qemu-e2k/hw/scsi/esp.c
Mark Cave-Ayland 7b320a8e67 esp: introduce esp_fifo_pop_buf() and use it instead of fifo8_pop_buf()
The const pointer returned by fifo8_pop_buf() lies directly within the array used
to model the FIFO. Building with address sanitizers enabled shows that if the
caller expects a minimum number of bytes present then if the FIFO is nearly full,
the caller may unexpectedly access past the end of the array.

Introduce esp_fifo_pop_buf() which takes a destination buffer and performs a
memcpy() in it to guarantee that the caller cannot overwrite the FIFO array and
update all callers to use it. Similarly add underflow protection similar to
esp_fifo_push() and esp_fifo_pop() so that instead of triggering an assert()
the operation becomes a no-op.

Buglink: https://bugs.launchpad.net/qemu/+bug/1909247
Signed-off-by: Mark Cave-Ayland <mark.cave-ayland@ilande.co.uk>
Tested-by: Alexander Bulekov <alxndr@bu.edu>
Reviewed-by: Philippe Mathieu-Daudé <f4bug@amsat.org>
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Message-Id: <20210407195801.685-6-mark.cave-ayland@ilande.co.uk>
2021-04-12 22:35:19 +01:00

1379 lines
36 KiB
C

/*
* QEMU ESP/NCR53C9x emulation
*
* Copyright (c) 2005-2006 Fabrice Bellard
* Copyright (c) 2012 Herve Poussineau
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "qemu/osdep.h"
#include "hw/sysbus.h"
#include "migration/vmstate.h"
#include "hw/irq.h"
#include "hw/scsi/esp.h"
#include "trace.h"
#include "qemu/log.h"
#include "qemu/module.h"
/*
* On Sparc32, this is the ESP (NCR53C90) part of chip STP2000 (Master I/O),
* also produced as NCR89C100. See
* http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C100.txt
* and
* http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR53C9X.txt
*
* On Macintosh Quadra it is a NCR53C96.
*/
static void esp_raise_irq(ESPState *s)
{
if (!(s->rregs[ESP_RSTAT] & STAT_INT)) {
s->rregs[ESP_RSTAT] |= STAT_INT;
qemu_irq_raise(s->irq);
trace_esp_raise_irq();
}
}
static void esp_lower_irq(ESPState *s)
{
if (s->rregs[ESP_RSTAT] & STAT_INT) {
s->rregs[ESP_RSTAT] &= ~STAT_INT;
qemu_irq_lower(s->irq);
trace_esp_lower_irq();
}
}
static void esp_raise_drq(ESPState *s)
{
qemu_irq_raise(s->irq_data);
trace_esp_raise_drq();
}
static void esp_lower_drq(ESPState *s)
{
qemu_irq_lower(s->irq_data);
trace_esp_lower_drq();
}
void esp_dma_enable(ESPState *s, int irq, int level)
{
if (level) {
s->dma_enabled = 1;
trace_esp_dma_enable();
if (s->dma_cb) {
s->dma_cb(s);
s->dma_cb = NULL;
}
} else {
trace_esp_dma_disable();
s->dma_enabled = 0;
}
}
void esp_request_cancelled(SCSIRequest *req)
{
ESPState *s = req->hba_private;
if (req == s->current_req) {
scsi_req_unref(s->current_req);
s->current_req = NULL;
s->current_dev = NULL;
}
}
static void esp_fifo_push(Fifo8 *fifo, uint8_t val)
{
if (fifo8_num_used(fifo) == fifo->capacity) {
trace_esp_error_fifo_overrun();
return;
}
fifo8_push(fifo, val);
}
static uint8_t esp_fifo_pop(Fifo8 *fifo)
{
if (fifo8_is_empty(fifo)) {
return 0;
}
return fifo8_pop(fifo);
}
static uint32_t esp_fifo_pop_buf(Fifo8 *fifo, uint8_t *dest, int maxlen)
{
const uint8_t *buf;
uint32_t n;
if (maxlen == 0) {
return 0;
}
buf = fifo8_pop_buf(fifo, maxlen, &n);
if (dest) {
memcpy(dest, buf, n);
}
return n;
}
static uint32_t esp_get_tc(ESPState *s)
{
uint32_t dmalen;
dmalen = s->rregs[ESP_TCLO];
dmalen |= s->rregs[ESP_TCMID] << 8;
dmalen |= s->rregs[ESP_TCHI] << 16;
return dmalen;
}
static void esp_set_tc(ESPState *s, uint32_t dmalen)
{
s->rregs[ESP_TCLO] = dmalen;
