qemu-e2k/hw/block/nvme.c
Klaus Jensen 7ef37c1c59 hw/block/nvme: cleanup includes
Clean up includes.

Signed-off-by: Klaus Jensen <k.jensen@samsung.com>
Reviewed-by: Keith Busch <kbusch@kernel.org>
2021-05-17 09:18:58 +02:00

6373 lines
181 KiB
C

/*
* QEMU NVM Express Controller
*
* Copyright (c) 2012, Intel Corporation
*
* Written by Keith Busch <keith.busch@intel.com>
*
* This code is licensed under the GNU GPL v2 or later.
*/
/**
* Reference Specs: http://www.nvmexpress.org, 1.4, 1.3, 1.2, 1.1, 1.0e
*
* https://nvmexpress.org/developers/nvme-specification/
*
*
* Notes on coding style
* ---------------------
* While QEMU coding style prefers lowercase hexadecimals in constants, the
* NVMe subsystem use thes format from the NVMe specifications in the comments
* (i.e. 'h' suffix instead of '0x' prefix).
*
* Usage
* -----
* See docs/system/nvme.rst for extensive documentation.
*
* Add options:
* -drive file=<file>,if=none,id=<drive_id>
* -device nvme-subsys,id=<subsys_id>,nqn=<nqn_id>
* -device nvme,serial=<serial>,id=<bus_name>, \
* cmb_size_mb=<cmb_size_mb[optional]>, \
* [pmrdev=<mem_backend_file_id>,] \
* max_ioqpairs=<N[optional]>, \
* aerl=<N[optional]>,aer_max_queued=<N[optional]>, \
* mdts=<N[optional]>,vsl=<N[optional]>, \
* zoned.zasl=<N[optional]>, \
* subsys=<subsys_id>
* -device nvme-ns,drive=<drive_id>,bus=<bus_name>,nsid=<nsid>,\
* zoned=<true|false[optional]>, \
* subsys=<subsys_id>,detached=<true|false[optional]>
*
* Note cmb_size_mb denotes size of CMB in MB. CMB is assumed to be at
* offset 0 in BAR2 and supports only WDS, RDS and SQS for now. By default, the
* device will use the "v1.4 CMB scheme" - use the `legacy-cmb` parameter to
* always enable the CMBLOC and CMBSZ registers (v1.3 behavior).
*
* Enabling pmr emulation can be achieved by pointing to memory-backend-file.
* For example:
* -object memory-backend-file,id=<mem_id>,share=on,mem-path=<file_path>, \
* size=<size> .... -device nvme,...,pmrdev=<mem_id>
*
* The PMR will use BAR 4/5 exclusively.
*
* To place controller(s) and namespace(s) to a subsystem, then provide
* nvme-subsys device as above.
*
* nvme subsystem device parameters
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
* - `nqn`
* This parameter provides the `<nqn_id>` part of the string
* `nqn.2019-08.org.qemu:<nqn_id>` which will be reported in the SUBNQN field
* of subsystem controllers. Note that `<nqn_id>` should be unique per
* subsystem, but this is not enforced by QEMU. If not specified, it will
* default to the value of the `id` parameter (`<subsys_id>`).
*
* nvme device parameters
* ~~~~~~~~~~~~~~~~~~~~~~
* - `subsys`
* Specifying this parameter attaches the controller to the subsystem and
* the SUBNQN field in the controller will report the NQN of the subsystem
* device. This also enables multi controller capability represented in
* Identify Controller data structure in CMIC (Controller Multi-path I/O and
* Namesapce Sharing Capabilities).
*
* - `aerl`
* The Asynchronous Event Request Limit (AERL). Indicates the maximum number
* of concurrently outstanding Asynchronous Event Request commands support
* by the controller. This is a 0's based value.
*
* - `aer_max_queued`
* This is the maximum number of events that the device will enqueue for
* completion when there are no outstanding AERs. When the maximum number of
* enqueued events are reached, subsequent events will be dropped.
*
* - `mdts`
* Indicates the maximum data transfer size for a command that transfers data
* between host-accessible memory and the controller. The value is specified
* as a power of two (2^n) and is in units of the minimum memory page size
* (CAP.MPSMIN). The default value is 7 (i.e. 512 KiB).
*
* - `vsl`
* Indicates the maximum data size limit for the Verify command. Like `mdts`,
* this value is specified as a power of two (2^n) and is in units of the
* minimum memory page size (CAP.MPSMIN). The default value is 7 (i.e. 512
* KiB).
*
* - `zoned.zasl`
* Indicates the maximum data transfer size for the Zone Append command. Like
* `mdts`, the value is specified as a power of two (2^n) and is in units of
* the minimum memory page size (CAP.MPSMIN). The default value is 0 (i.e.
* defaulting to the value of `mdts`).
*
* nvme namespace device parameters
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
* - `shared`
* When the parent nvme device (as defined explicitly by the 'bus' parameter
* or implicitly by the most recently defined NvmeBus) is linked to an
* nvme-subsys device, the namespace will be attached to all controllers in
* the subsystem. If set to 'off' (the default), the namespace will remain a
* private namespace and may only be attached to a single controller at a
* time.
*
* - `detached`
* This parameter is only valid together with the `subsys` parameter. If left
* at the default value (`false/off`), the namespace will be attached to all
* controllers in the NVMe subsystem at boot-up. If set to `true/on`, the
* namespace will be be available in the subsystem not not attached to any
* controllers.
*
* Setting `zoned` to true selects Zoned Command Set at the namespace.
* In this case, the following namespace properties are available to configure
* zoned operation:
* zoned.zone_size=<zone size in bytes, default: 128MiB>
* The number may be followed by K, M, G as in kilo-, mega- or giga-.
*
* zoned.zone_capacity=<zone capacity in bytes, default: zone size>
* The value 0 (default) forces zone capacity to be the same as zone
* size. The value of this property may not exceed zone size.
*
* zoned.descr_ext_size=<zone descriptor extension size, default 0>
* This value needs to be specified in 64B units. If it is zero,
* namespace(s) will not support zone descriptor extensions.
*
* zoned.max_active=<Maximum Active Resources (zones), default: 0>
* The default value means there is no limit to the number of
* concurrently active zones.
*
* zoned.max_open=<Maximum Open Resources (zones), default: 0>
* The default value means there is no limit to the number of
* concurrently open zones.
*
* zoned.cross_read=<enable RAZB, default: false>
* Setting this property to true enables Read Across Zone Boundaries.
