qemu-e2k/hw/mips/malta.c
Peter Maydell 9d8299bf93 hw/mips/malta: Fix minor dead code issue
Coverity points out (in CID 1508390) that write_bootloader has
some dead code, where we assign to 'p' and then in the following
line assign to it again. This happened as a result of the
refactoring in commit cd5066f8618b.

Fix the dead code by removing the 'void *v' variable entirely and
instead adding a cast when calling bl_setup_gt64120_jump_kernel(), as
we do at its other callsite in write_bootloader_nanomips().

Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Philippe Mathieu-Daudé <philmd@linaro.org>
2023-05-12 15:43:38 +01:00

1329 lines
41 KiB
C

/*
* QEMU Malta board support
*
* Copyright (c) 2006 Aurelien Jarno
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "qemu/osdep.h"
#include "qemu/units.h"
#include "qemu/bitops.h"
#include "qemu/datadir.h"
#include "qemu/guest-random.h"
#include "hw/clock.h"
#include "hw/southbridge/piix.h"
#include "hw/isa/superio.h"
#include "hw/char/serial.h"
#include "net/net.h"
#include "hw/boards.h"
#include "hw/i2c/smbus_eeprom.h"
#include "hw/block/flash.h"
#include "hw/mips/mips.h"
#include "hw/mips/bootloader.h"
#include "hw/mips/cpudevs.h"
#include "hw/pci/pci.h"
#include "hw/pci/pci_bus.h"
#include "qemu/log.h"
#include "hw/mips/bios.h"
#include "hw/ide/pci.h"
#include "hw/irq.h"
#include "hw/loader.h"
#include "elf.h"
#include "qom/object.h"
#include "hw/sysbus.h" /* SysBusDevice */
#include "qemu/host-utils.h"
#include "sysemu/qtest.h"
#include "sysemu/reset.h"
#include "sysemu/runstate.h"
#include "qapi/error.h"
#include "qemu/error-report.h"
#include "sysemu/kvm.h"
#include "semihosting/semihost.h"
#include "hw/mips/cps.h"
#include "hw/qdev-clock.h"
#include "target/mips/internal.h"
#include "trace.h"
#define ENVP_PADDR 0x2000
#define ENVP_VADDR cpu_mips_phys_to_kseg0(NULL, ENVP_PADDR)
#define ENVP_NB_ENTRIES 16
#define ENVP_ENTRY_SIZE 256
/* Hardware addresses */
#define FLASH_ADDRESS 0x1e000000ULL
#define FPGA_ADDRESS 0x1f000000ULL
#define RESET_ADDRESS 0x1fc00000ULL
#define FLASH_SIZE 0x400000
#define PIIX4_PCI_DEVFN PCI_DEVFN(10, 0)
typedef struct {
MemoryRegion iomem;
MemoryRegion iomem_lo; /* 0 - 0x900 */
MemoryRegion iomem_hi; /* 0xa00 - 0x100000 */
uint32_t leds;
uint32_t brk;
uint32_t gpout;
uint32_t i2cin;
uint32_t i2coe;
uint32_t i2cout;
uint32_t i2csel;
CharBackend display;
char display_text[9];
SerialMM *uart;
bool display_inited;
} MaltaFPGAState;
#define TYPE_MIPS_MALTA "mips-malta"
OBJECT_DECLARE_SIMPLE_TYPE(MaltaState, MIPS_MALTA)
struct MaltaState {
SysBusDevice parent_obj;
Clock *cpuclk;
MIPSCPSState cps;
};
static struct _loaderparams {
int ram_size, ram_low_size;
const char *kernel_filename;
const char *kernel_cmdline;
const char *initrd_filename;
} loaderparams;
/* Malta FPGA */
static void malta_fpga_update_display_leds(MaltaFPGAState *s)
{
char leds_text[9];
int i;
for (i = 7 ; i >= 0 ; i--) {
if (s->leds & (1 << i)) {
leds_text[i] = '#';
} else {
leds_text[i] = ' ';
}
}
leds_text[8] = '\0';
trace_malta_fpga_leds(leds_text);
qemu_chr_fe_printf(&s->display, "\e[H\n\n|\e[32m%-8.8s\e[00m|\r\n",
leds_text);
}
static void malta_fpga_update_display_ascii(MaltaFPGAState *s)
{
trace_malta_fpga_display(s->display_text);
qemu_chr_fe_printf(&s->display, "\n\n\n\n|\e[31m%-8.8s\e[00m|",
s->display_text);
}
/*
* EEPROM 24C01 / 24C02 emulation.
*
* Emulation for serial EEPROMs:
* 24C01 - 1024 bit (128 x 8)
* 24C02 - 2048 bit (256 x 8)
*
* Typical device names include Microchip 24C02SC or SGS Thomson ST24C02.
