7aeac354a6
PM_RUN_INST_CMPL, instructions completed with the run latch set, is the architected PowerISA v3.1 event defined with PMC4SEL = 0xFA. Implement it by checking for the CTRL RUN bit before incrementing the counter. To make this work properly we also need to force a new translation block each time SPR_CTRL is written. A small tweak in pmu_increment_insns() is then needed to only increment this event if the thread has the run latch. Reviewed-by: David Gibson <david@gibson.dropbear.id.au> Signed-off-by: Daniel Henrique Barboza <danielhb413@gmail.com> Message-Id: <20211201151734.654994-8-danielhb413@gmail.com> Signed-off-by: Cédric Le Goater <clg@kaod.org>
351 lines
8.9 KiB
C
351 lines
8.9 KiB
C
/*
|
|
* PMU emulation helpers for TCG IBM POWER chips
|
|
*
|
|
* Copyright IBM Corp. 2021
|
|
*
|
|
* Authors:
|
|
* Daniel Henrique Barboza <danielhb413@gmail.com>
|
|
*
|
|
* This work is licensed under the terms of the GNU GPL, version 2 or later.
|
|
* See the COPYING file in the top-level directory.
|
|
*/
|
|
|
|
#include "qemu/osdep.h"
|
|
|
|
#include "power8-pmu.h"
|
|
#include "cpu.h"
|
|
#include "helper_regs.h"
|
|
#include "exec/exec-all.h"
|
|
#include "exec/helper-proto.h"
|
|
#include "qemu/error-report.h"
|
|
#include "qemu/main-loop.h"
|
|
#include "hw/ppc/ppc.h"
|
|
|
|
#if defined(TARGET_PPC64) && !defined(CONFIG_USER_ONLY)
|
|
|
|
#define PMC_COUNTER_NEGATIVE_VAL 0x80000000UL
|
|
|
|
static bool pmc_is_inactive(CPUPPCState *env, int sprn)
|
|
{
|
|
if (env->spr[SPR_POWER_MMCR0] & MMCR0_FC) {
|
|
return true;
|
|
}
|
|
|
|
if (sprn < SPR_POWER_PMC5) {
|
|
return env->spr[SPR_POWER_MMCR0] & MMCR0_FC14;
|
|
}
|
|
|
|
return env->spr[SPR_POWER_MMCR0] & MMCR0_FC56;
|
|
}
|
|
|
|
static bool pmc_has_overflow_enabled(CPUPPCState *env, int sprn)
|
|
{
|
|
if (sprn == SPR_POWER_PMC1) {
|
|
return env->spr[SPR_POWER_MMCR0] & MMCR0_PMC1CE;
|
|
}
|
|
|
|
return env->spr[SPR_POWER_MMCR0] & MMCR0_PMCjCE;
|
|
}
|
|
|
|
/*
|
|
* For PMCs 1-4, IBM POWER chips has support for an implementation
|
|
* dependent event, 0x1E, that enables cycle counting. The Linux kernel
|
|
* makes extensive use of 0x1E, so let's also support it.
|
|
*
|
|
* Likewise, event 0x2 is an implementation-dependent event that IBM
|
|
* POWER chips implement (at least since POWER8) that is equivalent to
|
|
* PM_INST_CMPL. Let's support this event on PMCs 1-4 as well.
|
|
*/
|
|
static PMUEventType pmc_get_event(CPUPPCState *env, int sprn)
|
|
{
|
|
uint8_t mmcr1_evt_extr[] = { MMCR1_PMC1EVT_EXTR, MMCR1_PMC2EVT_EXTR,
|
|
MMCR1_PMC3EVT_EXTR, MMCR1_PMC4EVT_EXTR };
|
|
PMUEventType evt_type = PMU_EVENT_INVALID;
|
|
uint8_t pmcsel;
|
|
int i;
|
|
|
|
if (pmc_is_inactive(env, sprn)) {
|
|
return PMU_EVENT_INACTIVE;
|
|
}
|
|
|
|
if (sprn == SPR_POWER_PMC5) {
|
|
return PMU_EVENT_INSTRUCTIONS;
|
|
}
|
|
|
|
if (sprn == SPR_POWER_PMC6) {
|
|
return PMU_EVENT_CYCLES;
|
|
}
|
|
|
|
i = sprn - SPR_POWER_PMC1;
|
|
pmcsel = extract64(env->spr[SPR_POWER_MMCR1], mmcr1_evt_extr[i],
|
|
MMCR1_EVT_SIZE);
|
|
|
|
switch (pmcsel) {
|
|
case 0x2:
|
|
evt_type = PMU_EVENT_INSTRUCTIONS;
|
|
break;
|
|
case 0x1E:
|
|
evt_type = PMU_EVENT_CYCLES;
|
|
break;
|
|
case 0xF0:
|
|
/*
|
|
* PMC1SEL = 0xF0 is the architected PowerISA v3.1
|
|
* event that counts cycles using PMC1.