*/
#include "qemu/osdep.h"
#include "qemu/cutils.h"
#include "qemu/error-report.h"
#include "qemu/log.h"
#include "qemu/units.h"
#include "qapi/error.h"
#include "qapi/visitor.h"
#include "sysemu/sysemu.h"
#include "sysemu/block-backend.h"
#include "sysemu/hostmem.h"
#include "hw/pci/msix.h"
#include "migration/vmstate.h"
#include "nvme.h"
#include "trace.h"
#define NVME_MAX_IOQPAIRS 0xffff
#define NVME_DB_SIZE 4
#define NVME_SPEC_VER 0x00010400
#define NVME_CMB_BIR 2
#define NVME_PMR_BIR 4
#define NVME_TEMPERATURE 0x143
#define NVME_TEMPERATURE_WARNING 0x157
#define NVME_TEMPERATURE_CRITICAL 0x175
#define NVME_NUM_FW_SLOTS 1
#define NVME_GUEST_ERR(trace, fmt, ...) \
do { \
(trace_##trace)(__VA_ARGS__); \
qemu_log_mask(LOG_GUEST_ERROR, #trace \
" in %s: " fmt "\n", __func__, ## __VA_ARGS__); \
} while (0)
static const bool nvme_feature_support[NVME_FID_MAX] = {
[NVME_ARBITRATION] = true,
[NVME_POWER_MANAGEMENT] = true,
[NVME_TEMPERATURE_THRESHOLD] = true,
[NVME_ERROR_RECOVERY] = true,
[NVME_VOLATILE_WRITE_CACHE] = true,
[NVME_NUMBER_OF_QUEUES] = true,
[NVME_INTERRUPT_COALESCING] = true,
[NVME_INTERRUPT_VECTOR_CONF] = true,
[NVME_WRITE_ATOMICITY] = true,
[NVME_ASYNCHRONOUS_EVENT_CONF] = true,
[NVME_TIMESTAMP] = true,
[NVME_COMMAND_SET_PROFILE] = true,
};
static const uint32_t nvme_feature_cap[NVME_FID_MAX] = {
[NVME_TEMPERATURE_THRESHOLD] = NVME_FEAT_CAP_CHANGE,
[NVME_ERROR_RECOVERY] = NVME_FEAT_CAP_CHANGE | NVME_FEAT_CAP_NS,
[NVME_VOLATILE_WRITE_CACHE] = NVME_FEAT_CAP_CHANGE,
[NVME_NUMBER_OF_QUEUES] = NVME_FEAT_CAP_CHANGE,
[NVME_ASYNCHRONOUS_EVENT_CONF] = NVME_FEAT_CAP_CHANGE,
[NVME_TIMESTAMP] = NVME_FEAT_CAP_CHANGE,
[NVME_COMMAND_SET_PROFILE] = NVME_FEAT_CAP_CHANGE,
};
static const uint32_t nvme_cse_acs[256] = {
[NVME_ADM_CMD_DELETE_SQ] = NVME_CMD_EFF_CSUPP,
[NVME_ADM_CMD_CREATE_SQ] = NVME_CMD_EFF_CSUPP,
[NVME_ADM_CMD_GET_LOG_PAGE] = NVME_CMD_EFF_CSUPP,
[NVME_ADM_CMD_DELETE_CQ] = NVME_CMD_EFF_CSUPP,
[NVME_ADM_CMD_CREATE_CQ] = NVME_CMD_EFF_CSUPP,
[NVME_ADM_CMD_IDENTIFY] = NVME_CMD_EFF_CSUPP,
[NVME_ADM_CMD_ABORT] = NVME_CMD_EFF_CSUPP,
[NVME_ADM_CMD_SET_FEATURES] = NVME_CMD_EFF_CSUPP,
[NVME_ADM_CMD_GET_FEATURES] = NVME_CMD_EFF_CSUPP,
[NVME_ADM_CMD_ASYNC_EV_REQ] = NVME_CMD_EFF_CSUPP,
[NVME_ADM_CMD_NS_ATTACHMENT] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_NIC,
[NVME_ADM_CMD_FORMAT_NVM] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
};
static const uint32_t nvme_cse_iocs_none[256];
static const uint32_t nvme_cse_iocs_nvm[256] = {
[NVME_CMD_FLUSH] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
[NVME_CMD_WRITE_ZEROES] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
[NVME_CMD_WRITE] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
[NVME_CMD_READ] = NVME_CMD_EFF_CSUPP,
[NVME_CMD_DSM] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
[NVME_CMD_VERIFY] = NVME_CMD_EFF_CSUPP,
[NVME_CMD_COPY] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
[NVME_CMD_COMPARE] = NVME_CMD_EFF_CSUPP,
};
static const uint32_t nvme_cse_iocs_zoned[256] = {
[NVME_CMD_FLUSH] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
[NVME_CMD_WRITE_ZEROES] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
[NVME_CMD_WRITE] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
[NVME_CMD_READ] = NVME_CMD_EFF_CSUPP,
[NVME_CMD_DSM] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
[NVME_CMD_VERIFY] = NVME_CMD_EFF_CSUPP,
[NVME_CMD_COPY] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
[NVME_CMD_COMPARE] = NVME_CMD_EFF_CSUPP,
[NVME_CMD_ZONE_APPEND] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
[NVME_CMD_ZONE_MGMT_SEND] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
[NVME_CMD_ZONE_MGMT_RECV] = NVME_CMD_EFF_CSUPP,
};
static void nvme_process_sq(void *opaque);
static uint16_t nvme_sqid(NvmeRequest *req)
{
return le16_to_cpu(req->sq->sqid);
}
static void nvme_assign_zone_state(NvmeNamespace *ns, NvmeZone *zone,
NvmeZoneState state)
{
if (QTAILQ_IN_USE(zone, entry)) {
switch (nvme_get_zone_state(zone)) {
case NVME_ZONE_STATE_EXPLICITLY_OPEN:
QTAILQ_REMOVE(&ns->exp_open_zones, zone, entry);
break;
case NVME_ZONE_STATE_IMPLICITLY_OPEN:
QTAILQ_REMOVE(&ns->imp_open_zones, zone, entry);
break;
case NVME_ZONE_STATE_CLOSED:
QTAILQ_REMOVE(&ns->closed_zones, zone, entry);
break;
case NVME_ZONE_STATE_FULL:
QTAILQ_REMOVE(&ns->full_zones, zone, entry);
default:
;
}
}
nvme_set_zone_state(zone, state);
switch (state) {
case NVME_ZONE_STATE_EXPLICITLY_OPEN:
QTAILQ_INSERT_TAIL(&ns->exp_open_zones, zone, entry);
break;
case NVME_ZONE_STATE_IMPLICITLY_OPEN:
QTAILQ_INSERT_TAIL(&ns->imp_open_zones, zone, entry);
break;
case NVME_ZONE_STATE_CLOSED:
QTAILQ_INSERT_TAIL(&ns->closed_zones, zone, entry);
break;
case NVME_ZONE_STATE_FULL:
QTAILQ_INSERT_TAIL(&ns->full_zones, zone, entry);
case NVME_ZONE_STATE_READ_ONLY:
break;
default:
zone->d.za = 0;
}
}
/*
* Check if we can open a zone without exceeding open/active limits.