*/
#if defined(DEBUG)
# define logout(fmt, ...) \
fprintf(stderr, "MALTA\t%-24s" fmt, __func__, ## __VA_ARGS__)
#else
# define logout(fmt, ...) ((void)0)
#endif
struct _eeprom24c0x_t {
uint8_t tick;
uint8_t address;
uint8_t command;
uint8_t ack;
uint8_t scl;
uint8_t sda;
uint8_t data;
/* uint16_t size; */
uint8_t contents[256];
};
typedef struct _eeprom24c0x_t eeprom24c0x_t;
static eeprom24c0x_t spd_eeprom = {
.contents = {
/* 00000000: */
0x80, 0x08, 0xFF, 0x0D, 0x0A, 0xFF, 0x40, 0x00,
/* 00000008: */
0x01, 0x75, 0x54, 0x00, 0x82, 0x08, 0x00, 0x01,
/* 00000010: */
0x8F, 0x04, 0x02, 0x01, 0x01, 0x00, 0x00, 0x00,
/* 00000018: */
0x00, 0x00, 0x00, 0x14, 0x0F, 0x14, 0x2D, 0xFF,
/* 00000020: */
0x15, 0x08, 0x15, 0x08, 0x00, 0x00, 0x00, 0x00,
/* 00000028: */
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
/* 00000030: */
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
/* 00000038: */
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x12, 0xD0,
/* 00000040: */
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
/* 00000048: */
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
/* 00000050: */
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
/* 00000058: */
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
/* 00000060: */
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
/* 00000068: */
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
/* 00000070: */
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
/* 00000078: */
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x64, 0xF4,
},
};
static void generate_eeprom_spd(uint8_t *eeprom, ram_addr_t ram_size)
{
enum { SDR = 0x4, DDR2 = 0x8 } type;
uint8_t *spd = spd_eeprom.contents;
uint8_t nbanks = 0;
uint16_t density = 0;
int i;
/* work in terms of MB */
ram_size /= MiB;
while ((ram_size >= 4) && (nbanks <= 2)) {
int sz_log2 = MIN(31 - clz32(ram_size), 14);
nbanks++;
density |= 1 << (sz_log2 - 2);
ram_size -= 1 << sz_log2;
}
/* split to 2 banks if possible */
if ((nbanks == 1) && (density > 1)) {
nbanks++;
density >>= 1;
}
if (density & 0xff00) {
density = (density & 0xe0) | ((density >> 8) & 0x1f);
type = DDR2;
} else if (!(density & 0x1f)) {
type = DDR2;
} else {
type = SDR;
}
if (ram_size) {
warn_report("SPD cannot represent final " RAM_ADDR_FMT "MB"
" of SDRAM", ram_size);
}
/* fill in SPD memory information */
spd[2] = type;
spd[5] = nbanks;
spd[31] = density;
/* checksum */
spd[63] = 0;
for (i = 0; i < 63; i++) {
spd[63] += spd[i];
}
/* copy for SMBUS */
memcpy(eeprom, spd, sizeof(spd_eeprom.contents));
}
static void generate_eeprom_serial(uint8_t *eeprom)
{
int i, pos = 0;
uint8_t mac[6] = { 0x00 };
uint8_t sn[5] = { 0x01, 0x23, 0x45, 0x67, 0x89 };
/* version */
eeprom[pos++] = 0x01;
/* count */
eeprom[pos++] = 0x02;
/* MAC address */
eeprom[pos++] = 0x01; /* MAC */
eeprom[pos++] = 0x06; /* length */
memcpy(&eeprom[pos], mac, sizeof(mac));
pos += sizeof(mac);
/* serial number */
eeprom[pos++] = 0x02; /* serial */
eeprom[pos++] = 0x05; /* length */
memcpy(&eeprom[pos], sn, sizeof(sn));
pos += sizeof(sn);
/* checksum */
eeprom[pos] = 0;
for (i = 0; i < pos; i++) {
eeprom[pos] += eeprom[i];
}
}
static uint8_t eeprom24c0x_read(eeprom24c0x_t *eeprom)
{
logout("%u: scl = %u, sda = %u, data = 0x%02x\n",
eeprom->tick, eeprom->scl, eeprom->sda, eeprom->data);
return eeprom->sda;
}
static void eeprom24c0x_write(eeprom24c0x_t *eeprom, int scl, int sda)
{
if (eeprom->scl && scl && (eeprom->sda != sda)) {
logout("%u: scl = %u->%u, sda = %u->%u i2c %s\n",
eeprom->tick, eeprom->scl, scl, eeprom->sda, sda,
sda ? "stop" : "start");
if (!sda) {
eeprom->tick = 1;
eeprom->command = 0;
}
} else if (eeprom->tick == 0 && !eeprom->ack) {
/* Waiting for start. */
logout("%u: scl = %u->%u, sda = %u->%u wait for i2c start\n",
eeprom->tick, eeprom->scl, scl, eeprom->sda, sda);
} else if (!eeprom->scl && scl) {
logout("%u: scl = %u->%u, sda = %u->%u trigger bit\n",
eeprom->tick, eeprom->scl, scl, eeprom->sda, sda);
if (eeprom->ack) {
logout("\ti2c ack bit = 0\n");
sda = 0;
eeprom->ack = 0;
} else if (eeprom->sda == sda) {
uint8_t bit = (sda != 0);
logout("\ti2c bit = %d\n", bit);
if (eeprom->tick < 9) {
eeprom->command <<= 1;
eeprom->command += bit;
eeprom->tick++;
if (eeprom->tick == 9) {
logout("\tcommand 0x%04x, %s\n", eeprom->command,
bit ? "read" : "write");
eeprom->ack = 1;
}
} else if (eeprom->tick < 17) {
if (eeprom->command & 1) {
sda = ((eeprom->data & 0x80) != 0);
}
eeprom->address <<= 1;