s->rregs[ESP_TCMID] = dmalen >> 8;
s->rregs[ESP_TCHI] = dmalen >> 16;
}
static uint32_t esp_get_stc(ESPState *s)
{
uint32_t dmalen;
dmalen = s->wregs[ESP_TCLO];
dmalen |= s->wregs[ESP_TCMID] << 8;
dmalen |= s->wregs[ESP_TCHI] << 16;
return dmalen;
}
static uint8_t esp_pdma_read(ESPState *s)
{
uint8_t val;
if (s->do_cmd) {
val = esp_fifo_pop(&s->cmdfifo);
} else {
val = esp_fifo_pop(&s->fifo);
}
return val;
}
static void esp_pdma_write(ESPState *s, uint8_t val)
{
uint32_t dmalen = esp_get_tc(s);
if (dmalen == 0) {
return;
}
if (s->do_cmd) {
esp_fifo_push(&s->cmdfifo, val);
} else {
esp_fifo_push(&s->fifo, val);
}
dmalen--;
esp_set_tc(s, dmalen);
}
static int esp_select(ESPState *s)
{
int target;
target = s->wregs[ESP_WBUSID] & BUSID_DID;
s->ti_size = 0;
fifo8_reset(&s->fifo);
if (s->current_req) {
/* Started a new command before the old one finished. Cancel it. */
scsi_req_cancel(s->current_req);
s->async_len = 0;
}
s->current_dev = scsi_device_find(&s->bus, 0, target, 0);
if (!s->current_dev) {
/* No such drive */
s->rregs[ESP_RSTAT] = 0;
s->rregs[ESP_RINTR] |= INTR_DC;
s->rregs[ESP_RSEQ] = SEQ_0;
esp_raise_irq(s);
return -1;
}
/*
* Note that we deliberately don't raise the IRQ here: this will be done
* either in do_busid_cmd() for DATA OUT transfers or by the deferred
* IRQ mechanism in esp_transfer_data() for DATA IN transfers
*/
s->rregs[ESP_RINTR] |= INTR_FC;
s->rregs[ESP_RSEQ] = SEQ_CD;
return 0;
}
static uint32_t get_cmd(ESPState *s, uint32_t maxlen)
{
uint8_t buf[ESP_CMDFIFO_SZ];
uint32_t dmalen, n;
int target;
target = s->wregs[ESP_WBUSID] & BUSID_DID;
if (s->dma) {
dmalen = MIN(esp_get_tc(s), maxlen);
if (dmalen == 0) {
return 0;
}
if (s->dma_memory_read) {
s->dma_memory_read(s->dma_opaque, buf, dmalen);
fifo8_push_all(&s->cmdfifo, buf, dmalen);
} else {
if (esp_select(s) < 0) {
fifo8_reset(&s->cmdfifo);
return -1;
}
esp_raise_drq(s);
fifo8_reset(&s->cmdfifo);
return 0;
}
} else {
dmalen = MIN(fifo8_num_used(&s->fifo), maxlen);
if (dmalen == 0) {
return 0;
}
n = esp_fifo_pop_buf(&s->fifo, buf, dmalen);
if (n >= 3) {
buf[0] = buf[2] >> 5;
}
fifo8_push_all(&s->cmdfifo, buf, n);
}
trace_esp_get_cmd(dmalen, target);
if (esp_select(s) < 0) {
fifo8_reset(&s->cmdfifo);
return -1;
}
return dmalen;
}
static void do_busid_cmd(ESPState *s, uint8_t busid)
{
uint32_t cmdlen;
int32_t datalen;
int lun;
SCSIDevice *current_lun;
uint8_t buf[ESP_CMDFIFO_SZ];
trace_esp_do_busid_cmd(busid);
lun = busid & 7;
cmdlen = fifo8_num_used(&s->cmdfifo);
esp_fifo_pop_buf(&s->cmdfifo, buf, cmdlen);
current_lun = scsi_device_find(&s->bus, 0, s->current_dev->id, lun);
s->current_req = scsi_req_new(current_lun, 0, lun, buf, s);
datalen = scsi_req_enqueue(s->current_req);
s->ti_size = datalen;
fifo8_reset(&s->cmdfifo);
if (datalen != 0) {
s->rregs[ESP_RSTAT] = STAT_TC;
s->rregs[ESP_RSEQ] = SEQ_CD;
s->ti_cmd = 0;
esp_set_tc(s, 0);
if (datalen > 0) {
/*
* Switch to DATA IN phase but wait until initial data xfer is
* complete before raising the command completion interrupt
*/
s->data_in_ready = false;
s->rregs[ESP_RSTAT] |= STAT_DI;
} else {
s->rregs[ESP_RSTAT] |= STAT_DO;
s->rregs[ESP_RINTR] |= INTR_BS | INTR_FC;
esp_raise_irq(s);
esp_lower_drq(s);
}
scsi_req_continue(s->current_req);
return;
}
}
static void do_cmd(ESPState *s)
{
uint8_t busid = fifo8_pop(&s->cmdfifo);
s->cmdfifo_cdb_offset--;
/* Ignore extended messages for now */
if (s->cmdfifo_cdb_offset) {
esp_fifo_pop_buf(&s->cmdfifo, NULL, s->cmdfifo_cdb_offset);
s->cmdfifo_cdb_offset = 0;
}
do_busid_cmd(s, busid);
}
static void satn_pdma_cb(ESPState *s)