* AOR stands for "Active and Open Resources" (see TP 4053 section 2.5).
*/
static int nvme_aor_check(NvmeNamespace *ns, uint32_t act, uint32_t opn)
{
if (ns->params.max_active_zones != 0 &&
ns->nr_active_zones + act > ns->params.max_active_zones) {
trace_pci_nvme_err_insuff_active_res(ns->params.max_active_zones);
return NVME_ZONE_TOO_MANY_ACTIVE | NVME_DNR;
}
if (ns->params.max_open_zones != 0 &&
ns->nr_open_zones + opn > ns->params.max_open_zones) {
trace_pci_nvme_err_insuff_open_res(ns->params.max_open_zones);
return NVME_ZONE_TOO_MANY_OPEN | NVME_DNR;
}
return NVME_SUCCESS;
}
static bool nvme_addr_is_cmb(NvmeCtrl *n, hwaddr addr)
{
hwaddr hi, lo;
if (!n->cmb.cmse) {
return false;
}
lo = n->params.legacy_cmb ? n->cmb.mem.addr : n->cmb.cba;
hi = lo + int128_get64(n->cmb.mem.size);
return addr >= lo && addr < hi;
}
static inline void *nvme_addr_to_cmb(NvmeCtrl *n, hwaddr addr)
{
hwaddr base = n->params.legacy_cmb ? n->cmb.mem.addr : n->cmb.cba;
return &n->cmb.buf[addr - base];
}
static bool nvme_addr_is_pmr(NvmeCtrl *n, hwaddr addr)
{
hwaddr hi;
if (!n->pmr.cmse) {
return false;
}
hi = n->pmr.cba + int128_get64(n->pmr.dev->mr.size);
return addr >= n->pmr.cba && addr < hi;
}
static inline void *nvme_addr_to_pmr(NvmeCtrl *n, hwaddr addr)
{
return memory_region_get_ram_ptr(&n->pmr.dev->mr) + (addr - n->pmr.cba);
}
static int nvme_addr_read(NvmeCtrl *n, hwaddr addr, void *buf, int size)
{
hwaddr hi = addr + size - 1;
if (hi < addr) {
return 1;
}
if (n->bar.cmbsz && nvme_addr_is_cmb(n, addr) && nvme_addr_is_cmb(n, hi)) {
memcpy(buf, nvme_addr_to_cmb(n, addr), size);
return 0;
}
if (nvme_addr_is_pmr(n, addr) && nvme_addr_is_pmr(n, hi)) {
memcpy(buf, nvme_addr_to_pmr(n, addr), size);
return 0;
}
return pci_dma_read(&n->parent_obj, addr, buf, size);
}
static int nvme_addr_write(NvmeCtrl *n, hwaddr addr, void *buf, int size)
{
hwaddr hi = addr + size - 1;
if (hi < addr) {
return 1;
}
if (n->bar.cmbsz && nvme_addr_is_cmb(n, addr) && nvme_addr_is_cmb(n, hi)) {
memcpy(nvme_addr_to_cmb(n, addr), buf, size);
return 0;
}
if (nvme_addr_is_pmr(n, addr) && nvme_addr_is_pmr(n, hi)) {
memcpy(nvme_addr_to_pmr(n, addr), buf, size);
return 0;
}
return pci_dma_write(&n->parent_obj, addr, buf, size);
}
static bool nvme_nsid_valid(NvmeCtrl *n, uint32_t nsid)
{
return nsid && (nsid == NVME_NSID_BROADCAST || nsid <= n->num_namespaces);
}
static int nvme_check_sqid(NvmeCtrl *n, uint16_t sqid)
{
return sqid < n->params.max_ioqpairs + 1 && n->sq[sqid] != NULL ? 0 : -1;
}
static int nvme_check_cqid(NvmeCtrl *n, uint16_t cqid)
{
return cqid < n->params.max_ioqpairs + 1 && n->cq[cqid] != NULL ? 0 : -1;
}
static void nvme_inc_cq_tail(NvmeCQueue *cq)
{
cq->tail++;
if (cq->tail >= cq->size) {
cq->tail = 0;
cq->phase = !cq->phase;
}
}
static void nvme_inc_sq_head(NvmeSQueue *sq)
{
sq->head = (sq->head + 1) % sq->size;
}
static uint8_t nvme_cq_full(NvmeCQueue *cq)
{
return (cq->tail + 1) % cq->size == cq->head;
}
static uint8_t nvme_sq_empty(NvmeSQueue *sq)
{
return sq->head == sq->tail;
}
static void nvme_irq_check(NvmeCtrl *n)
{
if (msix_enabled(&(n->parent_obj))) {
return;
}
if (~n->bar.intms & n->irq_status) {
pci_irq_assert(&n->parent_obj);
} else {
pci_irq_deassert(&n->parent_obj);
}
}
static void nvme_irq_assert(NvmeCtrl *n, NvmeCQueue *cq)
{
if (cq->irq_enabled) {
if (msix_enabled(&(n->parent_obj))) {
trace_pci_nvme_irq_msix(cq->vector);
msix_notify(&(n->parent_obj), cq->vector);
} else {
trace_pci_nvme_irq_pin();
assert(cq->vector < 32);
n->irq_status |= 1 << cq->vector;
nvme_irq_check(n);
}
} else {
trace_pci_nvme_irq_masked();
}
}
static void nvme_irq_deassert(NvmeCtrl *n, NvmeCQueue *cq)
{
if (cq->irq_enabled) {
if (msix_enabled(&(n->parent_obj))) {
return;
} else {
assert(cq->vector < 32);
n->irq_status &= ~(1 << cq->vector);
nvme_irq_check(n);
}
}
}
static void nvme_req_clear(NvmeRequest *req)
{
req->ns = NULL;
req->opaque = NULL;
req->aiocb = NULL;
memset(&req->cqe, 0x0, sizeof(req->cqe));
req->status = NVME_SUCCESS;
}
static inline void nvme_sg_init(NvmeCtrl *n, NvmeSg *sg, bool dma)
{
if (dma) {
pci_dma_sglist_init(&sg->qsg, &n->parent_obj, 0);
sg->flags = NVME_SG_DMA;
} else {
qemu_iovec_init(&sg->iov, 0);
}
sg->flags |= NVME_SG_ALLOC;
}
static inline void nvme_sg_unmap(NvmeSg *sg)
{
if (!(sg->flags & NVME_SG_ALLOC)) {
return;
}
if (sg->flags & NVME_SG_DMA) {
qemu_sglist_destroy(&sg->qsg);
} else {
qemu_iovec_destroy(&sg->iov);
}
memset(sg, 0x0, sizeof(*sg));
}
/*
* When metadata is transfered as extended LBAs, the DPTR mapped into `sg`
* holds both data and metadata. This function splits the data and metadata
* into two separate QSG/IOVs.
