hostbuf,
int len, bool is_write)
{
struct kvm_s390_mem_op mem_op = {
.gaddr = addr,
.flags = KVM_S390_MEMOP_F_INJECT_EXCEPTION,
.size = len,
.op = is_write ? KVM_S390_MEMOP_LOGICAL_WRITE
: KVM_S390_MEMOP_LOGICAL_READ,
.buf = (uint64_t)hostbuf,
.ar = ar,
};
int ret;
if (!cap_mem_op) {
return -ENOSYS;
}
if (!hostbuf) {
mem_op.flags |= KVM_S390_MEMOP_F_CHECK_ONLY;
}
ret = kvm_vcpu_ioctl(CPU(cpu), KVM_S390_MEM_OP, &mem_op);
if (ret < 0) {
warn_report("KVM_S390_MEM_OP failed: %s", strerror(-ret));
}
return ret;
}
/*
* Legacy layout for s390:
* Older S390 KVM requires the topmost vma of the RAM to be
* smaller than an system defined value, which is at least 256GB.
* Larger systems have larger values. We put the guest between
* the end of data segment (system break) and this value. We
* use 32GB as a base to have enough room for the system break
* to grow. We also have to use MAP parameters that avoid
* read-only mapping of guest pages.
*/
static void *legacy_s390_alloc(size_t size, uint64_t *align, bool shared)
{
static void *mem;
if (mem) {
/* we only support one allocation, which is enough for initial ram */
return NULL;
}
mem = mmap((void *) 0x800000000ULL, size,
PROT_EXEC|PROT_READ|PROT_WRITE,
MAP_SHARED | MAP_ANONYMOUS | MAP_FIXED, -1, 0);
if (mem == MAP_FAILED) {
mem = NULL;
}
if (mem && align) {
*align = QEMU_VMALLOC_ALIGN;
}
return mem;
}
static uint8_t const *sw_bp_inst;
static uint8_t sw_bp_ilen;
static void determine_sw_breakpoint_instr(void)
{
/* DIAG 501 is used for sw breakpoints with old kernels */
static const uint8_t diag_501[] = {0x83, 0x24, 0x05, 0x01};
/* Instruction 0x0000 is used for sw breakpoints with recent kernels */
static const uint8_t instr_0x0000[] = {0x00, 0x00};
if (sw_bp_inst) {
return;
}
if (kvm_vm_enable_cap(kvm_state, KVM_CAP_S390_USER_INSTR0, 0)) {
sw_bp_inst = diag_501;
sw_bp_ilen = sizeof(diag_501);
DPRINTF("KVM: will use 4-byte sw breakpoints.\n");
} else {
sw_bp_inst = instr_0x0000;
sw_bp_ilen = sizeof(instr_0x0000);
DPRINTF("KVM: will use 2-byte sw breakpoints.\n");
}
}
int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
{
determine_sw_breakpoint_instr();
if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn,
sw_bp_ilen, 0) ||
cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)sw_bp_inst, sw_bp_ilen, 1)) {
return -EINVAL;
}
return 0;
}
int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
{
uint8_t t[MAX_ILEN];
if (cpu_memory_rw_debug(cs, bp->pc, t, sw_bp_ilen, 0)) {
return -EINVAL;
} else if (memcmp(t, sw_bp_inst, sw_bp_ilen)) {
return -EINVAL;
} else if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn,
sw_bp_ilen, 1)) {
return -EINVAL;
}
return 0;
}
static struct kvm_hw_breakpoint *find_hw_breakpoint(target_ulong addr,
int len, int type)
{
int n;
for (n = 0; n < nb_hw_breakpoints; n++) {
if (hw_breakpoints[n].addr == addr && hw_breakpoints[n].type == type &&
(hw_breakpoints[n].len == len || len == -1)) {
return &hw_breakpoints[n];
}
}
return NULL;
}
static int insert_hw_breakpoint(target_ulong addr, int len, int type)
{
int size;
if (find_hw_breakpoint(addr, len, type)) {
return -EEXIST;
}
size = (nb_hw_breakpoints + 1) * sizeof(struct kvm_hw_breakpoint);
if (!hw_breakpoints) {
nb_hw_breakpoints = 0;
hw_breakpoints = (struct kvm_hw_breakpoint *)g_try_malloc(size);
} else {
hw_breakpoints =
(struct kvm_hw_breakpoint *)g_try_realloc(hw_breakpoints, size);
}
if (!hw_breakpoints) {
nb_hw_breakpoints = 0;
return -ENOMEM;
}
hw_breakpoints[nb_hw_breakpoints].addr = addr;
hw_breakpoints[nb_hw_breakpoints].len = len;
hw_breakpoints[nb_hw_breakpoints].type = type;
nb_hw_breakpoints++;
return 0;
}
int kvm_arch_insert_hw_breakpoint(target_ulong addr,
target_ulong len, int type)
{
switch (type) {
case GDB_BREAKPOINT_HW:
type = KVM_HW_BP;
break;
case GDB_WATCHPOINT_WRITE:
if (len < 1) {
return -EINVAL;
}
type = KVM_HW_WP_WRITE;
break;
default:
return -ENOSYS;
}
return insert_hw_breakpoint(addr, len, type);
}
int kvm_arch_remove_hw_breakpoint(target_ulong addr,
target_ulong len, int type)
{
int size;
struct kvm_hw_breakpoint *bp = find_hw_breakpoint(addr, len, type);
if (bp == NULL) {
return -ENOENT;
}
nb_hw_breakpoints--;
if (nb_hw_breakpoints > 0) {
/*
* In order to trim the array, move the last element to the position to
* be removed - if necessary.