{
s->do_cmd = 0;
if (!fifo8_is_empty(&s->cmdfifo)) {
s->cmdfifo_cdb_offset = 1;
do_cmd(s);
}
}
static void handle_satn(ESPState *s)
{
int32_t cmdlen;
if (s->dma && !s->dma_enabled) {
s->dma_cb = handle_satn;
return;
}
s->pdma_cb = satn_pdma_cb;
cmdlen = get_cmd(s, ESP_CMDFIFO_SZ);
if (cmdlen > 0) {
s->cmdfifo_cdb_offset = 1;
do_cmd(s);
} else if (cmdlen == 0) {
s->do_cmd = 1;
/* Target present, but no cmd yet - switch to command phase */
s->rregs[ESP_RSEQ] = SEQ_CD;
s->rregs[ESP_RSTAT] = STAT_CD;
}
}
static void s_without_satn_pdma_cb(ESPState *s)
{
uint32_t len;
s->do_cmd = 0;
len = fifo8_num_used(&s->cmdfifo);
if (len) {
s->cmdfifo_cdb_offset = 0;
do_busid_cmd(s, 0);
}
}
static void handle_s_without_atn(ESPState *s)
{
int32_t cmdlen;
if (s->dma && !s->dma_enabled) {
s->dma_cb = handle_s_without_atn;
return;
}
s->pdma_cb = s_without_satn_pdma_cb;
cmdlen = get_cmd(s, ESP_CMDFIFO_SZ);
if (cmdlen > 0) {
s->cmdfifo_cdb_offset = 0;
do_busid_cmd(s, 0);
} else if (cmdlen == 0) {
s->do_cmd = 1;
/* Target present, but no cmd yet - switch to command phase */
s->rregs[ESP_RSEQ] = SEQ_CD;
s->rregs[ESP_RSTAT] = STAT_CD;
}
}
static void satn_stop_pdma_cb(ESPState *s)
{
s->do_cmd = 0;
if (!fifo8_is_empty(&s->cmdfifo)) {
trace_esp_handle_satn_stop(fifo8_num_used(&s->cmdfifo));
s->do_cmd = 1;
s->cmdfifo_cdb_offset = 1;
s->rregs[ESP_RSTAT] = STAT_TC | STAT_CD;
s->rregs[ESP_RINTR] |= INTR_BS | INTR_FC;
s->rregs[ESP_RSEQ] = SEQ_CD;
esp_raise_irq(s);
}
}
static void handle_satn_stop(ESPState *s)
{
int32_t cmdlen;
if (s->dma && !s->dma_enabled) {
s->dma_cb = handle_satn_stop;
return;
}
s->pdma_cb = satn_stop_pdma_cb;
cmdlen = get_cmd(s, 1);
if (cmdlen > 0) {
trace_esp_handle_satn_stop(fifo8_num_used(&s->cmdfifo));
s->do_cmd = 1;
s->cmdfifo_cdb_offset = 1;
s->rregs[ESP_RSTAT] = STAT_MO;
s->rregs[ESP_RINTR] |= INTR_BS | INTR_FC;
s->rregs[ESP_RSEQ] = SEQ_MO;
esp_raise_irq(s);
} else if (cmdlen == 0) {
s->do_cmd = 1;
/* Target present, switch to message out phase */
s->rregs[ESP_RSEQ] = SEQ_MO;
s->rregs[ESP_RSTAT] = STAT_MO;
}
}
static void write_response_pdma_cb(ESPState *s)
{
s->rregs[ESP_RSTAT] = STAT_TC | STAT_ST;
s->rregs[ESP_RINTR] |= INTR_BS | INTR_FC;
s->rregs[ESP_RSEQ] = SEQ_CD;
esp_raise_irq(s);
}
static void write_response(ESPState *s)
{
uint8_t buf[2];
trace_esp_write_response(s->status);
buf[0] = s->status;
buf[1] = 0;
if (s->dma) {
if (s->dma_memory_write) {
s->dma_memory_write(s->dma_opaque, buf, 2);
s->rregs[ESP_RSTAT] = STAT_TC | STAT_ST;
s->rregs[ESP_RINTR] |= INTR_BS | INTR_FC;
s->rregs[ESP_RSEQ] = SEQ_CD;
} else {
s->pdma_cb = write_response_pdma_cb;
esp_raise_drq(s);
return;
}
} else {
fifo8_reset(&s->fifo);
fifo8_push_all(&s->fifo, buf, 2);
s->rregs[ESP_RFLAGS] = 2;
}
esp_raise_irq(s);
}
static void esp_dma_done(ESPState *s)
{
s->rregs[ESP_RSTAT] |= STAT_TC;
s->rregs[ESP_RINTR] |= INTR_BS;
s->rregs[ESP_RSEQ] = 0;
s->rregs[ESP_RFLAGS] = 0;
esp_set_tc(s, 0);
esp_raise_irq(s);
}
static void do_dma_pdma_cb(ESPState *s)
{
int to_device = ((s->rregs[ESP_RSTAT] & 7) == STAT_DO);
int len;
uint32_t n;
if (s->do_cmd) {
s->ti_size = 0;
s->do_cmd = 0;
do_cmd(s);
esp_lower_drq(s);
return;
}
if (!s->current_req) {
return;
}
if (to_device) {
/* Copy FIFO data to device */
len = MIN(s->async_len, ESP_FIFO_SZ);
len = MIN(len, fifo8_num_used(&s->fifo));
n = esp_fifo_pop_buf(&s->fifo, s->async_buf, len);
s->async_buf += n;
s->async_len -= n;
s->ti_size += n;
if (n < len) {
/* Unaligned accesses can cause FIFO wraparound */
len = len - n;