*/
static void nvme_sg_split(NvmeSg *sg, NvmeNamespace *ns, NvmeSg *data,
NvmeSg *mdata)
{
NvmeSg *dst = data;
size_t size = nvme_lsize(ns);
size_t msize = nvme_msize(ns);
uint32_t trans_len, count = size;
uint64_t offset = 0;
bool dma = sg->flags & NVME_SG_DMA;
size_t sge_len;
size_t sg_len = dma ? sg->qsg.size : sg->iov.size;
int sg_idx = 0;
assert(sg->flags & NVME_SG_ALLOC);
while (sg_len) {
sge_len = dma ? sg->qsg.sg[sg_idx].len : sg->iov.iov[sg_idx].iov_len;
trans_len = MIN(sg_len, count);
trans_len = MIN(trans_len, sge_len - offset);
if (dst) {
if (dma) {
qemu_sglist_add(&dst->qsg, sg->qsg.sg[sg_idx].base + offset,
trans_len);
} else {
qemu_iovec_add(&dst->iov,
sg->iov.iov[sg_idx].iov_base + offset,
trans_len);
}
}
sg_len -= trans_len;
count -= trans_len;
offset += trans_len;
if (count == 0) {
dst = (dst == data) ? mdata : data;
count = (dst == data) ? size : msize;
}
if (sge_len == offset) {
offset = 0;
sg_idx++;
}
}
}
static uint16_t nvme_map_addr_cmb(NvmeCtrl *n, QEMUIOVector *iov, hwaddr addr,
size_t len)
{
if (!len) {
return NVME_SUCCESS;
}
trace_pci_nvme_map_addr_cmb(addr, len);
if (!nvme_addr_is_cmb(n, addr) || !nvme_addr_is_cmb(n, addr + len - 1)) {
return NVME_DATA_TRAS_ERROR;
}
qemu_iovec_add(iov, nvme_addr_to_cmb(n, addr), len);
return NVME_SUCCESS;
}
static uint16_t nvme_map_addr_pmr(NvmeCtrl *n, QEMUIOVector *iov, hwaddr addr,
size_t len)
{
if (!len) {
return NVME_SUCCESS;
}
if (!nvme_addr_is_pmr(n, addr) || !nvme_addr_is_pmr(n, addr + len - 1)) {
return NVME_DATA_TRAS_ERROR;
}
qemu_iovec_add(iov, nvme_addr_to_pmr(n, addr), len);
return NVME_SUCCESS;
}
static uint16_t nvme_map_addr(NvmeCtrl *n, NvmeSg *sg, hwaddr addr, size_t len)
{
bool cmb = false, pmr = false;
if (!len) {
return NVME_SUCCESS;
}
trace_pci_nvme_map_addr(addr, len);
if (nvme_addr_is_cmb(n, addr)) {
cmb = true;
} else if (nvme_addr_is_pmr(n, addr)) {
pmr = true;
}
if (cmb || pmr) {
if (sg->flags & NVME_SG_DMA) {
return NVME_INVALID_USE_OF_CMB | NVME_DNR;
}
if (cmb) {
return nvme_map_addr_cmb(n, &sg->iov, addr, len);
} else {
return nvme_map_addr_pmr(n, &sg->iov, addr, len);
}
}
if (!(sg->flags & NVME_SG_DMA)) {
return NVME_INVALID_USE_OF_CMB | NVME_DNR;
}
qemu_sglist_add(&sg->qsg, addr, len);
return NVME_SUCCESS;
}
static inline bool nvme_addr_is_dma(NvmeCtrl *n, hwaddr addr)
{
return !(nvme_addr_is_cmb(n, addr) || nvme_addr_is_pmr(n, addr));
}
static uint16_t nvme_map_prp(NvmeCtrl *n, NvmeSg *sg, uint64_t prp1,
uint64_t prp2, uint32_t len)
{
hwaddr trans_len = n->page_size - (prp1 % n->page_size);
trans_len = MIN(len, trans_len);
int num_prps = (len >> n->page_bits) + 1;
uint16_t status;
int ret;
trace_pci_nvme_map_prp(trans_len, len, prp1, prp2, num_prps);
nvme_sg_init(n, sg, nvme_addr_is_dma(n, prp1));
status = nvme_map_addr(n, sg, prp1, trans_len);
if (status) {
goto unmap;
}
len -= trans_len;
if (len) {
if (len > n->page_size) {
uint64_t prp_list[n->max_prp_ents];
uint32_t nents, prp_trans;
int i = 0;
/*
* The first PRP list entry, pointed to by PRP2 may contain offset.
* Hence, we need to calculate the number of entries in based on
* that offset.
*/
nents = (n->page_size - (prp2 & (n->page_size - 1))) >> 3;
prp_trans = MIN(n->max_prp_ents, nents) * sizeof(uint64_t);
ret = nvme_addr_read(n, prp2, (void *)prp_list, prp_trans);
if (ret) {
trace_pci_nvme_err_addr_read(prp2);
status = NVME_DATA_TRAS_ERROR;
goto unmap;
}
while (len != 0) {
uint64_t prp_ent = le64_to_cpu(prp_list[i]);
if (i == nents - 1 && len > n->page_size) {
if (unlikely(prp_ent & (n->page_size - 1))) {
trace_pci_nvme_err_invalid_prplist_ent(prp_ent);
status = NVME_INVALID_PRP_OFFSET | NVME_DNR;
goto unmap;
}
i = 0;
nents = (len + n->page_size - 1) >> n->page_bits;
nents = MIN(nents, n->max_prp_ents);
prp_trans = nents * sizeof(uint64_t);
ret = nvme_addr_read(n, prp_ent, (void *)prp_list,
prp_trans);
if (ret) {
trace_pci_nvme_err_addr_read(prp_ent);
status = NVME_DATA_TRAS_ERROR;
goto unmap;
}
prp_ent = le64_to_cpu(prp_list[i]);
}
if (unlikely(prp_ent & (n->page_size - 1))) {
trace_pci_nvme_err_invalid_prplist_ent(prp_ent);
status = NVME_INVALID_PRP_OFFSET | NVME_DNR;
goto unmap;
}
trans_len = MIN(len, n->page_size);
status = nvme_map_addr(n, sg, prp_ent, trans_len);
if (status) {
goto unmap;
}
len -= trans_len;
i++;
}
} else {
if (unlikely(prp2 & (n->page_size - 1))) {
trace_pci_nvme_err_invalid_prp2_align(prp2);
status = NVME_INVALID_PRP_OFFSET | NVME_DNR;
goto unmap;
}
status = nvme_map_addr(n, sg, prp2, len);
if (status) {
goto unmap;
}
}
}
return NVME_SUCCESS;
unmap:
nvme_sg_unmap(sg);
return status;
}
/*
* Map 'nsgld' data descriptors from 'segment'. The function will subtract the
* number of bytes mapped in len.