*/
if (bp != &hw_breakpoints[nb_hw_breakpoints]) {
*bp = hw_breakpoints[nb_hw_breakpoints];
}
size = nb_hw_breakpoints * sizeof(struct kvm_hw_breakpoint);
hw_breakpoints =
(struct kvm_hw_breakpoint *)g_realloc(hw_breakpoints, size);
} else {
g_free(hw_breakpoints);
hw_breakpoints = NULL;
}
return 0;
}
void kvm_arch_remove_all_hw_breakpoints(void)
{
nb_hw_breakpoints = 0;
g_free(hw_breakpoints);
hw_breakpoints = NULL;
}
void kvm_arch_update_guest_debug(CPUState *cpu, struct kvm_guest_debug *dbg)
{
int i;
if (nb_hw_breakpoints > 0) {
dbg->arch.nr_hw_bp = nb_hw_breakpoints;
dbg->arch.hw_bp = hw_breakpoints;
for (i = 0; i < nb_hw_breakpoints; ++i) {
hw_breakpoints[i].phys_addr = s390_cpu_get_phys_addr_debug(cpu,
hw_breakpoints[i].addr);
}
dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
} else {
dbg->arch.nr_hw_bp = 0;
dbg->arch.hw_bp = NULL;
}
}
void kvm_arch_pre_run(CPUState *cpu, struct kvm_run *run)
{
}
MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run)
{
return MEMTXATTRS_UNSPECIFIED;
}
int kvm_arch_process_async_events(CPUState *cs)
{
return cs->halted;
}
static int s390_kvm_irq_to_interrupt(struct kvm_s390_irq *irq,
struct kvm_s390_interrupt *interrupt)
{
int r = 0;
interrupt->type = irq->type;
switch (irq->type) {
case KVM_S390_INT_VIRTIO:
interrupt->parm = irq->u.ext.ext_params;
/* fall through */
case KVM_S390_INT_PFAULT_INIT:
case KVM_S390_INT_PFAULT_DONE:
interrupt->parm64 = irq->u.ext.ext_params2;
break;
case KVM_S390_PROGRAM_INT:
interrupt->parm = irq->u.pgm.code;
break;
case KVM_S390_SIGP_SET_PREFIX:
interrupt->parm = irq->u.prefix.address;
break;
case KVM_S390_INT_SERVICE:
interrupt->parm = irq->u.ext.ext_params;
break;
case KVM_S390_MCHK:
interrupt->parm = irq->u.mchk.cr14;
interrupt->parm64 = irq->u.mchk.mcic;
break;
case KVM_S390_INT_EXTERNAL_CALL:
interrupt->parm = irq->u.extcall.code;
break;
case KVM_S390_INT_EMERGENCY:
interrupt->parm = irq->u.emerg.code;
break;
case KVM_S390_SIGP_STOP:
case KVM_S390_RESTART:
break; /* These types have no parameters */
case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
interrupt->parm = irq->u.io.subchannel_id << 16;
interrupt->parm |= irq->u.io.subchannel_nr;
interrupt->parm64 = (uint64_t)irq->u.io.io_int_parm << 32;
interrupt->parm64 |= irq->u.io.io_int_word;
break;
default:
r = -EINVAL;
break;
}
return r;
}
static void inject_vcpu_irq_legacy(CPUState *cs, struct kvm_s390_irq *irq)
{
struct kvm_s390_interrupt kvmint = {};
int r;
r = s390_kvm_irq_to_interrupt(irq, &kvmint);
if (r < 0) {
fprintf(stderr, "%s called with bogus interrupt\n", __func__);
exit(1);
}
r = kvm_vcpu_ioctl(cs, KVM_S390_INTERRUPT, &kvmint);
if (r < 0) {
fprintf(stderr, "KVM failed to inject interrupt\n");
exit(1);
}
}
void kvm_s390_vcpu_interrupt(S390CPU *cpu, struct kvm_s390_irq *irq)
{
CPUState *cs = CPU(cpu);
int r;
if (cap_s390_irq) {
r = kvm_vcpu_ioctl(cs, KVM_S390_IRQ, irq);
if (!r) {
return;
}
error_report("KVM failed to inject interrupt %llx", irq->type);
exit(1);
}
inject_vcpu_irq_legacy(cs, irq);
}
void kvm_s390_floating_interrupt_legacy(struct kvm_s390_irq *irq)
{
struct kvm_s390_interrupt kvmint = {};
int r;
r = s390_kvm_irq_to_interrupt(irq, &kvmint);
if (r < 0) {
fprintf(stderr, "%s called with bogus interrupt\n", __func__);
exit(1);
}
r = kvm_vm_ioctl(kvm_state, KVM_S390_INTERRUPT, &kvmint);
if (r < 0) {
fprintf(stderr, "KVM failed to inject interrupt\n");
exit(1);
}
}
void kvm_s390_program_interrupt(S390CPU *cpu, uint16_t code)
{
struct kvm_s390_irq irq = {
.type = KVM_S390_PROGRAM_INT,
.u.pgm.code = code,
};
qemu_log_mask(CPU_LOG_INT, "program interrupt at %#" PRIx64 "\n",
cpu->env.psw.addr);
kvm_s390_vcpu_interrupt(cpu, &irq);
}
void kvm_s390_access_exception(S390CPU *cpu, uint16_t code, uint64_t te_code)
{
struct kvm_s390_irq irq = {
.type = KVM_S390_PROGRAM_INT,
.u.pgm.code = code,
.u.pgm.trans_exc_code = te_code,
.u.pgm.exc_access_id = te_code & 3,
};
kvm_s390_vcpu_interrupt(cpu, &irq);
}
static int kvm_sclp_service_call(S390CPU *cpu, struct kvm_run *run,
uint16_t ipbh0)
{
CPUS390XState *env = &cpu->env;
uint64_t sccb;
uint32_t code;
int r = 0;
sccb = env->regs[ipbh0 & 0xf];
code = env->regs[(ipbh0 & 0xf0) >> 4];
r = sclp_service_call(env, sccb, code);
if (r < 0) {
kvm_s390_program_interrupt(cpu, -r);
} else {
setcc(cpu, r);
}
return 0;
}
static int handle_b2(S390CPU *cpu, struct kvm_run *run, uint8_t ipa1)
{
CPUS390XState *env = &cpu->env;
int rc = 0;
uint16_t ipbh0 = (run->s390_sieic.ipb & 0xffff0000) >> 16;
switch (ipa1) {
case PRIV_B2_XSCH:
ioinst_handle_xsch(cpu, env->regs[1], RA_IGNORED);
break;
case PRIV_B2_CSCH:
ioinst_handle_csch(cpu, env->regs[1], RA_IGNORED);
break;
case PRIV_B2_HSCH:
ioinst_handle_hsch(cpu, env->regs[1], RA_IGNORED);
break;
case PRIV_B2_MSCH:
ioinst_handle_msch(cpu, env->regs[1], run->s390_sieic.ipb, RA_IGNORED);
break;
case PRIV_B2_SSCH:
ioinst_handle_ssch(cpu, env->regs[1], run->s390_sieic.ipb, RA_IGNORED);
break;
case PRIV_B2_STCRW:
ioinst_handle_stcrw(cpu, run->s390_sieic.ipb, RA_IGNORED);
break;
case PRIV_B2_STSCH:
ioinst_handle_stsch(cpu, env->regs[1], run->s390_sieic.ipb, RA_IGNORED);
break;
case PRIV_B2_TSCH:
/* We should only get tsch via KVM_EXIT_S390_TSCH. */
fprintf(stderr, "Spurious tsch intercept\n");
break;
case PRIV_B2_CHSC:
ioinst_handle_chsc(cpu, run->s390_sieic.ipb, RA_IGNORED);
break;
case PRIV_B2_TPI:
/* This should have been handled by kvm already. */
fprintf(stderr, "Spurious tpi intercept\n");
break;
case PRIV_B2_SCHM:
ioinst_handle_schm(cpu, env->regs[1], env->regs[2],
run->s390_sieic.ipb, RA_IGNORED);
break;
case PRIV_B2_RSCH:
ioinst_handle_rsch(cpu, env->regs[1], RA_IGNORED);
break;
case PRIV_B2_RCHP:
ioinst_handle_rchp(cpu, env->regs[1], RA_IGNORED);
break;
case PRIV_B2_STCPS:
/* We do not provide this instruction, it is suppressed. */
break;
case PRIV_B2_SAL:
ioinst_handle_sal(cpu, env->regs[1], RA_IGNORED);
break;
case PRIV_B2_SIGA:
/* Not provided, set CC = 3 for subchannel not operational */
setcc(cpu, 3);
break;
case PRIV_B2_SCLP_CALL:
rc = kvm_sclp_service_call(cpu, run, ipbh0);
break;
default:
rc = -1;
DPRINTF("KVM: unhandled PRIV: 0xb2%x\n", ipa1);
break;
}
return rc;
}
static uint64_t get_base_disp_rxy(S390CPU *cpu, struct kvm_run *run,
uint8_t *ar)
{
CPUS390XState *env = &cpu->env;
uint32_t x2 = (run->s390_sieic.ipa & 0x000f);
uint32_t base2 = run->s390_sieic.ipb >> 28;
uint32_t disp2 = ((run->s390_sieic.ipb & 0x0fff0000) >> 16) +
((run->s390_sieic.ipb & 0xff00) << 4);
if (disp2 & 0x80000) {
disp2 += 0xfff00000;
}
if (ar) {
*ar = base2;
}
return (base2 ? env->regs[base2] : 0) +
(x2 ? env->regs[x2] : 0) + (long)(int)disp2;
}
static uint64_t get_base_disp_rsy(S390CPU *cpu, struct kvm_run *run,
uint8_t *ar)
{
CPUS390XState *env = &cpu->env;
uint32_t base2 = run->s390_sieic.ipb >> 28;
uint32_t disp2 = ((run->s390_sieic.ipb & 0x0fff0000) >> 16) +
((run->s390_sieic.ipb & 0xff00) << 4);
if (disp2 & 0x80000) {
disp2 += 0xfff00000;
}
if (ar) {
*ar = base2;
}
return (base2 ? env->regs[base2] : 0) + (long)(int)disp2;
}
static int kvm_clp_service_call(S390CPU *cpu, struct kvm_run *run)
{
uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16;
if (s390_has_feat(S390_FEAT_ZPCI)) {
return clp_service_call(cpu, r2, RA_IGNORED);
} else {
return -1;
}
}
static int kvm_pcilg_service_call(S390CPU *cpu, struct kvm_run *run)
{
uint8_t r1 = (run->s390_sieic.ipb & 0x00f00000) >> 20;
uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16;
if (s390_has_feat(S390_FEAT_ZPCI)) {
return pcilg_service_call(cpu, r1, r2, RA_IGNORED);
} else {
return -1;
}
}
static int kvm_pcistg_service_call(S390CPU *cpu, struct kvm_run *run)
{
uint8_t r1 = (run->s390_sieic.ipb & 0x00f00000) >> 20;
uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16;
if (s390_has_feat(S390_FEAT_ZPCI)) {
return pcistg_service_call(cpu, r1, r2, RA_IGNORED);
} else {
return -1;
}
}
static int kvm_stpcifc_service_call(S390CPU *cpu, struct kvm_run *run)
{
uint8_t r1 = (run->s390_sieic.ipa & 0x00f0) >> 4;
uint64_t fiba;
uint8_t ar;
if (s390_has_feat(S390_FEAT_ZPCI)) {
fiba = get_base_disp_rxy(cpu, run, &ar);
return stpcifc_service_call(cpu, r1, fiba, ar, RA_IGNORED);
} else {
return -1;
}
}
static int kvm_sic_service_call(S390CPU *cpu, struct kvm_run *run)
{
CPUS390XState *env = &cpu->env;
uint8_t r1 = (run->s390_sieic.ipa & 0x00f0) >> 4;
uint8_t r3 = run->s390_sieic.ipa & 0x000f;
uint8_t isc;
uint16_t mode;
int r;
mode = env->regs[r1] & 0xffff;
isc = (env->regs[r3] >> 27) & 0x7;
r = css_do_sic(env, isc, mode);
if (r) {
kvm_s390_program_interrupt(cpu, -r);
}
return 0;
}
static int kvm_rpcit_service_call(S390CPU *cpu, struct kvm_run *run)
{
uint8_t r1 = (run->s390_sieic.ipb & 0x00f00000) >> 20;
uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16;
if (s390_has_feat(S390_FEAT_ZPCI)) {
return rpcit_service_call(cpu, r1, r2, RA_IGNORED);
} else {
return -1;
}
}
static int kvm_pcistb_service_call(S390CPU *cpu, struct kvm_run *run)
{
uint8_t r1 = (run->s390_sieic.ipa & 0x00f0) >> 4;
uint8_t r3 = run->s390_sieic.ipa & 0x000f;
uint64_t gaddr;
uint8_t ar;
if (s390_has_feat(S390_FEAT_ZPCI)) {
gaddr = get_base_disp_rsy(cpu, run, &ar);
return pcistb_service_call(cpu, r1, r3, gaddr, ar, RA_IGNORED);
} else {
return -1;
}
}
static int kvm_mpcifc_service_call(S390CPU *cpu, struct kvm_run *run)
{
uint8_t r1 = (run->s390_sieic.ipa & 0x00f0) >> 4;
uint64_t fiba;
uint8_t ar;
if (s390_has_feat(S390_FEAT_ZPCI)) {
fiba = get_base_disp_rxy(cpu, run, &ar);
return mpcifc_service_call(cpu, r1, fiba, ar, RA_IGNORED);
} else {
return -1;
}
}
static int handle_b9(S390CPU *cpu, struct kvm_run *run, uint8_t ipa1)
{
int r = 0;
switch (ipa1) {
case PRIV_B9_CLP:
r = kvm_clp_service_call(cpu, run);
break;
case PRIV_B9_PCISTG:
r = kvm_pcistg_service_call(cpu, run);
break;
case PRIV_B9_PCILG:
r = kvm_pcilg_service_call(cpu, run);
break;
case PRIV_B9_RPCIT:
r = kvm_rpcit_service_call(cpu, run);
break;
case PRIV_B9_EQBS:
/* just inject exception */
r = -1;
break;
default:
r = -1;
DPRINTF("KVM: unhandled PRIV: 0xb9%x\n", ipa1);
break;
}
return r;
}
static int handle_eb(S390CPU *cpu, struct kvm_run *run, uint8_t ipbl)
{
int r = 0;
switch (ipbl) {
case PRIV_EB_PCISTB:
r = kvm_pcistb_service_call(cpu, run);
break;
case PRIV_EB_SIC:
r = kvm_sic_service_call(cpu, run);
break;
case PRIV_EB_SQBS:
/* just inject exception */
r = -1;
break;
default:
r = -1;
DPRINTF("KVM: unhandled PRIV: 0xeb%x\n", ipbl);
break;
}
return r;
}
static int handle_e3(S390CPU *cpu, struct kvm_run *run, uint8_t ipbl)
{
int r = 0;
switch (ipbl) {
case PRIV_E3_MPCIFC:
r = kvm_mpcifc_service_call(cpu, run);
break;
case PRIV_E3_STPCIFC:
r = kvm_stpcifc_service_call(cpu, run);
break;
default:
r = -1;
DPRINTF("KVM: unhandled PRIV: 0xe3%x\n", ipbl);
break;
}
return r;
}
static int handle_hypercall(S390CPU *cpu, struct kvm_run *run)
{
CPUS390XState *env = &cpu->env;
int ret;
ret = s390_virtio_hypercall(env);
if (ret == -EINVAL) {
kvm_s390_program_interrupt(cpu, PGM_SPECIFICATION);
return 0;
}
return ret;
}
static void kvm_handle_diag_288(S390CPU *cpu, struct kvm_run *run)
{
uint64_t r1, r3;
int rc;
r1 = (run->s390_sieic.ipa & 0x00f0) >> 4;
r3 = run->s390_sieic.ipa & 0x000f;
rc = handle_diag_288(&cpu->env, r1, r3);
if (rc) {
kvm_s390_program_interrupt(cpu, PGM_SPECIFICATION);
}
}
static void kvm_handle_diag_308(S390CPU *cpu, struct kvm_run *run)
{
uint64_t r1, r3;
r1 = (run->s390_sieic.ipa & 0x00f0) >> 4;
r3 = run->s390_sieic.ipa & 0x000f;
handle_diag_308(&cpu->env, r1, r3, RA_IGNORED);
}
static int handle_sw_breakpoint(S390CPU *cpu, struct kvm_run *run)
{
CPUS390XState *env = &cpu->env;
unsigned long pc;
pc = env->psw.addr - sw_bp_ilen;
if (kvm_find_sw_breakpoint(CPU(cpu), pc)) {
env->psw.addr = pc;
return EXCP_DEBUG;
}
return -ENOENT;
}
#define DIAG_KVM_CODE_MASK 0x000000000000ffff
static int handle_diag(S390CPU *cpu, struct kvm_run *run, uint32_t ipb)
{
int r = 0;
uint16_t func_code;
/*
* For any diagnose call we support, bits 48-63 of the resulting
* address specify the function code; the remainder is ignored.