n = esp_fifo_pop_buf(&s->fifo, s->async_buf, len);
s->async_buf += n;
s->async_len -= n;
s->ti_size += n;
}
if (s->async_len == 0) {
scsi_req_continue(s->current_req);
return;
}
if (esp_get_tc(s) == 0) {
esp_lower_drq(s);
esp_dma_done(s);
}
return;
} else {
if (s->async_len == 0) {
/* Defer until the scsi layer has completed */
scsi_req_continue(s->current_req);
s->data_in_ready = false;
return;
}
if (esp_get_tc(s) != 0) {
/* Copy device data to FIFO */
len = MIN(s->async_len, esp_get_tc(s));
len = MIN(len, fifo8_num_free(&s->fifo));
fifo8_push_all(&s->fifo, s->async_buf, len);
s->async_buf += len;
s->async_len -= len;
s->ti_size -= len;
esp_set_tc(s, esp_get_tc(s) - len);
if (esp_get_tc(s) == 0) {
/* Indicate transfer to FIFO is complete */
s->rregs[ESP_RSTAT] |= STAT_TC;
}
return;
}
/* Partially filled a scsi buffer. Complete immediately. */
esp_lower_drq(s);
esp_dma_done(s);
}
}
static void esp_do_dma(ESPState *s)
{
uint32_t len, cmdlen;
int to_device = ((s->rregs[ESP_RSTAT] & 7) == STAT_DO);
uint8_t buf[ESP_CMDFIFO_SZ];
len = esp_get_tc(s);
if (s->do_cmd) {
/*
* handle_ti_cmd() case: esp_do_dma() is called only from
* handle_ti_cmd() with do_cmd != NULL (see the assert())
*/
cmdlen = fifo8_num_used(&s->cmdfifo);
trace_esp_do_dma(cmdlen, len);
if (s->dma_memory_read) {
s->dma_memory_read(s->dma_opaque, buf, len);
fifo8_push_all(&s->cmdfifo, buf, len);
} else {
s->pdma_cb = do_dma_pdma_cb;
esp_raise_drq(s);
return;
}
trace_esp_handle_ti_cmd(cmdlen);
s->ti_size = 0;
if ((s->rregs[ESP_RSTAT] & 7) == STAT_CD) {
/* No command received */
if (s->cmdfifo_cdb_offset == fifo8_num_used(&s->cmdfifo)) {
return;
}
/* Command has been received */
s->do_cmd = 0;
do_cmd(s);
} else {
/*
* Extra message out bytes received: update cmdfifo_cdb_offset
* and then switch to commmand phase
*/
s->cmdfifo_cdb_offset = fifo8_num_used(&s->cmdfifo);
s->rregs[ESP_RSTAT] = STAT_TC | STAT_CD;
s->rregs[ESP_RSEQ] = SEQ_CD;
s->rregs[ESP_RINTR] |= INTR_BS;
esp_raise_irq(s);
}
return;
}
if (!s->current_req) {
return;
}
if (s->async_len == 0) {
/* Defer until data is available. */
return;
}
if (len > s->async_len) {
len = s->async_len;
}
if (to_device) {
if (s->dma_memory_read) {
s->dma_memory_read(s->dma_opaque, s->async_buf, len);
} else {
s->pdma_cb = do_dma_pdma_cb;
esp_raise_drq(s);
return;
}
} else {
if (s->dma_memory_write) {
s->dma_memory_write(s->dma_opaque, s->async_buf, len);
} else {
/* Adjust TC for any leftover data in the FIFO */
if (!fifo8_is_empty(&s->fifo)) {
esp_set_tc(s, esp_get_tc(s) - fifo8_num_used(&s->fifo));
}
/* Copy device data to FIFO */
len = MIN(len, fifo8_num_free(&s->fifo));
fifo8_push_all(&s->fifo, s->async_buf, len);
s->async_buf += len;
s->async_len -= len;
s->ti_size -= len;
/*
* MacOS toolbox uses a TI length of 16 bytes for all commands, so
* commands shorter than this must be padded accordingly
*/
if (len < esp_get_tc(s) && esp_get_tc(s) <= ESP_FIFO_SZ) {
while (fifo8_num_used(&s->fifo) < ESP_FIFO_SZ) {
esp_fifo_push(&s->fifo, 0);
len++;
}
}
esp_set_tc(s, esp_get_tc(s) - len);
s->pdma_cb = do_dma_pdma_cb;
esp_raise_drq(s);
/* Indicate transfer to FIFO is complete */
s->rregs[ESP_RSTAT] |= STAT_TC;
return;
}
}
esp_set_tc(s, esp_get_tc(s) - len);
s->async_buf += len;
s->async_len -= len;
if (to_device) {
s->ti_size += len;
} else {
s->ti_size -= len;
}
if (s->async_len == 0) {
scsi_req_continue(s->current_req);
/*
* If there is still data to be read from the device then
* complete the DMA operation immediately. Otherwise defer
* until the scsi layer has completed.