eeprom->address += bit;
eeprom->tick++;
eeprom->data <<= 1;
if (eeprom->tick == 17) {
eeprom->data = eeprom->contents[eeprom->address];
logout("\taddress 0x%04x, data 0x%02x\n",
eeprom->address, eeprom->data);
eeprom->ack = 1;
eeprom->tick = 0;
}
} else if (eeprom->tick >= 17) {
sda = 0;
}
} else {
logout("\tsda changed with raising scl\n");
}
} else {
logout("%u: scl = %u->%u, sda = %u->%u\n", eeprom->tick, eeprom->scl,
scl, eeprom->sda, sda);
}
eeprom->scl = scl;
eeprom->sda = sda;
}
static uint64_t malta_fpga_read(void *opaque, hwaddr addr,
unsigned size)
{
MaltaFPGAState *s = opaque;
uint32_t val = 0;
uint32_t saddr;
saddr = (addr & 0xfffff);
switch (saddr) {
/* SWITCH Register */
case 0x00200:
val = 0x00000000;
break;
/* STATUS Register */
case 0x00208:
#if TARGET_BIG_ENDIAN
val = 0x00000012;
#else
val = 0x00000010;
#endif
break;
/* JMPRS Register */
case 0x00210:
val = 0x00;
break;
/* LEDBAR Register */
case 0x00408:
val = s->leds;
break;
/* BRKRES Register */
case 0x00508:
val = s->brk;
break;
/* UART Registers are handled directly by the serial device */
/* GPOUT Register */
case 0x00a00:
val = s->gpout;
break;
/* XXX: implement a real I2C controller */
/* GPINP Register */
case 0x00a08:
/* IN = OUT until a real I2C control is implemented */
if (s->i2csel) {
val = s->i2cout;
} else {
val = 0x00;
}
break;
/* I2CINP Register */
case 0x00b00:
val = ((s->i2cin & ~1) | eeprom24c0x_read(&spd_eeprom));
break;
/* I2COE Register */
case 0x00b08:
val = s->i2coe;
break;
/* I2COUT Register */
case 0x00b10:
val = s->i2cout;
break;
/* I2CSEL Register */
case 0x00b18:
val = s->i2csel;
break;
default:
qemu_log_mask(LOG_GUEST_ERROR,
"malta_fpga_read: Bad register addr 0x%"HWADDR_PRIX"\n",
addr);
break;
}
return val;
}
static void malta_fpga_write(void *opaque, hwaddr addr,
uint64_t val, unsigned size)
{
MaltaFPGAState *s = opaque;
uint32_t saddr;
saddr = (addr & 0xfffff);
switch (saddr) {
/* SWITCH Register */
case 0x00200:
break;
/* JMPRS Register */
case 0x00210:
break;
/* LEDBAR Register */
case 0x00408:
s->leds = val & 0xff;
malta_fpga_update_display_leds(s);
break;
/* ASCIIWORD Register */
case 0x00410:
snprintf(s->display_text, 9, "%08X", (uint32_t)val);
malta_fpga_update_display_ascii(s);
break;
/* ASCIIPOS0 to ASCIIPOS7 Registers */
case 0x00418:
case 0x00420:
case 0x00428:
case 0x00430:
case 0x00438:
case 0x00440:
case 0x00448:
case 0x00450:
s->display_text[(saddr - 0x00418) >> 3] = (char) val;
malta_fpga_update_display_ascii(s);
break;
/* SOFTRES Register */
case 0x00500:
if (val == 0x42) {
qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
}
break;
/* BRKRES Register */
case 0x00508:
s->brk = val & 0xff;
break;
/* UART Registers are handled directly by the serial device */
/* GPOUT Register */
case 0x00a00:
s->gpout = val & 0xff;
break;
/* I2COE Register */
case 0x00b08:
s->i2coe = val & 0x03;
break;
/* I2COUT Register */
case 0x00b10:
eeprom24c0x_write(&spd_eeprom, val & 0x02, val & 0x01);
s->i2cout = val;
break;
/* I2CSEL Register */
case 0x00b18:
s->i2csel = val & 0x01;
break;
default:
qemu_log_mask(LOG_GUEST_ERROR,
"malta_fpga_write: Bad register addr 0x%"HWADDR_PRIX"\n",
addr);
break;
}
}
static const MemoryRegionOps malta_fpga_ops = {
.read = malta_fpga_read,
.write = malta_fpga_write,
.endianness = DEVICE_NATIVE_ENDIAN,
};
static void malta_fpga_reset(void *opaque)
{
MaltaFPGAState *s = opaque;
s->leds = 0x00;
s->brk = 0x0a;
s->gpout = 0x00;
s->i2cin = 0x3;
s->i2coe = 0x0;
s->i2cout = 0x3;
s->i2csel = 0x1;
s->display_text[8] = '\0';
snprintf(s->display_text, 9, " ");
}
static void malta_fgpa_display_event(void *opaque, QEMUChrEvent event)
{
MaltaFPGAState *s = opaque;
if (event == CHR_EVENT_OPENED && !s->display_inited) {
qemu_chr_fe_printf(&s->display, "\e[HMalta LEDBAR\r\n");
qemu_chr_fe_printf(&s->display, "+--------+\r\n");
qemu_chr_fe_printf(&s->display, "+ +\r\n");
qemu_chr_fe_printf(&s->display, "+--------+\r\n");
qemu_chr_fe_printf(&s->display, "\n");
qemu_chr_fe_printf(&s->display, "Malta ASCII\r\n");
qemu_chr_fe_printf(&s->display, "+--------+\r\n");
qemu_chr_fe_printf(&s->display, "+ +\r\n");
qemu_chr_fe_printf(&s->display, "+--------+\r\n");
s->display_inited = true;
}
}
static MaltaFPGAState *malta_fpga_init(MemoryRegion *address_space,
hwaddr base, qemu_irq uart_irq, Chardev *uart_chr)
{
MaltaFPGAState *s;
Chardev *chr;
s = g_new0(MaltaFPGAState, 1);
memory_region_init_io(&s->iomem, NULL, &malta_fpga_ops, s,
"malta-fpga", 0x100000);