*/
func_code = decode_basedisp_rs(&cpu->env, ipb, NULL) & DIAG_KVM_CODE_MASK;
switch (func_code) {
case DIAG_TIMEREVENT:
kvm_handle_diag_288(cpu, run);
break;
case DIAG_IPL:
kvm_handle_diag_308(cpu, run);
break;
case DIAG_KVM_HYPERCALL:
r = handle_hypercall(cpu, run);
break;
case DIAG_KVM_BREAKPOINT:
r = handle_sw_breakpoint(cpu, run);
break;
default:
DPRINTF("KVM: unknown DIAG: 0x%x\n", func_code);
kvm_s390_program_interrupt(cpu, PGM_SPECIFICATION);
break;
}
return r;
}
static int kvm_s390_handle_sigp(S390CPU *cpu, uint8_t ipa1, uint32_t ipb)
{
CPUS390XState *env = &cpu->env;
const uint8_t r1 = ipa1 >> 4;
const uint8_t r3 = ipa1 & 0x0f;
int ret;
uint8_t order;
/* get order code */
order = decode_basedisp_rs(env, ipb, NULL) & SIGP_ORDER_MASK;
ret = handle_sigp(env, order, r1, r3);
setcc(cpu, ret);
return 0;
}
static int handle_instruction(S390CPU *cpu, struct kvm_run *run)
{
unsigned int ipa0 = (run->s390_sieic.ipa & 0xff00);
uint8_t ipa1 = run->s390_sieic.ipa & 0x00ff;
int r = -1;
DPRINTF("handle_instruction 0x%x 0x%x\n",
run->s390_sieic.ipa, run->s390_sieic.ipb);
switch (ipa0) {
case IPA0_B2:
r = handle_b2(cpu, run, ipa1);
break;
case IPA0_B9:
r = handle_b9(cpu, run, ipa1);
break;
case IPA0_EB:
r = handle_eb(cpu, run, run->s390_sieic.ipb & 0xff);
break;
case IPA0_E3:
r = handle_e3(cpu, run, run->s390_sieic.ipb & 0xff);
break;
case IPA0_DIAG:
r = handle_diag(cpu, run, run->s390_sieic.ipb);
break;
case IPA0_SIGP:
r = kvm_s390_handle_sigp(cpu, ipa1, run->s390_sieic.ipb);
break;
}
if (r < 0) {
r = 0;
kvm_s390_program_interrupt(cpu, PGM_OPERATION);
}
return r;
}
static void unmanageable_intercept(S390CPU *cpu, S390CrashReason reason,
int pswoffset)
{
CPUState *cs = CPU(cpu);
s390_cpu_halt(cpu);
cpu->env.crash_reason = reason;
qemu_system_guest_panicked(cpu_get_crash_info(cs));
}
/* try to detect pgm check loops */
static int handle_oper_loop(S390CPU *cpu, struct kvm_run *run)
{
CPUState *cs = CPU(cpu);
PSW oldpsw, newpsw;
newpsw.mask = ldq_phys(cs->as, cpu->env.psa +
offsetof(LowCore, program_new_psw));
newpsw.addr = ldq_phys(cs->as, cpu->env.psa +
offsetof(LowCore, program_new_psw) + 8);
oldpsw.mask = run->psw_mask;
oldpsw.addr = run->psw_addr;
/*
* Avoid endless loops of operation exceptions, if the pgm new
* PSW will cause a new operation exception.
* The heuristic checks if the pgm new psw is within 6 bytes before
* the faulting psw address (with same DAT, AS settings) and the
* new psw is not a wait psw and the fault was not triggered by
* problem state. In that case go into crashed state.