|
|
*/
|
|
if (sprn == SPR_POWER_PMC1) {
|
|
evt_type = PMU_EVENT_CYCLES;
|
|
}
|
|
break;
|
|
case 0xFA:
|
|
/*
|
|
* PMC4SEL = 0xFA is the "instructions completed
|
|
* with run latch set" event.
|
|
*/
|
|
if (sprn == SPR_POWER_PMC4) {
|
|
evt_type = PMU_EVENT_INSN_RUN_LATCH;
|
|
}
|
|
break;
|
|
case 0xFE:
|
|
/*
|
|
* PMC1SEL = 0xFE is the architected PowerISA v3.1
|
|
* event to sample instructions using PMC1.
|
|
*/
|
|
if (sprn == SPR_POWER_PMC1) {
|
|
evt_type = PMU_EVENT_INSTRUCTIONS;
|
|
}
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return evt_type;
|
|
}
|
|
|
|
bool pmu_insn_cnt_enabled(CPUPPCState *env)
|
|
{
|
|
int sprn;
|
|
|
|
for (sprn = SPR_POWER_PMC1; sprn <= SPR_POWER_PMC5; sprn++) {
|
|
if (pmc_get_event(env, sprn) == PMU_EVENT_INSTRUCTIONS ||
|
|
pmc_get_event(env, sprn) == PMU_EVENT_INSN_RUN_LATCH) {
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static bool pmu_increment_insns(CPUPPCState *env, uint32_t num_insns)
|
|
{
|
|
bool overflow_triggered = false;
|
|
int sprn;
|
|
|
|
/* PMC6 never counts instructions */
|
|
for (sprn = SPR_POWER_PMC1; sprn <= SPR_POWER_PMC5; sprn++) {
|
|
PMUEventType evt_type = pmc_get_event(env, sprn);
|
|
bool insn_event = evt_type == PMU_EVENT_INSTRUCTIONS ||
|
|
evt_type == PMU_EVENT_INSN_RUN_LATCH;
|
|
|
|
if (pmc_is_inactive(env, sprn) || !insn_event) {
|
|
continue;
|
|
}
|
|
|
|
if (evt_type == PMU_EVENT_INSTRUCTIONS) {
|
|
env->spr[sprn] += num_insns;
|
|
}
|
|
|
|
if (evt_type == PMU_EVENT_INSN_RUN_LATCH &&
|
|
env->spr[SPR_CTRL] & CTRL_RUN) {
|
|
env->spr[sprn] += num_insns;
|
|
}
|
|
|
|
if (env->spr[sprn] >= PMC_COUNTER_NEGATIVE_VAL &&
|
|
pmc_has_overflow_enabled(env, sprn)) {
|
|
|
|
overflow_triggered = true;
|
|
|
|
/*
|
|
* The real PMU will always trigger a counter overflow with
|
|
* PMC_COUNTER_NEGATIVE_VAL. We don't have an easy way to
|
|
* do that since we're counting block of instructions at
|
|
* the end of each translation block, and we're probably
|
|
* passing this value at this point.
|
|
*
|
|
* Let's write PMC_COUNTER_NEGATIVE_VAL to the overflowed
|
|
* counter to simulate what the real hardware would do.
|
|
*/
|
|
env->spr[sprn] = PMC_COUNTER_NEGATIVE_VAL;
|
|
}
|
|
}
|
|
|
|
return overflow_triggered;
|
|
}
|
|
|
|
static void pmu_update_cycles(CPUPPCState *env)
|
|
{
|
|
uint64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
|
|
uint64_t time_delta = now - env->pmu_base_time;
|
|
int sprn;
|
|
|
|
for (sprn = SPR_POWER_PMC1; sprn <= SPR_POWER_PMC6; sprn++) {
|
|
if (pmc_get_event(env, sprn) != PMU_EVENT_CYCLES) {
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* The pseries and powernv clock runs at 1Ghz, meaning
|
|
* that 1 nanosec equals 1 cycle.
|
|
*/
|
|
env->spr[sprn] += time_delta;
|
|
}
|
|
|
|
/* Update base_time for future calculations */
|
|
env->pmu_base_time = now;
|
|
}
|
|
|
|
/*
|
|
* Helper function to retrieve the cycle overflow timer of the
|
|
* 'sprn' counter.
|
|
*/
|
|
static QEMUTimer *get_cyc_overflow_timer(CPUPPCState *env, int sprn)
|
|
{
|
|
return env->pmu_cyc_overflow_timers[sprn - SPR_POWER_PMC1];
|
|
}
|
|
|
|
static void pmc_update_overflow_timer(CPUPPCState *env, int sprn)
|
|
{
|
|
QEMUTimer *pmc_overflow_timer = get_cyc_overflow_timer(env, sprn);
|
|
int64_t timeout;
|
|
|
|
/*
|
|
* PMC5 does not have an overflow timer and this pointer
|
|
* will be NULL.