*/
if (to_device || esp_get_tc(s) != 0 || s->ti_size == 0) {
return;
}
}
/* Partially filled a scsi buffer. Complete immediately. */
esp_dma_done(s);
esp_lower_drq(s);
}
static void esp_do_nodma(ESPState *s)
{
int to_device = ((s->rregs[ESP_RSTAT] & 7) == STAT_DO);
uint32_t cmdlen;
int len;
if (s->do_cmd) {
cmdlen = fifo8_num_used(&s->cmdfifo);
trace_esp_handle_ti_cmd(cmdlen);
s->ti_size = 0;
if ((s->rregs[ESP_RSTAT] & 7) == STAT_CD) {
/* No command received */
if (s->cmdfifo_cdb_offset == fifo8_num_used(&s->cmdfifo)) {
return;
}
/* Command has been received */
s->do_cmd = 0;
do_cmd(s);
} else {
/*
* Extra message out bytes received: update cmdfifo_cdb_offset
* and then switch to commmand phase
*/
s->cmdfifo_cdb_offset = fifo8_num_used(&s->cmdfifo);
s->rregs[ESP_RSTAT] = STAT_TC | STAT_CD;
s->rregs[ESP_RSEQ] = SEQ_CD;
s->rregs[ESP_RINTR] |= INTR_BS;
esp_raise_irq(s);
}
return;
}
if (!s->current_req) {
return;
}
if (s->async_len == 0) {
/* Defer until data is available. */
return;
}
if (to_device) {
len = MIN(fifo8_num_used(&s->fifo), ESP_FIFO_SZ);
esp_fifo_pop_buf(&s->fifo, s->async_buf, len);
s->async_buf += len;
s->async_len -= len;
s->ti_size += len;
} else {
len = MIN(s->ti_size, s->async_len);
len = MIN(len, fifo8_num_free(&s->fifo));
fifo8_push_all(&s->fifo, s->async_buf, len);
s->async_buf += len;
s->async_len -= len;
s->ti_size -= len;
}
if (s->async_len == 0) {
scsi_req_continue(s->current_req);
if (to_device || s->ti_size == 0) {
return;
}
}
s->rregs[ESP_RINTR] |= INTR_BS;
esp_raise_irq(s);
}
void esp_command_complete(SCSIRequest *req, size_t resid)
{
ESPState *s = req->hba_private;
trace_esp_command_complete();
if (s->ti_size != 0) {
trace_esp_command_complete_unexpected();
}
s->ti_size = 0;
s->async_len = 0;
if (req->status) {
trace_esp_command_complete_fail();
}
s->status = req->status;
s->rregs[ESP_RSTAT] = STAT_ST;
esp_dma_done(s);
esp_lower_drq(s);
if (s->current_req) {
scsi_req_unref(s->current_req);
s->current_req = NULL;
s->current_dev = NULL;
}
}
void esp_transfer_data(SCSIRequest *req, uint32_t len)
{
ESPState *s = req->hba_private;
int to_device = ((s->rregs[ESP_RSTAT] & 7) == STAT_DO);
uint32_t dmalen = esp_get_tc(s);
assert(!s->do_cmd);
trace_esp_transfer_data(dmalen, s->ti_size);
s->async_len = len;
s->async_buf = scsi_req_get_buf(req);
if (!to_device && !s->data_in_ready) {
/*
* Initial incoming data xfer is complete so raise command
* completion interrupt
*/
s->data_in_ready = true;
s->rregs[ESP_RSTAT] |= STAT_TC;
s->rregs[ESP_RINTR] |= INTR_BS;
esp_raise_irq(s);
/*
* If data is ready to transfer and the TI command has already
* been executed, start DMA immediately. Otherwise DMA will start
* when host sends the TI command
*/
if (s->ti_size && (s->rregs[ESP_CMD] == (CMD_TI | CMD_DMA))) {
esp_do_dma(s);
}
return;
}
if (s->ti_cmd == 0) {
/*
* Always perform the initial transfer upon reception of the next TI
* command to ensure the DMA/non-DMA status of the command is correct.
* It is not possible to use s->dma directly in the section below as
* some OSs send non-DMA NOP commands after a DMA transfer. Hence if the
* async data transfer is delayed then s->dma is set incorrectly.
*/
return;
}
if (s->ti_cmd & CMD_DMA) {
if (dmalen) {
esp_do_dma(s);
} else if (s->ti_size <= 0) {
/*
* If this was the last part of a DMA transfer then the
* completion interrupt is deferred to here.