*/
if (oldpsw.addr - newpsw.addr <= 6 &&
!(newpsw.mask & PSW_MASK_WAIT) &&
!(oldpsw.mask & PSW_MASK_PSTATE) &&
(newpsw.mask & PSW_MASK_ASC) == (oldpsw.mask & PSW_MASK_ASC) &&
(newpsw.mask & PSW_MASK_DAT) == (oldpsw.mask & PSW_MASK_DAT)) {
unmanageable_intercept(cpu, S390_CRASH_REASON_OPINT_LOOP,
offsetof(LowCore, program_new_psw));
return EXCP_HALTED;
}
return 0;
}
static int handle_intercept(S390CPU *cpu)
{
CPUState *cs = CPU(cpu);
struct kvm_run *run = cs->kvm_run;
int icpt_code = run->s390_sieic.icptcode;
int r = 0;
DPRINTF("intercept: 0x%x (at 0x%lx)\n", icpt_code,
(long)cs->kvm_run->psw_addr);
switch (icpt_code) {
case ICPT_INSTRUCTION:
r = handle_instruction(cpu, run);
break;
case ICPT_PROGRAM:
unmanageable_intercept(cpu, S390_CRASH_REASON_PGMINT_LOOP,
offsetof(LowCore, program_new_psw));
r = EXCP_HALTED;
break;
case ICPT_EXT_INT:
unmanageable_intercept(cpu, S390_CRASH_REASON_EXTINT_LOOP,
offsetof(LowCore, external_new_psw));
r = EXCP_HALTED;
break;
case ICPT_WAITPSW:
/* disabled wait, since enabled wait is handled in kernel */
s390_handle_wait(cpu);
r = EXCP_HALTED;
break;
case ICPT_CPU_STOP:
do_stop_interrupt(&cpu->env);
r = EXCP_HALTED;
break;
case ICPT_OPEREXC:
/* check for break points */
r = handle_sw_breakpoint(cpu, run);
if (r == -ENOENT) {
/* Then check for potential pgm check loops */
r = handle_oper_loop(cpu, run);
if (r == 0) {
kvm_s390_program_interrupt(cpu, PGM_OPERATION);
}
}
break;
case ICPT_SOFT_INTERCEPT:
fprintf(stderr, "KVM unimplemented icpt SOFT\n");
exit(1);
break;
case ICPT_IO:
fprintf(stderr, "KVM unimplemented icpt IO\n");
exit(1);
break;
default:
fprintf(stderr, "Unknown intercept code: %d\n", icpt_code);
exit(1);
break;
}
return r;
}
static int handle_tsch(S390CPU *cpu)
{
CPUState *cs = CPU(cpu);
struct kvm_run *run = cs->kvm_run;
int ret;
ret = ioinst_handle_tsch(cpu, cpu->env.regs[1], run->s390_tsch.ipb,
RA_IGNORED);
if (ret < 0) {
/*
* Failure.
* If an I/O interrupt had been dequeued, we have to reinject it.
*/
if (run->s390_tsch.dequeued) {
s390_io_interrupt(run->s390_tsch.subchannel_id,
run->s390_tsch.subchannel_nr,
run->s390_tsch.io_int_parm,
run->s390_tsch.io_int_word);
}
ret = 0;
}
return ret;
}
static void insert_stsi_3_2_2(S390CPU *cpu, __u64 addr, uint8_t ar)
{
SysIB_322 sysib;
int del;
if (s390_cpu_virt_mem_read(cpu, addr, ar, &sysib, sizeof(sysib))) {
return;
}
/* Shift the stack of Extended Names to prepare for our own data */
memmove(&sysib.ext_names[1], &sysib.ext_names[0],
sizeof(sysib.ext_names[0]) * (sysib.count - 1));
/* First virt level, that doesn't provide Ext Names delimits stack. It is
* assumed it's not capable of managing Extended Names for lower levels.
*/
for (del = 1; del < sysib.count; del++) {
if (!sysib.vm[del].ext_name_encoding || !sysib.ext_names[del][0]) {
break;
}
}
if (del < sysib.count) {
memset(sysib.ext_names[del], 0,
sizeof(sysib.ext_names[0]) * (sysib.count - del));
}
/* Insert short machine name in EBCDIC, padded with blanks */
if (qemu_name) {
memset(sysib.vm[0].name, 0x40, sizeof(sysib.vm[0].name));
ebcdic_put(sysib.vm[0].name, qemu_name, MIN(sizeof(sysib.vm[0].name),
strlen(qemu_name)));
}
sysib.vm[0].ext_name_encoding = 2; /* 2 = UTF-8 */
memset(sysib.ext_names[0], 0, sizeof(sysib.ext_names[0]));
/* If hypervisor specifies zero Extended Name in STSI322 SYSIB, it's
* considered by s390 as not capable of providing any Extended Name.
* Therefore if no name was specified on qemu invocation, we go with the
* same "KVMguest" default, which KVM has filled into short name field.
*/
if (qemu_name) {
strncpy((char *)sysib.ext_names[0], qemu_name,
sizeof(sysib.ext_names[0]));
} else {
strcpy((char *)sysib.ext_names[0], "KVMguest");
}
/* Insert UUID */
memcpy(sysib.vm[0].uuid, &qemu_uuid, sizeof(sysib.vm[0].uuid));
s390_cpu_virt_mem_write(cpu, addr, ar, &sysib, sizeof(sysib));
}
static int handle_stsi(S390CPU *cpu)
{
CPUState *cs = CPU(cpu);
struct kvm_run *run = cs->kvm_run;
switch (run->s390_stsi.fc) {
case 3:
if (run->s390_stsi.sel1 != 2 || run->s390_stsi.sel2 != 2) {
return 0;
}
/* Only sysib 3.2.2 needs post-handling for now. */
insert_stsi_3_2_2(cpu, run->s390_stsi.addr, run->s390_stsi.ar);
return 0;
default:
return 0;
}
}
static int kvm_arch_handle_debug_exit(S390CPU *cpu)
{
CPUState *cs = CPU(cpu);
struct kvm_run *run = cs->kvm_run;
int ret = 0;
struct kvm_debug_exit_arch *arch_info = &run->debug.arch;
switch (arch_info->type) {
case KVM_HW_WP_WRITE:
if (find_hw_breakpoint(arch_info->addr, -1, arch_info->type)) {
cs->watchpoint_hit = &hw_watchpoint;
hw_watchpoint.vaddr = arch_info->addr;
hw_watchpoint.flags = BP_MEM_WRITE;
ret = EXCP_DEBUG;
}
break;
case KVM_HW_BP:
if (find_hw_breakpoint(arch_info->addr, -1, arch_info->type)) {
ret = EXCP_DEBUG;
}
break;
case KVM_SINGLESTEP:
if (cs->singlestep_enabled) {
ret = EXCP_DEBUG;
}
break;
default:
ret = -ENOSYS;
}
return ret;
}
int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
{
S390CPU *cpu = S390_CPU(cs);
int ret = 0;
qemu_mutex_lock_iothread();
kvm_cpu_synchronize_state(cs);
switch (run->exit_reason) {
case KVM_EXIT_S390_SIEIC:
ret = handle_intercept(cpu);
break;
case KVM_EXIT_S390_RESET:
s390_ipl_reset_request(cs, S390_RESET_REIPL);
break;
case KVM_EXIT_S390_TSCH:
ret = handle_tsch(cpu);
break;
case KVM_EXIT_S390_STSI:
ret = handle_stsi(cpu);
break;
case KVM_EXIT_DEBUG:
ret = kvm_arch_handle_debug_exit(cpu);
break;
default:
fprintf(stderr, "Unknown KVM exit: %d\n", run->exit_reason);
break;
}
qemu_mutex_unlock_iothread();
if (ret == 0) {
ret = EXCP_INTERRUPT;
}
return ret;
}
bool kvm_arch_stop_on_emulation_error(CPUState *cpu)
{
return true;
}
void kvm_s390_enable_css_support(S390CPU *cpu)
{
int r;
/* Activate host kernel channel subsystem support. */
r = kvm_vcpu_enable_cap(CPU(cpu), KVM_CAP_S390_CSS_SUPPORT, 0);
assert(r == 0);
}
void kvm_arch_init_irq_routing(KVMState *s)
{
/*
* Note that while irqchip capabilities generally imply that cpustates
* are handled in-kernel, it is not true for s390 (yet); therefore, we
* have to override the common code kvm_halt_in_kernel_allowed setting.