memory_region_init_alias(&s->iomem_lo, NULL, "malta-fpga",
&s->iomem, 0, 0x900);
memory_region_init_alias(&s->iomem_hi, NULL, "malta-fpga",
&s->iomem, 0xa00, 0x100000 - 0xa00);
memory_region_add_subregion(address_space, base, &s->iomem_lo);
memory_region_add_subregion(address_space, base + 0xa00, &s->iomem_hi);
chr = qemu_chr_new("fpga", "vc:320x200", NULL);
qemu_chr_fe_init(&s->display, chr, NULL);
qemu_chr_fe_set_handlers(&s->display, NULL, NULL,
malta_fgpa_display_event, NULL, s, NULL, true);
s->uart = serial_mm_init(address_space, base + 0x900, 3, uart_irq,
230400, uart_chr, DEVICE_NATIVE_ENDIAN);
malta_fpga_reset(s);
qemu_register_reset(malta_fpga_reset, s);
return s;
}
/* Network support */
static void network_init(PCIBus *pci_bus)
{
int i;
for (i = 0; i < nb_nics; i++) {
NICInfo *nd = &nd_table[i];
const char *default_devaddr = NULL;
if (i == 0 && (!nd->model || strcmp(nd->model, "pcnet") == 0))
/* The malta board has a PCNet card using PCI SLOT 11 */
default_devaddr = "0b";
pci_nic_init_nofail(nd, pci_bus, "pcnet", default_devaddr);
}
}
static void bl_setup_gt64120_jump_kernel(void **p, uint64_t run_addr,
uint64_t kernel_entry)
{
static const char pci_pins_cfg[PCI_NUM_PINS] = {
10, 10, 11, 11 /* PIIX IRQRC[A:D] */
};
/* Bus endianess is always reversed */
#if TARGET_BIG_ENDIAN
#define cpu_to_gt32 cpu_to_le32
#else
#define cpu_to_gt32 cpu_to_be32
#endif
/* setup MEM-to-PCI0 mapping as done by YAMON */
/* move GT64120 registers from 0x14000000 to 0x1be00000 */
bl_gen_write_u32(p, /* GT_ISD */
cpu_mips_phys_to_kseg1(NULL, 0x14000000 + 0x68),
cpu_to_gt32(0x1be00000 << 3));
/* setup PCI0 io window to 0x18000000-0x181fffff */
bl_gen_write_u32(p, /* GT_PCI0IOLD */
cpu_mips_phys_to_kseg1(NULL, 0x1be00000 + 0x48),
cpu_to_gt32(0x18000000 << 3));
bl_gen_write_u32(p, /* GT_PCI0IOHD */
cpu_mips_phys_to_kseg1(NULL, 0x1be00000 + 0x50),
cpu_to_gt32(0x08000000 << 3));
/* setup PCI0 mem windows */
bl_gen_write_u32(p, /* GT_PCI0M0LD */
cpu_mips_phys_to_kseg1(NULL, 0x1be00000 + 0x58),
cpu_to_gt32(0x10000000 << 3));
bl_gen_write_u32(p, /* GT_PCI0M0HD */
cpu_mips_phys_to_kseg1(NULL, 0x1be00000 + 0x60),
cpu_to_gt32(0x07e00000 << 3));
bl_gen_write_u32(p, /* GT_PCI0M1LD */
cpu_mips_phys_to_kseg1(NULL, 0x1be00000 + 0x80),
cpu_to_gt32(0x18200000 << 3));
bl_gen_write_u32(p, /* GT_PCI0M1HD */
cpu_mips_phys_to_kseg1(NULL, 0x1be00000 + 0x88),
cpu_to_gt32(0x0bc00000 << 3));
#undef cpu_to_gt32
/*
* The PIIX ISA bridge is on PCI bus 0 dev 10 func 0.
* Load the PIIX IRQC[A:D] routing config address, then
* write routing configuration to the config data register.
*/
bl_gen_write_u32(p, /* GT_PCI0_CFGADDR */
cpu_mips_phys_to_kseg1(NULL, 0x1be00000 + 0xcf8),
tswap32((1 << 31) /* ConfigEn */
| PCI_BUILD_BDF(0, PIIX4_PCI_DEVFN) << 8
| PIIX_PIRQCA));
bl_gen_write_u32(p, /* GT_PCI0_CFGDATA */
cpu_mips_phys_to_kseg1(NULL, 0x1be00000 + 0xcfc),
tswap32(ldl_be_p(pci_pins_cfg)));
bl_gen_jump_kernel(p,
true, ENVP_VADDR - 64,
/*
* If semihosting is used, arguments have already
* been passed, so we preserve $a0.
*/
!semihosting_get_argc(), 2,
true, ENVP_VADDR,
true, ENVP_VADDR + 8,
true, loaderparams.ram_low_size,
kernel_entry);
}
static void write_bootloader_nanomips(uint8_t *base, uint64_t run_addr,
uint64_t kernel_entry)
{
uint16_t *p;
/* Small bootloader */
p = (uint16_t *)base;
stw_p(p++, 0x2800); stw_p(p++, 0x001c);
/* bc to_here */
stw_p(p++, 0x8000); stw_p(p++, 0xc000);
/* nop */
stw_p(p++, 0x8000); stw_p(p++, 0xc000);
/* nop */
stw_p(p++, 0x8000); stw_p(p++, 0xc000);
/* nop */
stw_p(p++, 0x8000); stw_p(p++, 0xc000);
/* nop */
stw_p(p++, 0x8000); stw_p(p++, 0xc000);
/* nop */
stw_p(p++, 0x8000); stw_p(p++, 0xc000);
/* nop */
stw_p(p++, 0x8000); stw_p(p++, 0xc000);
/* nop */
/* to_here: */
bl_setup_gt64120_jump_kernel((void **)&p, run_addr, kernel_entry);
}
/*
* ROM and pseudo bootloader
*
* The following code implements a very very simple bootloader. It first
* loads the registers a0 to a3 to the values expected by the OS, and
* then jump at the kernel address.
*
* The bootloader should pass the locations of the kernel arguments and
* environment variables tables. Those tables contain the 32-bit address
* of NULL terminated strings. The environment variables table should be
* terminated by a NULL address.
*
* For a simpler implementation, the number of kernel arguments is fixed
* to two (the name of the kernel and the command line), and the two
* tables are actually the same one.