*/
static uint16_t nvme_map_sgl_data(NvmeCtrl *n, NvmeSg *sg,
NvmeSglDescriptor *segment, uint64_t nsgld,
size_t *len, NvmeCmd *cmd)
{
dma_addr_t addr, trans_len;
uint32_t dlen;
uint16_t status;
for (int i = 0; i < nsgld; i++) {
uint8_t type = NVME_SGL_TYPE(segment[i].type);
switch (type) {
case NVME_SGL_DESCR_TYPE_BIT_BUCKET:
if (cmd->opcode == NVME_CMD_WRITE) {
continue;
}
case NVME_SGL_DESCR_TYPE_DATA_BLOCK:
break;
case NVME_SGL_DESCR_TYPE_SEGMENT:
case NVME_SGL_DESCR_TYPE_LAST_SEGMENT:
return NVME_INVALID_NUM_SGL_DESCRS | NVME_DNR;
default:
return NVME_SGL_DESCR_TYPE_INVALID | NVME_DNR;
}
dlen = le32_to_cpu(segment[i].len);
if (!dlen) {
continue;
}
if (*len == 0) {
/*
* All data has been mapped, but the SGL contains additional
* segments and/or descriptors. The controller might accept
* ignoring the rest of the SGL.
*/
uint32_t sgls = le32_to_cpu(n->id_ctrl.sgls);
if (sgls & NVME_CTRL_SGLS_EXCESS_LENGTH) {
break;
}
trace_pci_nvme_err_invalid_sgl_excess_length(dlen);
return NVME_DATA_SGL_LEN_INVALID | NVME_DNR;
}
trans_len = MIN(*len, dlen);
if (type == NVME_SGL_DESCR_TYPE_BIT_BUCKET) {
goto next;
}
addr = le64_to_cpu(segment[i].addr);
if (UINT64_MAX - addr < dlen) {
return NVME_DATA_SGL_LEN_INVALID | NVME_DNR;
}
status = nvme_map_addr(n, sg, addr, trans_len);
if (status) {
return status;
}
next:
*len -= trans_len;
}
return NVME_SUCCESS;
}
static uint16_t nvme_map_sgl(NvmeCtrl *n, NvmeSg *sg, NvmeSglDescriptor sgl,
size_t len, NvmeCmd *cmd)
{
/*
* Read the segment in chunks of 256 descriptors (one 4k page) to avoid
* dynamically allocating a potentially huge SGL. The spec allows the SGL
* to be larger (as in number of bytes required to describe the SGL
* descriptors and segment chain) than the command transfer size, so it is
* not bounded by MDTS.
*/
const int SEG_CHUNK_SIZE = 256;
NvmeSglDescriptor segment[SEG_CHUNK_SIZE], *sgld, *last_sgld;
uint64_t nsgld;
uint32_t seg_len;
uint16_t status;
hwaddr addr;
int ret;
sgld = &sgl;
addr = le64_to_cpu(sgl.addr);
trace_pci_nvme_map_sgl(NVME_SGL_TYPE(sgl.type), len);
nvme_sg_init(n, sg, nvme_addr_is_dma(n, addr));
/*
* If the entire transfer can be described with a single data block it can
* be mapped directly.
*/
if (NVME_SGL_TYPE(sgl.type) == NVME_SGL_DESCR_TYPE_DATA_BLOCK) {
status = nvme_map_sgl_data(n, sg, sgld, 1, &len, cmd);
if (status) {
goto unmap;
}
goto out;
}
for (;;) {
switch (NVME_SGL_TYPE(sgld->type)) {
case NVME_SGL_DESCR_TYPE_SEGMENT:
case NVME_SGL_DESCR_TYPE_LAST_SEGMENT:
break;
default:
return NVME_INVALID_SGL_SEG_DESCR | NVME_DNR;
}
seg_len = le32_to_cpu(sgld->len);
/* check the length of the (Last) Segment descriptor */
if ((!seg_len || seg_len & 0xf) &&
(NVME_SGL_TYPE(sgld->type) != NVME_SGL_DESCR_TYPE_BIT_BUCKET)) {
return NVME_INVALID_SGL_SEG_DESCR | NVME_DNR;
}
if (UINT64_MAX - addr < seg_len) {
return NVME_DATA_SGL_LEN_INVALID | NVME_DNR;
}
nsgld = seg_len / sizeof(NvmeSglDescriptor);
while (nsgld > SEG_CHUNK_SIZE) {
if (nvme_addr_read(n, addr, segment, sizeof(segment))) {
trace_pci_nvme_err_addr_read(addr);
status = NVME_DATA_TRAS_ERROR;
goto unmap;
}
status = nvme_map_sgl_data(n, sg, segment, SEG_CHUNK_SIZE,
&len, cmd);
if (status) {
goto unmap;
}
nsgld -= SEG_CHUNK_SIZE;
addr += SEG_CHUNK_SIZE * sizeof(NvmeSglDescriptor);
}
ret = nvme_addr_read(n, addr, segment, nsgld *
sizeof(NvmeSglDescriptor));
if (ret) {
trace_pci_nvme_err_addr_read(addr);
status = NVME_DATA_TRAS_ERROR;
goto unmap;
}
last_sgld = &segment[nsgld - 1];
/*
* If the segment ends with a Data Block or Bit Bucket Descriptor Type,
* then we are done.
*/
switch (NVME_SGL_TYPE(last_sgld->type)) {
case NVME_SGL_DESCR_TYPE_DATA_BLOCK:
case NVME_SGL_DESCR_TYPE_BIT_BUCKET:
status = nvme_map_sgl_data(n, sg, segment, nsgld, &len, cmd);
if (status) {
goto unmap;
}
goto out;
default:
break;
}
/*
* If the last descriptor was not a Data Block or Bit Bucket, then the
* current segment must not be a Last Segment.
*/
if (NVME_SGL_TYPE(sgld->type) == NVME_SGL_DESCR_TYPE_LAST_SEGMENT) {
status = NVME_INVALID_SGL_SEG_DESCR | NVME_DNR;
goto unmap;
}
sgld = last_sgld;
addr = le64_to_cpu(sgld->addr);
/*
* Do not map the last descriptor; it will be a Segment or Last Segment
* descriptor and is handled by the next iteration.