*/
if (kvm_check_extension(s, KVM_CAP_IRQ_ROUTING)) {
kvm_gsi_routing_allowed = true;
kvm_halt_in_kernel_allowed = false;
}
}
int kvm_s390_assign_subch_ioeventfd(EventNotifier *notifier, uint32_t sch,
int vq, bool assign)
{
struct kvm_ioeventfd kick = {
.flags = KVM_IOEVENTFD_FLAG_VIRTIO_CCW_NOTIFY |
KVM_IOEVENTFD_FLAG_DATAMATCH,
.fd = event_notifier_get_fd(notifier),
.datamatch = vq,
.addr = sch,
.len = 8,
};
trace_kvm_assign_subch_ioeventfd(kick.fd, kick.addr, assign,
kick.datamatch);
if (!kvm_check_extension(kvm_state, KVM_CAP_IOEVENTFD)) {
return -ENOSYS;
}
if (!assign) {
kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
}
return kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
}
int kvm_s390_get_ri(void)
{
return cap_ri;
}
int kvm_s390_get_gs(void)
{
return cap_gs;
}
int kvm_s390_set_cpu_state(S390CPU *cpu, uint8_t cpu_state)
{
struct kvm_mp_state mp_state = {};
int ret;
/* the kvm part might not have been initialized yet */
if (CPU(cpu)->kvm_state == NULL) {
return 0;
}
switch (cpu_state) {
case S390_CPU_STATE_STOPPED:
mp_state.mp_state = KVM_MP_STATE_STOPPED;
break;
case S390_CPU_STATE_CHECK_STOP:
mp_state.mp_state = KVM_MP_STATE_CHECK_STOP;
break;
case S390_CPU_STATE_OPERATING:
mp_state.mp_state = KVM_MP_STATE_OPERATING;
break;
case S390_CPU_STATE_LOAD:
mp_state.mp_state = KVM_MP_STATE_LOAD;
break;
default:
error_report("Requested CPU state is not a valid S390 CPU state: %u",
cpu_state);
exit(1);
}
ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
if (ret) {
trace_kvm_failed_cpu_state_set(CPU(cpu)->cpu_index, cpu_state,
strerror(-ret));
}
return ret;
}
void kvm_s390_vcpu_interrupt_pre_save(S390CPU *cpu)
{
struct kvm_s390_irq_state irq_state = {
.buf = (uint64_t) cpu->irqstate,
.len = VCPU_IRQ_BUF_SIZE,
};
CPUState *cs = CPU(cpu);
int32_t bytes;
if (!kvm_check_extension(kvm_state, KVM_CAP_S390_IRQ_STATE)) {
return;
}
bytes = kvm_vcpu_ioctl(cs, KVM_S390_GET_IRQ_STATE, &irq_state);
if (bytes < 0) {
cpu->irqstate_saved_size = 0;
error_report("Migration of interrupt state failed");
return;
}
cpu->irqstate_saved_size = bytes;
}
int kvm_s390_vcpu_interrupt_post_load(S390CPU *cpu)
{
CPUState *cs = CPU(cpu);
struct kvm_s390_irq_state irq_state = {
.buf = (uint64_t) cpu->irqstate,
.len = cpu->irqstate_saved_size,
};
int r;
if (cpu->irqstate_saved_size == 0) {
return 0;
}
if (!kvm_check_extension(kvm_state, KVM_CAP_S390_IRQ_STATE)) {
return -ENOSYS;
}
r = kvm_vcpu_ioctl(cs, KVM_S390_SET_IRQ_STATE, &irq_state);
if (r) {
error_report("Setting interrupt state failed %d", r);
}
return r;
}
int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
uint64_t address, uint32_t data, PCIDevice *dev)
{
S390PCIBusDevice *pbdev;
uint32_t vec = data & ZPCI_MSI_VEC_MASK;
if (!dev) {
DPRINTF("add_msi_route no pci device\n");
return -ENODEV;
}
pbdev = s390_pci_find_dev_by_target(s390_get_phb(), DEVICE(dev)->id);
if (!pbdev) {
DPRINTF("add_msi_route no zpci device\n");
return -ENODEV;
}
route->type = KVM_IRQ_ROUTING_S390_ADAPTER;
route->flags = 0;
route->u.adapter.summary_addr = pbdev->routes.adapter.summary_addr;
route->u.adapter.ind_addr = pbdev->routes.adapter.ind_addr;
route->u.adapter.summary_offset = pbdev->routes.adapter.summary_offset;
route->u.adapter.ind_offset = pbdev->routes.adapter.ind_offset + vec;
route->u.adapter.adapter_id = pbdev->routes.adapter.adapter_id;
return 0;
}
int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route,
int vector, PCIDevice *dev)
{
return 0;
}
int kvm_arch_release_virq_post(int virq)
{
return 0;
}
int kvm_arch_msi_data_to_gsi(uint32_t data)
{
abort();
}
static int query_cpu_subfunc(S390FeatBitmap features)
{
struct kvm_s390_vm_cpu_subfunc prop;
struct kvm_device_attr attr = {
.group = KVM_S390_VM_CPU_MODEL,
.attr = KVM_S390_VM_CPU_MACHINE_SUBFUNC,
.addr = (uint64_t) &prop,
};
int rc;
rc = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
if (rc) {
return rc;
}
/*
* We're going to add all subfunctions now, if the corresponding feature
* is available that unlocks the query functions.