*
* The registers a0 to a3 should contain the following values:
* a0 - number of kernel arguments
* a1 - 32-bit address of the kernel arguments table
* a2 - 32-bit address of the environment variables table
* a3 - RAM size in bytes
*/
static void write_bootloader(uint8_t *base, uint64_t run_addr,
uint64_t kernel_entry)
{
uint32_t *p;
/* Small bootloader */
p = (uint32_t *)base;
stl_p(p++, 0x08000000 | /* j 0x1fc00580 */
((run_addr + 0x580) & 0x0fffffff) >> 2);
stl_p(p++, 0x00000000); /* nop */
/* YAMON service vector */
stl_p(base + 0x500, run_addr + 0x0580); /* start: */
stl_p(base + 0x504, run_addr + 0x083c); /* print_count: */
stl_p(base + 0x520, run_addr + 0x0580); /* start: */
stl_p(base + 0x52c, run_addr + 0x0800); /* flush_cache: */
stl_p(base + 0x534, run_addr + 0x0808); /* print: */
stl_p(base + 0x538, run_addr + 0x0800); /* reg_cpu_isr: */
stl_p(base + 0x53c, run_addr + 0x0800); /* unred_cpu_isr: */
stl_p(base + 0x540, run_addr + 0x0800); /* reg_ic_isr: */
stl_p(base + 0x544, run_addr + 0x0800); /* unred_ic_isr: */
stl_p(base + 0x548, run_addr + 0x0800); /* reg_esr: */
stl_p(base + 0x54c, run_addr + 0x0800); /* unreg_esr: */
stl_p(base + 0x550, run_addr + 0x0800); /* getchar: */
stl_p(base + 0x554, run_addr + 0x0800); /* syscon_read: */
/* Second part of the bootloader */
p = (uint32_t *) (base + 0x580);
/*
* Load BAR registers as done by YAMON:
*
* - set up PCI0 I/O BARs from 0x18000000 to 0x181fffff
* - set up PCI0 MEM0 at 0x10000000, size 0x7e00000
* - set up PCI0 MEM1 at 0x18200000, size 0xbc00000
*
*/
bl_setup_gt64120_jump_kernel((void **)&p, run_addr, kernel_entry);
/* YAMON subroutines */
p = (uint32_t *) (base + 0x800);
stl_p(p++, 0x03e00009); /* jalr ra */
stl_p(p++, 0x24020000); /* li v0,0 */
/* 808 YAMON print */
stl_p(p++, 0x03e06821); /* move t5,ra */
stl_p(p++, 0x00805821); /* move t3,a0 */
stl_p(p++, 0x00a05021); /* move t2,a1 */
stl_p(p++, 0x91440000); /* lbu a0,0(t2) */
stl_p(p++, 0x254a0001); /* addiu t2,t2,1 */
stl_p(p++, 0x10800005); /* beqz a0,834 */
stl_p(p++, 0x00000000); /* nop */
stl_p(p++, 0x0ff0021c); /* jal 870 */
stl_p(p++, 0x00000000); /* nop */
stl_p(p++, 0x1000fff9); /* b 814 */
stl_p(p++, 0x00000000); /* nop */
stl_p(p++, 0x01a00009); /* jalr t5 */
stl_p(p++, 0x01602021); /* move a0,t3 */
/* 0x83c YAMON print_count */
stl_p(p++, 0x03e06821); /* move t5,ra */
stl_p(p++, 0x00805821); /* move t3,a0 */
stl_p(p++, 0x00a05021); /* move t2,a1 */
stl_p(p++, 0x00c06021); /* move t4,a2 */
stl_p(p++, 0x91440000); /* lbu a0,0(t2) */
stl_p(p++, 0x0ff0021c); /* jal 870 */
stl_p(p++, 0x00000000); /* nop */
stl_p(p++, 0x254a0001); /* addiu t2,t2,1 */
stl_p(p++, 0x258cffff); /* addiu t4,t4,-1 */
stl_p(p++, 0x1580fffa); /* bnez t4,84c */
stl_p(p++, 0x00000000); /* nop */
stl_p(p++, 0x01a00009); /* jalr t5 */
stl_p(p++, 0x01602021); /* move a0,t3 */
/* 0x870 */
stl_p(p++, 0x3c08b800); /* lui t0,0xb400 */
stl_p(p++, 0x350803f8); /* ori t0,t0,0x3f8 */
stl_p(p++, 0x91090005); /* lbu t1,5(t0) */
stl_p(p++, 0x00000000); /* nop */
stl_p(p++, 0x31290040); /* andi t1,t1,0x40 */
stl_p(p++, 0x1120fffc); /* beqz t1,878 <outch+0x8> */
stl_p(p++, 0x00000000); /* nop */
stl_p(p++, 0x03e00009); /* jalr ra */
stl_p(p++, 0xa1040000); /* sb a0,0(t0) */
}
static void G_GNUC_PRINTF(3, 4) prom_set(uint32_t *prom_buf, int index,
const char *string, ...)