*/
esp_dma_done(s);
esp_lower_drq(s);
}
} else {
esp_do_nodma(s);
}
}
static void handle_ti(ESPState *s)
{
uint32_t dmalen;
if (s->dma && !s->dma_enabled) {
s->dma_cb = handle_ti;
return;
}
s->ti_cmd = s->rregs[ESP_CMD];
if (s->dma) {
dmalen = esp_get_tc(s);
trace_esp_handle_ti(dmalen);
s->rregs[ESP_RSTAT] &= ~STAT_TC;
esp_do_dma(s);
} else {
trace_esp_handle_ti(s->ti_size);
esp_do_nodma(s);
}
}
void esp_hard_reset(ESPState *s)
{
memset(s->rregs, 0, ESP_REGS);
memset(s->wregs, 0, ESP_REGS);
s->tchi_written = 0;
s->ti_size = 0;
fifo8_reset(&s->fifo);
fifo8_reset(&s->cmdfifo);
s->dma = 0;
s->do_cmd = 0;
s->dma_cb = NULL;
s->rregs[ESP_CFG1] = 7;
}
static void esp_soft_reset(ESPState *s)
{
qemu_irq_lower(s->irq);
qemu_irq_lower(s->irq_data);
esp_hard_reset(s);
}
static void parent_esp_reset(ESPState *s, int irq, int level)
{
if (level) {
esp_soft_reset(s);
}
}
uint64_t esp_reg_read(ESPState *s, uint32_t saddr)
{
uint32_t val;
switch (saddr) {
case ESP_FIFO:
if (s->dma_memory_read && s->dma_memory_write &&
(s->rregs[ESP_RSTAT] & STAT_PIO_MASK) == 0) {
/* Data out. */
qemu_log_mask(LOG_UNIMP, "esp: PIO data read not implemented\n");
s->rregs[ESP_FIFO] = 0;
} else {
s->rregs[ESP_FIFO] = esp_fifo_pop(&s->fifo);
}
val = s->rregs[ESP_FIFO];
break;
case ESP_RINTR:
/*
* Clear sequence step, interrupt register and all status bits
* except TC
*/
val = s->rregs[ESP_RINTR];
s->rregs[ESP_RINTR] = 0;
s->rregs[ESP_RSTAT] &= ~STAT_TC;
s->rregs[ESP_RSEQ] = SEQ_0;
esp_lower_irq(s);
break;
case ESP_TCHI:
/* Return the unique id if the value has never been written */
if (!s->tchi_written) {
val = s->chip_id;
} else {
val = s->rregs[saddr];
}
break;
case ESP_RFLAGS:
/* Bottom 5 bits indicate number of bytes in FIFO */
val = fifo8_num_used(&s->fifo);
break;
default:
val = s->rregs[saddr];
break;
}
trace_esp_mem_readb(saddr, val);
return val;
}
void esp_reg_write(ESPState *s, uint32_t saddr, uint64_t val)
{
trace_esp_mem_writeb(saddr, s->wregs[saddr], val);
switch (saddr) {
case ESP_TCHI:
s->tchi_written = true;
/* fall through */
case ESP_TCLO:
case ESP_TCMID:
s->rregs[ESP_RSTAT] &= ~STAT_TC;
break;
case ESP_FIFO:
if (s->do_cmd) {
esp_fifo_push(&s->cmdfifo, val);
} else {
esp_fifo_push(&s->fifo, val);
}
/* Non-DMA transfers raise an interrupt after every byte */
if (s->rregs[ESP_CMD] == CMD_TI) {
s->rregs[ESP_RINTR] |= INTR_FC | INTR_BS;
esp_raise_irq(s);
}
break;
case ESP_CMD:
s->rregs[saddr] = val;
if (val & CMD_DMA) {
s->dma = 1;
/* Reload DMA counter. */
if (esp_get_stc(s) == 0) {
esp_set_tc(s, 0x10000);
} else {
esp_set_tc(s, esp_get_stc(s));
}
} else {
s->dma = 0;
}
switch (val & CMD_CMD) {
case CMD_NOP:
trace_esp_mem_writeb_cmd_nop(val);
break;
case CMD_FLUSH:
trace_esp_mem_writeb_cmd_flush(val);
fifo8_reset(&s->fifo);
break;
case CMD_RESET:
trace_esp_mem_writeb_cmd_reset(val);
esp_soft_reset(s);
break;
case CMD_BUSRESET:
trace_esp_mem_writeb_cmd_bus_reset(val);
if (!(s->wregs[ESP_CFG1] & CFG1_RESREPT)) {
s->rregs[ESP_RINTR] |= INTR_RST;
esp_raise_irq(s);
}
break;
case CMD_TI:
trace_esp_mem_writeb_cmd_ti(val);
handle_ti(s);
break;
case CMD_ICCS:
trace_esp_mem_writeb_cmd_iccs(val);
write_response(s);
s->rregs[ESP_RINTR] |= INTR_FC;
s->rregs[ESP_RSTAT] |= STAT_MI;
break;
case CMD_MSGACC:
trace_esp_mem_writeb_cmd_msgacc(val);
s->rregs[ESP_RINTR] |= INTR_DC;
s->rregs[ESP_RSEQ] = 0;
s->rregs[ESP_RFLAGS] = 0;
esp_raise_irq(s);
break;
case CMD_PAD:
trace_esp_mem_writeb_cmd_pad(val);
s->rregs[ESP_RSTAT] = STAT_TC;
s->rregs[ESP_RINTR] |= INTR_FC;
s->rregs[ESP_RSEQ] = 0;
break;
case CMD_SATN:
trace_esp_mem_writeb_cmd_satn(val);
break;
case CMD_RSTATN:
trace_esp_mem_writeb_cmd_rstatn(val);
break;
case CMD_SEL:
trace_esp_mem_writeb_cmd_sel(val);
handle_s_without_atn(s);
break;
case CMD_SELATN:
trace_esp_mem_writeb_cmd_selatn(val);
handle_satn(s);
break;
case CMD_SELATNS:
trace_esp_mem_writeb_cmd_selatns(val);
handle_satn_stop(s);
break;
case CMD_ENSEL:
trace_esp_mem_writeb_cmd_ensel(val);
s->rregs[ESP_RINTR] = 0;
break;