*/
status = nvme_map_sgl_data(n, sg, segment, nsgld - 1, &len, cmd);
if (status) {
goto unmap;
}
}
out:
/* if there is any residual left in len, the SGL was too short */
if (len) {
status = NVME_DATA_SGL_LEN_INVALID | NVME_DNR;
goto unmap;
}
return NVME_SUCCESS;
unmap:
nvme_sg_unmap(sg);
return status;
}
uint16_t nvme_map_dptr(NvmeCtrl *n, NvmeSg *sg, size_t len,
NvmeCmd *cmd)
{
uint64_t prp1, prp2;
switch (NVME_CMD_FLAGS_PSDT(cmd->flags)) {
case NVME_PSDT_PRP:
prp1 = le64_to_cpu(cmd->dptr.prp1);
prp2 = le64_to_cpu(cmd->dptr.prp2);
return nvme_map_prp(n, sg, prp1, prp2, len);
case NVME_PSDT_SGL_MPTR_CONTIGUOUS:
case NVME_PSDT_SGL_MPTR_SGL:
return nvme_map_sgl(n, sg, cmd->dptr.sgl, len, cmd);
default:
return NVME_INVALID_FIELD;
}
}
static uint16_t nvme_map_mptr(NvmeCtrl *n, NvmeSg *sg, size_t len,
NvmeCmd *cmd)
{
int psdt = NVME_CMD_FLAGS_PSDT(cmd->flags);
hwaddr mptr = le64_to_cpu(cmd->mptr);
uint16_t status;
if (psdt == NVME_PSDT_SGL_MPTR_SGL) {
NvmeSglDescriptor sgl;
if (nvme_addr_read(n, mptr, &sgl, sizeof(sgl))) {
return NVME_DATA_TRAS_ERROR;
}
status = nvme_map_sgl(n, sg, sgl, len, cmd);
if (status && (status & 0x7ff) == NVME_DATA_SGL_LEN_INVALID) {
status = NVME_MD_SGL_LEN_INVALID | NVME_DNR;
}
return status;
}
nvme_sg_init(n, sg, nvme_addr_is_dma(n, mptr));
status = nvme_map_addr(n, sg, mptr, len);
if (status) {
nvme_sg_unmap(sg);
}
return status;
}
static uint16_t nvme_map_data(NvmeCtrl *n, uint32_t nlb, NvmeRequest *req)
{
NvmeNamespace *ns = req->ns;
NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
uint16_t ctrl = le16_to_cpu(rw->control);
size_t len = nvme_l2b(ns, nlb);
uint16_t status;
if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps) &&
(ctrl & NVME_RW_PRINFO_PRACT && nvme_msize(ns) == 8)) {
goto out;
}
if (nvme_ns_ext(ns)) {
NvmeSg sg;
len += nvme_m2b(ns, nlb);
status = nvme_map_dptr(n, &sg, len, &req->cmd);
if (status) {
return status;
}
nvme_sg_init(n, &req->sg, sg.flags & NVME_SG_DMA);
nvme_sg_split(&sg, ns, &req->sg, NULL);
nvme_sg_unmap(&sg);
return NVME_SUCCESS;
}
out:
return nvme_map_dptr(n, &req->sg, len, &req->cmd);
}
static uint16_t nvme_map_mdata(NvmeCtrl *n, uint32_t nlb, NvmeRequest *req)
{
NvmeNamespace *ns = req->ns;
size_t len = nvme_m2b(ns, nlb);
uint16_t status;
if (nvme_ns_ext(ns)) {
NvmeSg sg;
len += nvme_l2b(ns, nlb);
status = nvme_map_dptr(n, &sg, len, &req->cmd);
if (status) {
return status;
}
nvme_sg_init(n, &req->sg, sg.flags & NVME_SG_DMA);
nvme_sg_split(&sg, ns, NULL, &req->sg);
nvme_sg_unmap(&sg);
return NVME_SUCCESS;
}
return nvme_map_mptr(n, &req->sg, len, &req->cmd);
}
static uint16_t nvme_tx_interleaved(NvmeCtrl *n, NvmeSg *sg, uint8_t *ptr,
uint32_t len, uint32_t bytes,
int32_t skip_bytes, int64_t offset,
NvmeTxDirection dir)
{
hwaddr addr;
uint32_t trans_len, count = bytes;
bool dma = sg->flags & NVME_SG_DMA;
int64_t sge_len;
int sg_idx = 0;
int ret;
assert(sg->flags & NVME_SG_ALLOC);
while (len) {
sge_len = dma ? sg->qsg.sg[sg_idx].len : sg->iov.iov[sg_idx].iov_len;
if (sge_len - offset < 0) {
offset -= sge_len;
sg_idx++;
continue;
}
if (sge_len == offset) {
offset = 0;
sg_idx++;
continue;
}
trans_len = MIN(len, count);
trans_len = MIN(trans_len, sge_len - offset);
if (dma) {
addr = sg->qsg.sg[sg_idx].base + offset;
} else {
addr = (hwaddr)(uintptr_t)sg->iov.iov[sg_idx].iov_base + offset;
}
if (dir == NVME_TX_DIRECTION_TO_DEVICE) {
ret = nvme_addr_read(n, addr, ptr, trans_len);
} else {
ret = nvme_addr_write(n, addr, ptr, trans_len);
}
if (ret) {
return NVME_DATA_TRAS_ERROR;
}
ptr += trans_len;
len -= trans_len;
count -= trans_len;
offset += trans_len;
if (count == 0) {
count = bytes;
offset += skip_bytes;
}
}
return NVME_SUCCESS;
}
static uint16_t nvme_tx(NvmeCtrl *n, NvmeSg *sg, uint8_t *ptr, uint32_t len,
NvmeTxDirection dir)
{
assert(sg->flags & NVME_SG_ALLOC);
if (sg->flags & NVME_SG_DMA) {
uint64_t residual;
if (dir == NVME_TX_DIRECTION_TO_DEVICE) {
residual = dma_buf_write(ptr, len, &sg->qsg);
} else {
residual = dma_buf_read(ptr, len, &sg->qsg);
}
if (unlikely(residual)) {
trace_pci_nvme_err_invalid_dma();
return NVME_INVALID_FIELD | NVME_DNR;
}
} else {
size_t bytes;
if (dir == NVME_TX_DIRECTION_TO_DEVICE) {
bytes = qemu_iovec_to_buf(&sg->iov, 0, ptr, len);
} else {
bytes = qemu_iovec_from_buf(&sg->iov, 0, ptr, len);
}
if (unlikely(bytes != len)) {
trace_pci_nvme_err_invalid_dma();
return NVME_INVALID_FIELD | NVME_DNR;
}
}
return NVME_SUCCESS;
}
static inline uint16_t nvme_c2h(NvmeCtrl *n, uint8_t *ptr, uint32_t len,
NvmeRequest *req)
{
uint16_t status;
status = nvme_map_dptr(n, &req->sg, len, &req->cmd);
if (status) {
return status;
}
return nvme_tx(n, &req->sg, ptr, len, NVME_TX_DIRECTION_FROM_DEVICE);
}
static inline uint16_t nvme_h2c(NvmeCtrl *n, uint8_t *ptr, uint32_t len,
NvmeRequest *req)
{
uint16_t status;
status = nvme_map_dptr(n, &req->sg, len, &req->cmd);
if (status) {
return status;
}