{
va_list ap;
uint32_t table_addr;
if (index >= ENVP_NB_ENTRIES) {
return;
}
if (string == NULL) {
prom_buf[index] = 0;
return;
}
table_addr = sizeof(uint32_t) * ENVP_NB_ENTRIES + index * ENVP_ENTRY_SIZE;
prom_buf[index] = tswap32(ENVP_VADDR + table_addr);
va_start(ap, string);
vsnprintf((char *)prom_buf + table_addr, ENVP_ENTRY_SIZE, string, ap);
va_end(ap);
}
static void reinitialize_rng_seed(void *opaque)
{
char *rng_seed_hex = opaque;
uint8_t rng_seed[32];
qemu_guest_getrandom_nofail(rng_seed, sizeof(rng_seed));
for (size_t i = 0; i < sizeof(rng_seed); ++i) {
sprintf(rng_seed_hex + i * 2, "%02x", rng_seed[i]);
}
}
/* Kernel */
static uint64_t load_kernel(void)
{
uint64_t kernel_entry, kernel_high, initrd_size;
long kernel_size;
ram_addr_t initrd_offset;
int big_endian;
uint32_t *prom_buf;
long prom_size;
int prom_index = 0;
uint8_t rng_seed[32];
char rng_seed_hex[sizeof(rng_seed) * 2 + 1];
size_t rng_seed_prom_offset;
#if TARGET_BIG_ENDIAN
big_endian = 1;
#else
big_endian = 0;
#endif
kernel_size = load_elf(loaderparams.kernel_filename, NULL,
cpu_mips_kseg0_to_phys, NULL,
&kernel_entry, NULL,
&kernel_high, NULL, big_endian, EM_MIPS,
1, 0);
if (kernel_size < 0) {
error_report("could not load kernel '%s': %s",
loaderparams.kernel_filename,
load_elf_strerror(kernel_size));
exit(1);
}
/* Check where the kernel has been linked */
if (kernel_entry <= USEG_LIMIT) {
error_report("Trap-and-Emul kernels (Linux CONFIG_KVM_GUEST)"
" are not supported");
exit(1);
}
/* load initrd */
initrd_size = 0;
initrd_offset = 0;
if (loaderparams.initrd_filename) {
initrd_size = get_image_size(loaderparams.initrd_filename);
if (initrd_size > 0) {
/*
* The kernel allocates the bootmap memory in the low memory after
* the initrd. It takes at most 128kiB for 2GB RAM and 4kiB
* pages.
*/
initrd_offset = ROUND_UP(loaderparams.ram_low_size
- (initrd_size + 128 * KiB),
INITRD_PAGE_SIZE);
if (kernel_high >= initrd_offset) {
error_report("memory too small for initial ram disk '%s'",
loaderparams.initrd_filename);
exit(1);
}
initrd_size = load_image_targphys(loaderparams.initrd_filename,
initrd_offset,
loaderparams.ram_size - initrd_offset);
}
if (initrd_size == (target_ulong) -1) {
error_report("could not load initial ram disk '%s'",
loaderparams.initrd_filename);
exit(1);
}
}
/* Setup prom parameters. */
prom_size = ENVP_NB_ENTRIES * (sizeof(int32_t) + ENVP_ENTRY_SIZE);
prom_buf = g_malloc(prom_size);
prom_set(prom_buf, prom_index++, "%s", loaderparams.kernel_filename);
if (initrd_size > 0) {
prom_set(prom_buf, prom_index++,
"rd_start=0x%" PRIx64 " rd_size=%" PRId64 " %s",
cpu_mips_phys_to_kseg0(NULL, initrd_offset),
initrd_size, loaderparams.kernel_cmdline);
} else {
prom_set(prom_buf, prom_index++, "%s", loaderparams.kernel_cmdline);
}
prom_set(prom_buf, prom_index++, "memsize");
prom_set(prom_buf, prom_index++, "%u", loaderparams.ram_low_size);
prom_set(prom_buf, prom_index++, "ememsize");
prom_set(prom_buf, prom_index++, "%u", loaderparams.ram_size);
prom_set(prom_buf, prom_index++, "modetty0");
prom_set(prom_buf, prom_index++, "38400n8r");
qemu_guest_getrandom_nofail(rng_seed, sizeof(rng_seed));
for (size_t i = 0; i < sizeof(rng_seed); ++i) {
sprintf(rng_seed_hex + i * 2, "%02x", rng_seed[i]);
}
prom_set(prom_buf, prom_index++, "rngseed");
rng_seed_prom_offset = prom_index * ENVP_ENTRY_SIZE +
sizeof(uint32_t) * ENVP_NB_ENTRIES;
prom_set(prom_buf, prom_index++, "%s", rng_seed_hex);
prom_set(prom_buf, prom_index++, NULL);
rom_add_blob_fixed("prom", prom_buf, prom_size, ENVP_PADDR);
qemu_register_reset_nosnapshotload(reinitialize_rng_seed,
rom_ptr(ENVP_PADDR, prom_size) + rng_seed_prom_offset);
g_free(prom_buf);
return kernel_entry;
}
static void malta_mips_config(MIPSCPU *cpu)
{
MachineState *ms = MACHINE(qdev_get_machine());
unsigned int smp_cpus = ms->smp.cpus;
CPUMIPSState *env = &cpu->env;
CPUState *cs = CPU(cpu);
if (ase_mt_available(env)) {
env->mvp->CP0_MVPConf0 = deposit32(env->mvp->CP0_MVPConf0,
CP0MVPC0_PTC, 8,
smp_cpus * cs->nr_threads - 1);
env->mvp->CP0_MVPConf0 = deposit32(env->mvp->CP0_MVPConf0,
CP0MVPC0_PVPE, 4, smp_cpus - 1);
}
}
static int malta_pci_slot_get_pirq(PCIDevice *pci_dev, int irq_num)
{
int slot;
slot = PCI_SLOT(pci_dev->devfn);
switch (slot) {
/* PIIX4 USB */
case 10:
return 3;
/* AMD 79C973 Ethernet */
case 11:
return 1;
/* Crystal 4281 Sound */
case 12:
return 2;
/* PCI slot 1 to 4 */
case 18 ... 21:
return ((slot - 18) + irq_num) & 0x03;
/* Unknown device, don't do any translation */
default:
return irq_num;
}
}
static void main_cpu_reset(void *opaque)
{
MIPSCPU *cpu = opaque;
CPUMIPSState *env = &cpu->env;
cpu_reset(CPU(cpu));
/*
* The bootloader does not need to be rewritten as it is located in a
* read only location. The kernel location and the arguments table
* location does not change.