case CMD_DISSEL:
trace_esp_mem_writeb_cmd_dissel(val);
s->rregs[ESP_RINTR] = 0;
esp_raise_irq(s);
break;
default:
trace_esp_error_unhandled_command(val);
break;
}
break;
case ESP_WBUSID ... ESP_WSYNO:
break;
case ESP_CFG1:
case ESP_CFG2: case ESP_CFG3:
case ESP_RES3: case ESP_RES4:
s->rregs[saddr] = val;
break;
case ESP_WCCF ... ESP_WTEST:
break;
default:
trace_esp_error_invalid_write(val, saddr);
return;
}
s->wregs[saddr] = val;
}
static bool esp_mem_accepts(void *opaque, hwaddr addr,
unsigned size, bool is_write,
MemTxAttrs attrs)
{
return (size == 1) || (is_write && size == 4);
}
static bool esp_is_before_version_5(void *opaque, int version_id)
{
ESPState *s = ESP(opaque);
version_id = MIN(version_id, s->mig_version_id);
return version_id < 5;
}
static bool esp_is_version_5(void *opaque, int version_id)
{
ESPState *s = ESP(opaque);
version_id = MIN(version_id, s->mig_version_id);
return version_id == 5;
}
int esp_pre_save(void *opaque)
{
ESPState *s = ESP(object_resolve_path_component(
OBJECT(opaque), "esp"));
s->mig_version_id = vmstate_esp.version_id;
return 0;
}
static int esp_post_load(void *opaque, int version_id)
{
ESPState *s = ESP(opaque);
int len, i;
version_id = MIN(version_id, s->mig_version_id);
if (version_id < 5) {
esp_set_tc(s, s->mig_dma_left);
/* Migrate ti_buf to fifo */
len = s->mig_ti_wptr - s->mig_ti_rptr;
for (i = 0; i < len; i++) {
fifo8_push(&s->fifo, s->mig_ti_buf[i]);
}
/* Migrate cmdbuf to cmdfifo */
for (i = 0; i < s->mig_cmdlen; i++) {
fifo8_push(&s->cmdfifo, s->mig_cmdbuf[i]);
}
}
s->mig_version_id = vmstate_esp.version_id;
return 0;
}
const VMStateDescription vmstate_esp = {
.name = "esp",
.version_id = 5,
.minimum_version_id = 3,
.post_load = esp_post_load,
.fields = (VMStateField[]) {
VMSTATE_BUFFER(rregs, ESPState),
VMSTATE_BUFFER(wregs, ESPState),
VMSTATE_INT32(ti_size, ESPState),
VMSTATE_UINT32_TEST(mig_ti_rptr, ESPState, esp_is_before_version_5),
VMSTATE_UINT32_TEST(mig_ti_wptr, ESPState, esp_is_before_version_5),
VMSTATE_BUFFER_TEST(mig_ti_buf, ESPState, esp_is_before_version_5),
VMSTATE_UINT32(status, ESPState),
VMSTATE_UINT32_TEST(mig_deferred_status, ESPState,
esp_is_before_version_5),
VMSTATE_BOOL_TEST(mig_deferred_complete, ESPState,
esp_is_before_version_5),
VMSTATE_UINT32(dma, ESPState),
VMSTATE_STATIC_BUFFER(mig_cmdbuf, ESPState, 0,
esp_is_before_version_5, 0, 16),
VMSTATE_STATIC_BUFFER(mig_cmdbuf, ESPState, 4,
esp_is_before_version_5, 16,
sizeof(typeof_field(ESPState, mig_cmdbuf))),
VMSTATE_UINT32_TEST(mig_cmdlen, ESPState, esp_is_before_version_5),
VMSTATE_UINT32(do_cmd, ESPState),
VMSTATE_UINT32_TEST(mig_dma_left, ESPState, esp_is_before_version_5),
VMSTATE_BOOL_TEST(data_in_ready, ESPState, esp_is_version_5),
VMSTATE_UINT8_TEST(cmdfifo_cdb_offset, ESPState, esp_is_version_5),
VMSTATE_FIFO8_TEST(fifo, ESPState, esp_is_version_5),
VMSTATE_FIFO8_TEST(cmdfifo, ESPState, esp_is_version_5),
VMSTATE_UINT8_TEST(ti_cmd, ESPState, esp_is_version_5),
VMSTATE_END_OF_LIST()
},
};
static void sysbus_esp_mem_write(void *opaque, hwaddr addr,
uint64_t val, unsigned int size)
{
SysBusESPState *sysbus = opaque;
ESPState *s = ESP(&sysbus->esp);
uint32_t saddr;
saddr = addr >> sysbus->it_shift;
esp_reg_write(s, saddr, val);
}
static uint64_t sysbus_esp_mem_read(void *opaque, hwaddr addr,
unsigned int size)
{
SysBusESPState *sysbus = opaque;
ESPState *s = ESP(&sysbus->esp);
uint32_t saddr;
saddr = addr >> sysbus->it_shift;
return esp_reg_read(s, saddr);
}
static const MemoryRegionOps sysbus_esp_mem_ops = {
.read = sysbus_esp_mem_read,
.write = sysbus_esp_mem_write,
.endianness = DEVICE_NATIVE_ENDIAN,
.valid.accepts = esp_mem_accepts,
};
static void sysbus_esp_pdma_write(void *opaque, hwaddr addr,
uint64_t val, unsigned int size)
{
SysBusESPState *sysbus = opaque;
ESPState *s = ESP(&sysbus->esp);
uint32_t dmalen;
trace_esp_pdma_write(size);
switch (size) {
case 1:
esp_pdma_write(s, val);
break;
case 2:
esp_pdma_write(s, val >> 8);
esp_pdma_write(s, val);