|
|
*/
|
|
if (!pmc_overflow_timer) {
|
|
return;
|
|
}
|
|
|
|
if (pmc_get_event(env, sprn) != PMU_EVENT_CYCLES ||
|
|
!pmc_has_overflow_enabled(env, sprn)) {
|
|
/* Overflow timer is not needed for this counter */
|
|
timer_del(pmc_overflow_timer);
|
|
return;
|
|
}
|
|
|
|
if (env->spr[sprn] >= PMC_COUNTER_NEGATIVE_VAL) {
|
|
timeout = 0;
|
|
} else {
|
|
timeout = PMC_COUNTER_NEGATIVE_VAL - env->spr[sprn];
|
|
}
|
|
|
|
/*
|
|
* Use timer_mod_anticipate() because an overflow timer might
|
|
* be already running for this PMC.
|
|
*/
|
|
timer_mod_anticipate(pmc_overflow_timer, env->pmu_base_time + timeout);
|
|
}
|
|
|
|
static void pmu_update_overflow_timers(CPUPPCState *env)
|
|
{
|
|
int sprn;
|
|
|
|
/*
|
|
* Scroll through all PMCs and start counter overflow timers for
|
|
* PM_CYC events, if needed.
|
|
*/
|
|
for (sprn = SPR_POWER_PMC1; sprn <= SPR_POWER_PMC6; sprn++) {
|
|
pmc_update_overflow_timer(env, sprn);
|
|
}
|
|
}
|
|
|
|
void helper_store_mmcr0(CPUPPCState *env, target_ulong value)
|
|
{
|
|
pmu_update_cycles(env);
|
|
|
|
env->spr[SPR_POWER_MMCR0] = value;
|
|
|
|
/* MMCR0 writes can change HFLAGS_PMCCCLEAR and HFLAGS_INSN_CNT */
|
|
hreg_compute_hflags(env);
|
|
|
|
/* Update cycle overflow timers with the current MMCR0 state */
|
|
pmu_update_overflow_timers(env);
|
|
}
|
|
|
|
void helper_store_mmcr1(CPUPPCState *env, uint64_t value)
|
|
{
|
|
pmu_update_cycles(env);
|
|
|
|
env->spr[SPR_POWER_MMCR1] = value;
|
|
|
|
/* MMCR1 writes can change HFLAGS_INSN_CNT */
|
|
hreg_compute_hflags(env);
|
|
}
|
|
|
|
target_ulong helper_read_pmc(CPUPPCState *env, uint32_t sprn)
|
|
{
|
|
pmu_update_cycles(env);
|
|
|
|
return env->spr[sprn];
|
|
}
|
|
|
|
void helper_store_pmc(CPUPPCState *env, uint32_t sprn, uint64_t value)
|
|
{
|
|
pmu_update_cycles(env);
|
|
|
|
env->spr[sprn] = value;
|
|
|
|
pmc_update_overflow_timer(env, sprn);
|
|
}
|
|
|
|
static void fire_PMC_interrupt(PowerPCCPU *cpu)
|
|
{
|
|
CPUPPCState *env = &cpu->env;
|
|
|
|
if (!(env->spr[SPR_POWER_MMCR0] & MMCR0_EBE)) {
|
|
return;
|
|
}
|
|
|
|
/* PMC interrupt not implemented yet */
|
|
return;
|
|
}
|
|
|
|
/* This helper assumes that the PMC is running. */
|
|
void helper_insns_inc(CPUPPCState *env, uint32_t num_insns)
|
|
{
|
|
bool overflow_triggered;
|
|
PowerPCCPU *cpu;
|
|
|
|
overflow_triggered = pmu_increment_insns(env, num_insns);
|
|
|
|
if (overflow_triggered) {
|
|
cpu = env_archcpu(env);
|
|
fire_PMC_interrupt(cpu);
|
|
}
|
|
}
|
|
|
|
static void cpu_ppc_pmu_timer_cb(void *opaque)
|
|
{
|
|
PowerPCCPU *cpu = opaque;
|
|
|
|
fire_PMC_interrupt(cpu);
|
|
}
|
|
|
|
void cpu_ppc_pmu_init(CPUPPCState *env)
|
|
{
|
|
PowerPCCPU *cpu = env_archcpu(env);
|
|
int i, sprn;
|
|
|
|
for (sprn = SPR_POWER_PMC1; sprn <= SPR_POWER_PMC6; sprn++) {
|
|
if (sprn == SPR_POWER_PMC5) {
|
|
continue;
|
|
}
|
|
|
|
i = sprn - SPR_POWER_PMC1;
|
|
|
|
env->pmu_cyc_overflow_timers[i] = timer_new_ns(QEMU_CLOCK_VIRTUAL,
|
|
&cpu_ppc_pmu_timer_cb,
|
|
cpu);
|
|
}
|
|
}
|
|
#endif /* defined(TARGET_PPC64) && !defined(CONFIG_USER_ONLY) */
|