return nvme_tx(n, &req->sg, ptr, len, NVME_TX_DIRECTION_TO_DEVICE);
}
uint16_t nvme_bounce_data(NvmeCtrl *n, uint8_t *ptr, uint32_t len,
NvmeTxDirection dir, NvmeRequest *req)
{
NvmeNamespace *ns = req->ns;
NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
uint16_t ctrl = le16_to_cpu(rw->control);
if (nvme_ns_ext(ns) &&
!(ctrl & NVME_RW_PRINFO_PRACT && nvme_msize(ns) == 8)) {
size_t lsize = nvme_lsize(ns);
size_t msize = nvme_msize(ns);
return nvme_tx_interleaved(n, &req->sg, ptr, len, lsize, msize, 0,
dir);
}
return nvme_tx(n, &req->sg, ptr, len, dir);
}
uint16_t nvme_bounce_mdata(NvmeCtrl *n, uint8_t *ptr, uint32_t len,
NvmeTxDirection dir, NvmeRequest *req)
{
NvmeNamespace *ns = req->ns;
uint16_t status;
if (nvme_ns_ext(ns)) {
size_t lsize = nvme_lsize(ns);
size_t msize = nvme_msize(ns);
return nvme_tx_interleaved(n, &req->sg, ptr, len, msize, lsize, lsize,
dir);
}
nvme_sg_unmap(&req->sg);
status = nvme_map_mptr(n, &req->sg, len, &req->cmd);
if (status) {
return status;
}
return nvme_tx(n, &req->sg, ptr, len, dir);
}
static inline void nvme_blk_read(BlockBackend *blk, int64_t offset,
BlockCompletionFunc *cb, NvmeRequest *req)
{
assert(req->sg.flags & NVME_SG_ALLOC);
if (req->sg.flags & NVME_SG_DMA) {
req->aiocb = dma_blk_read(blk, &req->sg.qsg, offset, BDRV_SECTOR_SIZE,
cb, req);
} else {
req->aiocb = blk_aio_preadv(blk, offset, &req->sg.iov, 0, cb, req);
}
}
static inline void nvme_blk_write(BlockBackend *blk, int64_t offset,
BlockCompletionFunc *cb, NvmeRequest *req)
{
assert(req->sg.flags & NVME_SG_ALLOC);
if (req->sg.flags & NVME_SG_DMA) {
req->aiocb = dma_blk_write(blk, &req->sg.qsg, offset, BDRV_SECTOR_SIZE,
cb, req);
} else {
req->aiocb = blk_aio_pwritev(blk, offset, &req->sg.iov, 0, cb, req);
}
}
static void nvme_post_cqes(void *opaque)
{
NvmeCQueue *cq = opaque;
NvmeCtrl *n = cq->ctrl;
NvmeRequest *req, *next;
int ret;
QTAILQ_FOREACH_SAFE(req, &cq->req_list, entry, next) {
NvmeSQueue *sq;
hwaddr addr;
if (nvme_cq_full(cq)) {
break;
}
sq = req->sq;
req->cqe.status = cpu_to_le16((req->status << 1) | cq->phase);
req->cqe.sq_id = cpu_to_le16(sq->sqid);
req->cqe.sq_head = cpu_to_le16(sq->head);
addr = cq->dma_addr + cq->tail * n->cqe_size;
ret = pci_dma_write(&n->parent_obj, addr, (void *)&req->cqe,
sizeof(req->cqe));
if (ret) {
trace_pci_nvme_err_addr_write(addr);
trace_pci_nvme_err_cfs();
n->bar.csts = NVME_CSTS_FAILED;
break;
}
QTAILQ_REMOVE(&cq->req_list, req, entry);
nvme_inc_cq_tail(cq);
nvme_sg_unmap(&req->sg);
QTAILQ_INSERT_TAIL(&sq->req_list, req, entry);
}
if (cq->tail != cq->head) {
nvme_irq_assert(n, cq);
}
}
static void nvme_enqueue_req_completion(NvmeCQueue *cq, NvmeRequest *req)
{
assert(cq->cqid == req->sq->cqid);
trace_pci_nvme_enqueue_req_completion(nvme_cid(req), cq->cqid,
req->status);
if (req->status) {
trace_pci_nvme_err_req_status(nvme_cid(req), nvme_nsid(req->ns),
req->status, req->cmd.opcode);
}
QTAILQ_REMOVE(&req->sq->out_req_list, req, entry);
QTAILQ_INSERT_TAIL(&cq->req_list, req, entry);
timer_mod(cq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500);
}
static void nvme_process_aers(void *opaque)
{
NvmeCtrl *n = opaque;
NvmeAsyncEvent *event, *next;
trace_pci_nvme_process_aers(n->aer_queued);
QTAILQ_FOREACH_SAFE(event, &n->aer_queue, entry, next) {
NvmeRequest *req;
NvmeAerResult *result;
/* can't post cqe if there is nothing to complete */
if (!n->outstanding_aers) {
trace_pci_nvme_no_outstanding_aers();
break;
}
/* ignore if masked (cqe posted, but event not cleared) */
if (n->aer_mask & (1 << event->result.event_type)) {
trace_pci_nvme_aer_masked(event->result.event_type, n->aer_mask);
continue;
}
QTAILQ_REMOVE(&n->aer_queue, event, entry);
n->aer_queued--;
n->aer_mask |= 1 << event->result.event_type;
n->outstanding_aers--;
req = n->aer_reqs[n->outstanding_aers];
result = (NvmeAerResult *) &req->cqe.result;
result->event_type = event->result.event_type;
result->event_info = event->result.event_info;
result->log_page = event->result.log_page;
g_free(event);
trace_pci_nvme_aer_post_cqe(result->event_type, result->event_info,
result->log_page);
nvme_enqueue_req_completion(&n->admin_cq, req);
}
}
static void nvme_enqueue_event(NvmeCtrl *n, uint8_t event_type,
uint8_t event_info, uint8_t log_page)
{
NvmeAsyncEvent *event;
trace_pci_nvme_enqueue_event(event_type, event_info, log_page);
if (n->aer_queued == n->params.aer_max_queued) {
trace_pci_nvme_enqueue_event_noqueue(n->aer_queued);
return;
}
event = g_new(NvmeAsyncEvent, 1);
event->result = (NvmeAerResult) {
.event_type = event_type,
.event_info = event_info,
.log_page = log_page,
};
QTAILQ_INSERT_TAIL(&n->aer_queue, event, entry);
n->aer_queued++;
nvme_process_aers(n);
}
static void nvme_smart_event(NvmeCtrl *n, uint8_t event)
{
uint8_t aer_info;
/* Ref SPEC <Asynchronous Event Information 0x2013 SMART / Health Status> */
if (!(NVME_AEC_SMART(n->features.async_config) & event)) {