*/
if (loaderparams.kernel_filename) {
env->CP0_Status &= ~(1 << CP0St_ERL);
}
malta_mips_config(cpu);
}
static void create_cpu_without_cps(MachineState *ms, MaltaState *s,
qemu_irq *cbus_irq, qemu_irq *i8259_irq)
{
CPUMIPSState *env;
MIPSCPU *cpu;
int i;
for (i = 0; i < ms->smp.cpus; i++) {
cpu = mips_cpu_create_with_clock(ms->cpu_type, s->cpuclk);
/* Init internal devices */
cpu_mips_irq_init_cpu(cpu);
cpu_mips_clock_init(cpu);
qemu_register_reset(main_cpu_reset, cpu);
}
cpu = MIPS_CPU(first_cpu);
env = &cpu->env;
*i8259_irq = env->irq[2];
*cbus_irq = env->irq[4];
}
static void create_cps(MachineState *ms, MaltaState *s,
qemu_irq *cbus_irq, qemu_irq *i8259_irq)
{
object_initialize_child(OBJECT(s), "cps", &s->cps, TYPE_MIPS_CPS);
object_property_set_str(OBJECT(&s->cps), "cpu-type", ms->cpu_type,
&error_fatal);
object_property_set_uint(OBJECT(&s->cps), "num-vp", ms->smp.cpus,
&error_fatal);
qdev_connect_clock_in(DEVICE(&s->cps), "clk-in", s->cpuclk);
sysbus_realize(SYS_BUS_DEVICE(&s->cps), &error_fatal);
sysbus_mmio_map_overlap(SYS_BUS_DEVICE(&s->cps), 0, 0, 1);
*i8259_irq = get_cps_irq(&s->cps, 3);
*cbus_irq = NULL;
}
static void mips_create_cpu(MachineState *ms, MaltaState *s,
qemu_irq *cbus_irq, qemu_irq *i8259_irq)
{
if ((ms->smp.cpus > 1) && cpu_type_supports_cps_smp(ms->cpu_type)) {
create_cps(ms, s, cbus_irq, i8259_irq);
} else {
create_cpu_without_cps(ms, s, cbus_irq, i8259_irq);
}
}
static
void mips_malta_init(MachineState *machine)
{
ram_addr_t ram_size = machine->ram_size;
ram_addr_t ram_low_size;
const char *kernel_filename = machine->kernel_filename;
const char *kernel_cmdline = machine->kernel_cmdline;
const char *initrd_filename = machine->initrd_filename;
char *filename;
PFlashCFI01 *fl;
MemoryRegion *system_memory = get_system_memory();
MemoryRegion *ram_low_preio = g_new(MemoryRegion, 1);
MemoryRegion *ram_low_postio;
MemoryRegion *bios, *bios_copy = g_new(MemoryRegion, 1);
const size_t smbus_eeprom_size = 8 * 256;
uint8_t *smbus_eeprom_buf = g_malloc0(smbus_eeprom_size);
uint64_t kernel_entry, bootloader_run_addr;
PCIBus *pci_bus;
ISABus *isa_bus;
qemu_irq cbus_irq, i8259_irq;
I2CBus *smbus;
DriveInfo *dinfo;
int fl_idx = 0;
int be;
MaltaState *s;
PCIDevice *piix4;
DeviceState *dev;
s = MIPS_MALTA(qdev_new(TYPE_MIPS_MALTA));
sysbus_realize_and_unref(SYS_BUS_DEVICE(s), &error_fatal);
/* create CPU */
mips_create_cpu(machine, s, &cbus_irq, &i8259_irq);
/* allocate RAM */
if (ram_size > 2 * GiB) {
error_report("Too much memory for this machine: %" PRId64 "MB,"
" maximum 2048MB", ram_size / MiB);
exit(1);
}
/* register RAM at high address where it is undisturbed by IO */
memory_region_add_subregion(system_memory, 0x80000000, machine->ram);
/* alias for pre IO hole access */
memory_region_init_alias(ram_low_preio, NULL, "mips_malta_low_preio.ram",
machine->ram, 0, MIN(ram_size, 256 * MiB));
memory_region_add_subregion(system_memory, 0, ram_low_preio);
/* alias for post IO hole access, if there is enough RAM */
if (ram_size > 512 * MiB) {
ram_low_postio = g_new(MemoryRegion, 1);
memory_region_init_alias(ram_low_postio, NULL,
"mips_malta_low_postio.ram",
machine->ram, 512 * MiB,
ram_size - 512 * MiB);
memory_region_add_subregion(system_memory, 512 * MiB,
ram_low_postio);
}
#if TARGET_BIG_ENDIAN
be = 1;
#else
be = 0;
#endif
/* FPGA */
/* The CBUS UART is attached to the MIPS CPU INT2 pin, ie interrupt 4 */
malta_fpga_init(system_memory, FPGA_ADDRESS, cbus_irq, serial_hd(2));
/* Load firmware in flash / BIOS. */
dinfo = drive_get(IF_PFLASH, 0, fl_idx);
fl = pflash_cfi01_register(FLASH_ADDRESS, "mips_malta.bios",
FLASH_SIZE,
dinfo ? blk_by_legacy_dinfo(dinfo) : NULL,
65536,
4, 0x0000, 0x0000, 0x0000, 0x0000, be);
bios = pflash_cfi01_get_memory(fl);
fl_idx++;
if (kernel_filename) {
ram_low_size = MIN(ram_size, 256 * MiB);
bootloader_run_addr = cpu_mips_phys_to_kseg0(NULL, RESET_ADDRESS);
/* Write a small bootloader to the flash location. */
loaderparams.ram_size = ram_size;
loaderparams.ram_low_size = ram_low_size;
loaderparams.kernel_filename = kernel_filename;
loaderparams.kernel_cmdline = kernel_cmdline;
loaderparams.initrd_filename = initrd_filename;
kernel_entry = load_kernel();
if (!cpu_type_supports_isa(machine->cpu_type, ISA_NANOMIPS32)) {
write_bootloader(memory_region_get_ram_ptr(bios),
bootloader_run_addr, kernel_entry);
} else {
write_bootloader_nanomips(memory_region_get_ram_ptr(bios),
bootloader_run_addr, kernel_entry);
}
} else {
target_long bios_size = FLASH_SIZE;
/* Load firmware from flash. */
if (!dinfo) {
/* Load a BIOS image. */
filename = qemu_find_file(QEMU_FILE_TYPE_BIOS,
machine->firmware ?: BIOS_FILENAME);
if (filename) {
bios_size = load_image_targphys(filename, FLASH_ADDRESS,
BIOS_SIZE);
g_free(filename);
} else {
bios_size = -1;
}
if ((bios_size < 0 || bios_size > BIOS_SIZE) &&
machine->firmware && !qtest_enabled()) {
error_report("Could not load MIPS bios '%s'", machine->firmware);
exit(1);
}
}
/*
* In little endian mode the 32bit words in the bios are swapped,
* a neat trick which allows bi-endian firmware.