*/
s390_add_from_feat_block(features, S390_FEAT_TYPE_PLO, prop.plo);
if (test_bit(S390_FEAT_TOD_CLOCK_STEERING, features)) {
s390_add_from_feat_block(features, S390_FEAT_TYPE_PTFF, prop.ptff);
}
if (test_bit(S390_FEAT_MSA, features)) {
s390_add_from_feat_block(features, S390_FEAT_TYPE_KMAC, prop.kmac);
s390_add_from_feat_block(features, S390_FEAT_TYPE_KMC, prop.kmc);
s390_add_from_feat_block(features, S390_FEAT_TYPE_KM, prop.km);
s390_add_from_feat_block(features, S390_FEAT_TYPE_KIMD, prop.kimd);
s390_add_from_feat_block(features, S390_FEAT_TYPE_KLMD, prop.klmd);
}
if (test_bit(S390_FEAT_MSA_EXT_3, features)) {
s390_add_from_feat_block(features, S390_FEAT_TYPE_PCKMO, prop.pckmo);
}
if (test_bit(S390_FEAT_MSA_EXT_4, features)) {
s390_add_from_feat_block(features, S390_FEAT_TYPE_KMCTR, prop.kmctr);
s390_add_from_feat_block(features, S390_FEAT_TYPE_KMF, prop.kmf);
s390_add_from_feat_block(features, S390_FEAT_TYPE_KMO, prop.kmo);
s390_add_from_feat_block(features, S390_FEAT_TYPE_PCC, prop.pcc);
}
if (test_bit(S390_FEAT_MSA_EXT_5, features)) {
s390_add_from_feat_block(features, S390_FEAT_TYPE_PPNO, prop.ppno);
}
if (test_bit(S390_FEAT_MSA_EXT_8, features)) {
s390_add_from_feat_block(features, S390_FEAT_TYPE_KMA, prop.kma);
}
if (test_bit(S390_FEAT_MSA_EXT_9, features)) {
s390_add_from_feat_block(features, S390_FEAT_TYPE_KDSA, prop.kdsa);
}
if (test_bit(S390_FEAT_ESORT_BASE, features)) {
s390_add_from_feat_block(features, S390_FEAT_TYPE_SORTL, prop.sortl);
}
if (test_bit(S390_FEAT_DEFLATE_BASE, features)) {
s390_add_from_feat_block(features, S390_FEAT_TYPE_DFLTCC, prop.dfltcc);
}
return 0;
}
static int configure_cpu_subfunc(const S390FeatBitmap features)
{
struct kvm_s390_vm_cpu_subfunc prop = {};
struct kvm_device_attr attr = {
.group = KVM_S390_VM_CPU_MODEL,
.attr = KVM_S390_VM_CPU_PROCESSOR_SUBFUNC,
.addr = (uint64_t) &prop,
};
if (!kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL,
KVM_S390_VM_CPU_PROCESSOR_SUBFUNC)) {
/* hardware support might be missing, IBC will handle most of this */
return 0;
}
s390_fill_feat_block(features, S390_FEAT_TYPE_PLO, prop.plo);
if (test_bit(S390_FEAT_TOD_CLOCK_STEERING, features)) {
s390_fill_feat_block(features, S390_FEAT_TYPE_PTFF, prop.ptff);
}
if (test_bit(S390_FEAT_MSA, features)) {
s390_fill_feat_block(features, S390_FEAT_TYPE_KMAC, prop.kmac);
s390_fill_feat_block(features, S390_FEAT_TYPE_KMC, prop.kmc);
s390_fill_feat_block(features, S390_FEAT_TYPE_KM, prop.km);
s390_fill_feat_block(features, S390_FEAT_TYPE_KIMD, prop.kimd);
s390_fill_feat_block(features, S390_FEAT_TYPE_KLMD, prop.klmd);
}
if (test_bit(S390_FEAT_MSA_EXT_3, features)) {
s390_fill_feat_block(features, S390_FEAT_TYPE_PCKMO, prop.pckmo);
}
if (test_bit(S390_FEAT_MSA_EXT_4, features)) {
s390_fill_feat_block(features, S390_FEAT_TYPE_KMCTR, prop.kmctr);
s390_fill_feat_block(features, S390_FEAT_TYPE_KMF, prop.kmf);
s390_fill_feat_block(features, S390_FEAT_TYPE_KMO, prop.kmo);
s390_fill_feat_block(features, S390_FEAT_TYPE_PCC, prop.pcc);
}
if (test_bit(S390_FEAT_MSA_EXT_5, features)) {
s390_fill_feat_block(features, S390_FEAT_TYPE_PPNO, prop.ppno);
}
if (test_bit(S390_FEAT_MSA_EXT_8, features)) {
s390_fill_feat_block(features, S390_FEAT_TYPE_KMA, prop.kma);
}
if (test_bit(S390_FEAT_MSA_EXT_9, features)) {
s390_fill_feat_block(features, S390_FEAT_TYPE_KDSA, prop.kdsa);
}
if (test_bit(S390_FEAT_ESORT_BASE, features)) {
s390_fill_feat_block(features, S390_FEAT_TYPE_SORTL, prop.sortl);
}
if (test_bit(S390_FEAT_DEFLATE_BASE, features)) {
s390_fill_feat_block(features, S390_FEAT_TYPE_DFLTCC, prop.dfltcc);
}
return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
}
static int kvm_to_feat[][2] = {
{ KVM_S390_VM_CPU_FEAT_ESOP, S390_FEAT_ESOP },
{ KVM_S390_VM_CPU_FEAT_SIEF2, S390_FEAT_SIE_F2 },
{ KVM_S390_VM_CPU_FEAT_64BSCAO , S390_FEAT_SIE_64BSCAO },
{ KVM_S390_VM_CPU_FEAT_SIIF, S390_FEAT_SIE_SIIF },
{ KVM_S390_VM_CPU_FEAT_GPERE, S390_FEAT_SIE_GPERE },
{ KVM_S390_VM_CPU_FEAT_GSLS, S390_FEAT_SIE_GSLS },
{ KVM_S390_VM_CPU_FEAT_IB, S390_FEAT_SIE_IB },
{ KVM_S390_VM_CPU_FEAT_CEI, S390_FEAT_SIE_CEI },
{ KVM_S390_VM_CPU_FEAT_IBS, S390_FEAT_SIE_IBS },
{ KVM_S390_VM_CPU_FEAT_SKEY, S390_FEAT_SIE_SKEY },
{ KVM_S390_VM_CPU_FEAT_CMMA, S390_FEAT_SIE_CMMA },
{ KVM_S390_VM_CPU_FEAT_PFMFI, S390_FEAT_SIE_PFMFI},
{ KVM_S390_VM_CPU_FEAT_SIGPIF, S390_FEAT_SIE_SIGPIF},
{ KVM_S390_VM_CPU_FEAT_KSS, S390_FEAT_SIE_KSS},
};
static int query_cpu_feat(S390FeatBitmap features)
{
struct kvm_s390_vm_cpu_feat prop;
struct kvm_device_attr attr = {
.group = KVM_S390_VM_CPU_MODEL,
.attr = KVM_S390_VM_CPU_MACHINE_FEAT,
.addr = (uint64_t) &prop,
};
int rc;
int i;
rc = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
if (rc) {
return rc;
}
for (i = 0; i < ARRAY_SIZE(kvm_to_feat); i++) {
if (test_be_bit(kvm_to_feat[i][0], (uint8_t *) prop.feat)) {
set_bit(kvm_to_feat[i][1], features);
}
}
return 0;
}
static int configure_cpu_feat(const S390FeatBitmap features)
{
struct kvm_s390_vm_cpu_feat prop = {};
struct kvm_device_attr attr = {
.group = KVM_S390_VM_CPU_MODEL,
.attr = KVM_S390_VM_CPU_PROCESSOR_FEAT,
.addr = (uint64_t) &prop,
};
int i;
for (i = 0; i < ARRAY_SIZE(kvm_to_feat); i++) {
if (test_bit(kvm_to_feat[i][1], features)) {
set_be_bit(kvm_to_feat[i][0], (uint8_t *) prop.feat);
}
}
return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
}
bool kvm_s390_cpu_models_supported(void)
{
if (!cpu_model_allowed()) {
/* compatibility machines interfere with the cpu model */
return false;
}
return kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL,
KVM_S390_VM_CPU_MACHINE) &&
kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL,
KVM_S390_VM_CPU_PROCESSOR) &&
kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL,
KVM_S390_VM_CPU_MACHINE_FEAT) &&
kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL,
KVM_S390_VM_CPU_PROCESSOR_FEAT) &&
kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL,
KVM_S390_VM_CPU_MACHINE_SUBFUNC);
}
void kvm_s390_get_host_cpu_model(S390CPUModel *model, Error **errp)
{
struct kvm_s390_vm_cpu_machine prop = {};
struct kvm_device_attr attr = {
.group = KVM_S390_VM_CPU_MODEL,
.attr = KVM_S390_VM_CPU_MACHINE,
.addr = (uint64_t) &prop,
};
uint16_t unblocked_ibc = 0, cpu_type = 0;
int rc;
memset(model, 0, sizeof(*model));
if (!kvm_s390_cpu_models_supported()) {
error_setg(errp, "KVM doesn't support CPU models");
return;
}
/* query the basic cpu model properties */
rc = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
if (rc) {
error_setg(errp, "KVM: Error querying host CPU model: %d", rc);
return;
}
cpu_type = cpuid_type(prop.cpuid);
if (has_ibc(prop.ibc)) {
model->lowest_ibc = lowest_ibc(prop.ibc);
unblocked_ibc = unblocked_ibc(prop.ibc);
}
model->cpu_id = cpuid_id(prop.cpuid);
model->cpu_id_format = cpuid_format(prop.cpuid);
model->cpu_ver = 0xff;
/* get supported cpu features indicated via STFL(E) */
s390_add_from_feat_block(model->features, S390_FEAT_TYPE_STFL,
(uint8_t *) prop.fac_mask);
/* dat-enhancement facility 2 has no bit but was introduced with stfle */
if (test_bit(S390_FEAT_STFLE, model->features)) {
set_bit(S390_FEAT_DAT_ENH_2, model->features);
}
/* get supported cpu features indicated e.g. via SCLP */
rc = query_cpu_feat(model->features);
if (rc) {
error_setg(errp, "KVM: Error querying CPU features: %d", rc);
return;
}
/* get supported cpu subfunctions indicated via query / test bit */
rc = query_cpu_subfunc(model->features);
if (rc) {
error_setg(errp, "KVM: Error querying CPU subfunctions: %d", rc);
return;
}
/* PTFF subfunctions might be indicated although kernel support missing */
if (!test_bit(S390_FEAT_MULTIPLE_EPOCH, model->features)) {
clear_bit(S390_FEAT_PTFF_QSIE, model->features);
clear_bit(S390_FEAT_PTFF_QTOUE, model->features);
clear_bit(S390_FEAT_PTFF_STOE, model->features);
clear_bit(S390_FEAT_PTFF_STOUE, model->features);
}
/* with cpu model support, CMM is only indicated if really available */
if (kvm_s390_cmma_available()) {
set_bit(S390_FEAT_CMM, model->features);
} else {
/* no cmm -> no cmm nt */
clear_bit(S390_FEAT_CMM_NT, model->features);
}
/* bpb needs kernel support for migration, VSIE and reset */
if (!kvm_check_extension(kvm_state, KVM_CAP_S390_BPB)) {
clear_bit(S390_FEAT_BPB, model->features);
}
/* We emulate a zPCI bus and AEN, therefore we don't need HW support */
set_bit(S390_FEAT_ZPCI, model->features);
set_bit(S390_FEAT_ADAPTER_EVENT_NOTIFICATION, model->features);
if (s390_known_cpu_type(cpu_type)) {
/* we want the exact model, even if some features are missing */
model->def = s390_find_cpu_def(cpu_type, ibc_gen(unblocked_ibc),
ibc_ec_ga(unblocked_ibc), NULL);
} else {
/* model unknown, e.g. too new - search using features */
model->def = s390_find_cpu_def(0, ibc_gen(unblocked_ibc),
ibc_ec_ga(unblocked_ibc),
model->features);
}
if (!model->def) {
error_setg(errp, "KVM: host CPU model could not be identified");
return;
}
/* for now, we can only provide the AP feature with HW support */
if (kvm_vm_check_attr(kvm_state, KVM_S390_VM_CRYPTO,
KVM_S390_VM_CRYPTO_ENABLE_APIE)) {
set_bit(S390_FEAT_AP, model->features);
}
/* strip of features that are not part of the maximum model */
bitmap_and(model->features, model->features, model->def->full_feat,
S390_FEAT_MAX);
}
static void kvm_s390_configure_apie(bool interpret)
{
uint64_t attr = interpret ? KVM_S390_VM_CRYPTO_ENABLE_APIE :
KVM_S390_VM_CRYPTO_DISABLE_APIE;
if (kvm_vm_check_attr(kvm_state, KVM_S390_VM_CRYPTO, attr)) {
kvm_s390_set_attr(attr);
}
}
void kvm_s390_apply_cpu_model(const S390CPUModel *model, Error **errp)
{
struct kvm_s390_vm_cpu_processor prop = {
.fac_list = { 0 },
};
struct kvm_device_attr attr = {
.group = KVM_S390_VM_CPU_MODEL,
.attr = KVM_S390_VM_CPU_PROCESSOR,
.addr = (uint64_t) &prop,
};
int rc;
if (!model) {
/* compatibility handling if cpu models are disabled */
if (kvm_s390_cmma_available()) {
kvm_s390_enable_cmma();
}
return;
}
if (!kvm_s390_cpu_models_supported()) {
error_setg(errp, "KVM doesn't support CPU models");
return;
}
prop.cpuid = s390_cpuid_from_cpu_model(model);
prop.ibc = s390_ibc_from_cpu_model(model);
/* configure cpu features indicated via STFL(e) */
s390_fill_feat_block(model->features, S390_FEAT_TYPE_STFL,
(uint8_t *) prop.fac_list);
rc = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
if (rc) {
error_setg(errp, "KVM: Error configuring the CPU model: %d", rc);
return;
}
/* configure cpu features indicated e.g. via SCLP */
rc = configure_cpu_feat(model->features);
if (rc) {
error_setg(errp, "KVM: Error configuring CPU features: %d", rc);
return;
}
/* configure cpu subfunctions indicated via query / test bit */
rc = configure_cpu_subfunc(model->features);
if (rc) {
error_setg(errp, "KVM: Error configuring CPU subfunctions: %d", rc);
return;
}
/* enable CMM via CMMA */
if (test_bit(S390_FEAT_CMM, model->features)) {
kvm_s390_enable_cmma();
}
if (test_bit(S390_FEAT_AP, model->features)) {
kvm_s390_configure_apie(true);
}
}
void kvm_s390_restart_interrupt(S390CPU *cpu)
{
struct kvm_s390_irq irq = {
.type = KVM_S390_RESTART,
};
kvm_s390_vcpu_interrupt(cpu, &irq);
}
void kvm_s390_stop_interrupt(S390CPU *cpu)
{
struct kvm_s390_irq irq = {
.type = KVM_S390_SIGP_STOP,
};
kvm_s390_vcpu_interrupt(cpu, &irq);
}