break;
}
dmalen = esp_get_tc(s);
if (dmalen == 0 || fifo8_num_free(&s->fifo) < 2) {
s->pdma_cb(s);
}
}
static uint64_t sysbus_esp_pdma_read(void *opaque, hwaddr addr,
unsigned int size)
{
SysBusESPState *sysbus = opaque;
ESPState *s = ESP(&sysbus->esp);
uint64_t val = 0;
trace_esp_pdma_read(size);
switch (size) {
case 1:
val = esp_pdma_read(s);
break;
case 2:
val = esp_pdma_read(s);
val = (val << 8) | esp_pdma_read(s);
break;
}
if (fifo8_num_used(&s->fifo) < 2) {
s->pdma_cb(s);
}
return val;
}
static const MemoryRegionOps sysbus_esp_pdma_ops = {
.read = sysbus_esp_pdma_read,
.write = sysbus_esp_pdma_write,
.endianness = DEVICE_NATIVE_ENDIAN,
.valid.min_access_size = 1,
.valid.max_access_size = 4,
.impl.min_access_size = 1,
.impl.max_access_size = 2,
};
static const struct SCSIBusInfo esp_scsi_info = {
.tcq = false,
.max_target = ESP_MAX_DEVS,
.max_lun = 7,
.transfer_data = esp_transfer_data,
.complete = esp_command_complete,
.cancel = esp_request_cancelled
};
static void sysbus_esp_gpio_demux(void *opaque, int irq, int level)
{
SysBusESPState *sysbus = SYSBUS_ESP(opaque);
ESPState *s = ESP(&sysbus->esp);
switch (irq) {
case 0:
parent_esp_reset(s, irq, level);
break;
case 1:
esp_dma_enable(opaque, irq, level);
break;
}
}
static void sysbus_esp_realize(DeviceState *dev, Error **errp)
{
SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
SysBusESPState *sysbus = SYSBUS_ESP(dev);
ESPState *s = ESP(&sysbus->esp);
if (!qdev_realize(DEVICE(s), NULL, errp)) {
return;
}
sysbus_init_irq(sbd, &s->irq);
sysbus_init_irq(sbd, &s->irq_data);
assert(sysbus->it_shift != -1);
s->chip_id = TCHI_FAS100A;
memory_region_init_io(&sysbus->iomem, OBJECT(sysbus), &sysbus_esp_mem_ops,
sysbus, "esp-regs", ESP_REGS << sysbus->it_shift);
sysbus_init_mmio(sbd, &sysbus->iomem);
memory_region_init_io(&sysbus->pdma, OBJECT(sysbus), &sysbus_esp_pdma_ops,
sysbus, "esp-pdma", 4);
sysbus_init_mmio(sbd, &sysbus->pdma);
qdev_init_gpio_in(dev, sysbus_esp_gpio_demux, 2);
scsi_bus_new(&s->bus, sizeof(s->bus), dev, &esp_scsi_info, NULL);
}
static void sysbus_esp_hard_reset(DeviceState *dev)
{
SysBusESPState *sysbus = SYSBUS_ESP(dev);
ESPState *s = ESP(&sysbus->esp);
esp_hard_reset(s);
}
static void sysbus_esp_init(Object *obj)
{
SysBusESPState *sysbus = SYSBUS_ESP(obj);
object_initialize_child(obj, "esp", &sysbus->esp, TYPE_ESP);
}
static const VMStateDescription vmstate_sysbus_esp_scsi = {
.name = "sysbusespscsi",
.version_id = 2,
.minimum_version_id = 1,
.pre_save = esp_pre_save,
.fields = (VMStateField[]) {
VMSTATE_UINT8_V(esp.mig_version_id, SysBusESPState, 2),
VMSTATE_STRUCT(esp, SysBusESPState, 0, vmstate_esp, ESPState),
VMSTATE_END_OF_LIST()
}
};
static void sysbus_esp_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
dc->realize = sysbus_esp_realize;
dc->reset = sysbus_esp_hard_reset;
dc->vmsd = &vmstate_sysbus_esp_scsi;
set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
}
static const TypeInfo sysbus_esp_info = {
.name = TYPE_SYSBUS_ESP,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_init = sysbus_esp_init,
.instance_size = sizeof(SysBusESPState),
.class_init = sysbus_esp_class_init,
};
static void esp_finalize(Object *obj)
{
ESPState *s = ESP(obj);
fifo8_destroy(&s->fifo);
fifo8_destroy(&s->cmdfifo);
}
static void esp_init(Object *obj)
{
ESPState *s = ESP(obj);
fifo8_create(&s->fifo, ESP_FIFO_SZ);
fifo8_create(&s->cmdfifo, ESP_CMDFIFO_SZ);
}
static void esp_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
/* internal device for sysbusesp/pciespscsi, not user-creatable */
dc->user_creatable = false;
set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
}
static const TypeInfo esp_info = {
.name = TYPE_ESP,
.parent = TYPE_DEVICE,
.instance_init = esp_init,
.instance_finalize = esp_finalize,
.instance_size = sizeof(ESPState),
.class_init = esp_class_init,
};
static void esp_register_types(void)
{
type_register_static(&sysbus_esp_info);
type_register_static(&esp_info);
}
type_init(esp_register_types)