*/
#if !TARGET_BIG_ENDIAN
{
uint32_t *end, *addr;
const size_t swapsize = MIN(bios_size, 0x3e0000);
addr = rom_ptr(FLASH_ADDRESS, swapsize);
if (!addr) {
addr = memory_region_get_ram_ptr(bios);
}
end = (void *)addr + swapsize;
while (addr < end) {
bswap32s(addr);
addr++;
}
}
#endif
}
/*
* Map the BIOS at a 2nd physical location, as on the real board.
* Copy it so that we can patch in the MIPS revision, which cannot be
* handled by an overlapping region as the resulting ROM code subpage
* regions are not executable.
*/
memory_region_init_ram(bios_copy, NULL, "bios.1fc", BIOS_SIZE,
&error_fatal);
if (!rom_copy(memory_region_get_ram_ptr(bios_copy),
FLASH_ADDRESS, BIOS_SIZE)) {
memcpy(memory_region_get_ram_ptr(bios_copy),
memory_region_get_ram_ptr(bios), BIOS_SIZE);
}
memory_region_set_readonly(bios_copy, true);
memory_region_add_subregion(system_memory, RESET_ADDRESS, bios_copy);
/* Board ID = 0x420 (Malta Board with CoreLV) */
stl_p(memory_region_get_ram_ptr(bios_copy) + 0x10, 0x00000420);
/* Northbridge */
dev = qdev_new("gt64120");
qdev_prop_set_bit(dev, "cpu-little-endian", !be);
sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
pci_bus = PCI_BUS(qdev_get_child_bus(dev, "pci"));
pci_bus_map_irqs(pci_bus, malta_pci_slot_get_pirq);
/* Southbridge */
piix4 = pci_create_simple_multifunction(pci_bus, PIIX4_PCI_DEVFN, true,
TYPE_PIIX4_PCI_DEVICE);
isa_bus = ISA_BUS(qdev_get_child_bus(DEVICE(piix4), "isa.0"));
dev = DEVICE(object_resolve_path_component(OBJECT(piix4), "ide"));
pci_ide_create_devs(PCI_DEVICE(dev));
/* Interrupt controller */
qdev_connect_gpio_out_named(DEVICE(piix4), "intr", 0, i8259_irq);
/* generate SPD EEPROM data */
dev = DEVICE(object_resolve_path_component(OBJECT(piix4), "pm"));
smbus = I2C_BUS(qdev_get_child_bus(dev, "i2c"));
generate_eeprom_spd(&smbus_eeprom_buf[0 * 256], ram_size);
generate_eeprom_serial(&smbus_eeprom_buf[6 * 256]);
smbus_eeprom_init(smbus, 8, smbus_eeprom_buf, smbus_eeprom_size);
g_free(smbus_eeprom_buf);
/* Super I/O: SMS FDC37M817 */
isa_create_simple(isa_bus, TYPE_FDC37M81X_SUPERIO);
/* Network card */
network_init(pci_bus);
/* Optional PCI video card */
pci_vga_init(pci_bus);
}
static void mips_malta_instance_init(Object *obj)
{
MaltaState *s = MIPS_MALTA(obj);
s->cpuclk = qdev_init_clock_out(DEVICE(obj), "cpu-refclk");
clock_set_hz(s->cpuclk, 320000000); /* 320 MHz */
}
static const TypeInfo mips_malta_device = {
.name = TYPE_MIPS_MALTA,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_size = sizeof(MaltaState),
.instance_init = mips_malta_instance_init,
};
GlobalProperty malta_compat[] = {
{ "PIIX4_PM", "memory-hotplug-support", "off" },
{ "PIIX4_PM", "acpi-pci-hotplug-with-bridge-support", "off" },
{ "PIIX4_PM", "acpi-root-pci-hotplug", "off" },
{ "PIIX4_PM", "x-not-migrate-acpi-index", "true" },
};
const size_t malta_compat_len = G_N_ELEMENTS(malta_compat);
static void mips_malta_machine_init(MachineClass *mc)
{
mc->desc = "MIPS Malta Core LV";
mc->init = mips_malta_init;
mc->block_default_type = IF_IDE;
mc->max_cpus = 16;
mc->is_default = true;
#ifdef TARGET_MIPS64
mc->default_cpu_type = MIPS_CPU_TYPE_NAME("20Kc");
#else
mc->default_cpu_type = MIPS_CPU_TYPE_NAME("24Kf");
#endif
mc->default_ram_id = "mips_malta.ram";
compat_props_add(mc->compat_props, malta_compat, malta_compat_len);
}
DEFINE_MACHINE("malta", mips_malta_machine_init)
static void mips_malta_register_types(void)
{
type_register_static(&mips_malta_device);
}
type_init(mips_malta_register_types)