return;
}
switch (event) {
case NVME_SMART_SPARE:
aer_info = NVME_AER_INFO_SMART_SPARE_THRESH;
break;
case NVME_SMART_TEMPERATURE:
aer_info = NVME_AER_INFO_SMART_TEMP_THRESH;
break;
case NVME_SMART_RELIABILITY:
case NVME_SMART_MEDIA_READ_ONLY:
case NVME_SMART_FAILED_VOLATILE_MEDIA:
case NVME_SMART_PMR_UNRELIABLE:
aer_info = NVME_AER_INFO_SMART_RELIABILITY;
break;
default:
return;
}
nvme_enqueue_event(n, NVME_AER_TYPE_SMART, aer_info, NVME_LOG_SMART_INFO);
}
static void nvme_clear_events(NvmeCtrl *n, uint8_t event_type)
{
n->aer_mask &= ~(1 << event_type);
if (!QTAILQ_EMPTY(&n->aer_queue)) {
nvme_process_aers(n);
}
}
static inline uint16_t nvme_check_mdts(NvmeCtrl *n, size_t len)
{
uint8_t mdts = n->params.mdts;
if (mdts && len > n->page_size << mdts) {
trace_pci_nvme_err_mdts(len);
return NVME_INVALID_FIELD | NVME_DNR;
}
return NVME_SUCCESS;
}
static inline uint16_t nvme_check_bounds(NvmeNamespace *ns, uint64_t slba,
uint32_t nlb)
{
uint64_t nsze = le64_to_cpu(ns->id_ns.nsze);
if (unlikely(UINT64_MAX - slba < nlb || slba + nlb > nsze)) {
trace_pci_nvme_err_invalid_lba_range(slba, nlb, nsze);
return NVME_LBA_RANGE | NVME_DNR;
}
return NVME_SUCCESS;
}
static uint16_t nvme_check_dulbe(NvmeNamespace *ns, uint64_t slba,
uint32_t nlb)
{
BlockDriverState *bs = blk_bs(ns->blkconf.blk);
int64_t pnum = 0, bytes = nvme_l2b(ns, nlb);
int64_t offset = nvme_l2b(ns, slba);
bool zeroed;
int ret;
Error *local_err = NULL;
/*
* `pnum` holds the number of bytes after offset that shares the same
* allocation status as the byte at offset. If `pnum` is different from
* `bytes`, we should check the allocation status of the next range and
* continue this until all bytes have been checked.
*/
do {
bytes -= pnum;
ret = bdrv_block_status(bs, offset, bytes, &pnum, NULL, NULL);
if (ret < 0) {
error_setg_errno(&local_err, -ret, "unable to get block status");
error_report_err(local_err);
return NVME_INTERNAL_DEV_ERROR;
}
zeroed = !!(ret & BDRV_BLOCK_ZERO);
trace_pci_nvme_block_status(offset, bytes, pnum, ret, zeroed);
if (zeroed) {
return NVME_DULB;
}
offset += pnum;
} while (pnum != bytes);
return NVME_SUCCESS;
}
static void nvme_aio_err(NvmeRequest *req, int ret)
{
uint16_t status = NVME_SUCCESS;
Error *local_err = NULL;
switch (req->cmd.opcode) {
case NVME_CMD_READ:
status = NVME_UNRECOVERED_READ;
break;
case NVME_CMD_FLUSH:
case NVME_CMD_WRITE:
case NVME_CMD_WRITE_ZEROES:
case NVME_CMD_ZONE_APPEND:
status = NVME_WRITE_FAULT;
break;
default:
status = NVME_INTERNAL_DEV_ERROR;
break;
}
trace_pci_nvme_err_aio(nvme_cid(req), strerror(-ret), status);
error_setg_errno(&local_err, -ret, "aio failed");
error_report_err(local_err);
/*
* Set the command status code to the first encountered error but allow a
* subsequent Internal Device Error to trump it.
*/
if (req->status && status != NVME_INTERNAL_DEV_ERROR) {
return;
}
req->status = status;
}
static inline uint32_t nvme_zone_idx(NvmeNamespace *ns, uint64_t slba)
{
return ns->zone_size_log2 > 0 ? slba >> ns->zone_size_log2 :
slba / ns->zone_size;
}
static inline NvmeZone *nvme_get_zone_by_slba(NvmeNamespace *ns, uint64_t slba)
{
uint32_t zone_idx = nvme_zone_idx(ns, slba);
assert(zone_idx < ns->num_zones);
return &ns->zone_array[zone_idx];
}
static uint16_t nvme_check_zone_state_for_write(NvmeZone *zone)
{
uint64_t zslba = zone->d.zslba;
switch (nvme_get_zone_state(zone)) {
case NVME_ZONE_STATE_EMPTY:
case NVME_ZONE_STATE_IMPLICITLY_OPEN:
case NVME_ZONE_STATE_EXPLICITLY_OPEN:
case NVME_ZONE_STATE_CLOSED:
return NVME_SUCCESS;
case NVME_ZONE_STATE_FULL:
trace_pci_nvme_err_zone_is_full(zslba);
return NVME_ZONE_FULL;
case NVME_ZONE_STATE_OFFLINE:
trace_pci_nvme_err_zone_is_offline(zslba);
return NVME_ZONE_OFFLINE;
case NVME_ZONE_STATE_READ_ONLY:
trace_pci_nvme_err_zone_is_read_only(zslba);
return NVME_ZONE_READ_ONLY;
default:
assert(false);
}
return NVME_INTERNAL_DEV_ERROR;
}
static uint16_t nvme_check_zone_write(NvmeNamespace *ns, NvmeZone *zone,
uint64_t slba, uint32_t nlb)
{
uint64_t zcap = nvme_zone_wr_boundary(zone);
uint16_t status;
status = nvme_check_zone_state_for_write(zone);
if (status) {
return status;
}
if (unlikely(slba != zone->w_ptr)) {
trace_pci_nvme_err_write_not_at_wp(slba, zone->d.zslba, zone->w_ptr);
return NVME_ZONE_INVALID_WRITE;
}
if (unlikely((slba + nlb) > zcap)) {
trace_pci_nvme_err_zone_boundary(slba, nlb, zcap);
return NVME_ZONE_BOUNDARY_ERROR;
}
return NVME_SUCCESS;
}
static uint16_t nvme_check_zone_state_for_read(NvmeZone *zone)
{
switch (nvme_get_zone_state(zone)) {
case NVME_ZONE_STATE_EMPTY:
case NVME_ZONE_STATE_IMPLICITLY_OPEN:
case NVME_ZONE_STATE_EXPLICITLY_OPEN:
case NVME_ZONE_STATE_FULL:
case NVME_ZONE_STATE_CLOSED:
case NVME_ZONE_STATE_READ_ONLY:
return NVME_SUCCESS;
case NVME_ZONE_STATE_OFFLINE:
trace_pci_nvme_err_zone_is_offline(zone->d.zslba);
return NVME_ZONE_OFFLINE;
default:
assert(false);
}
return NVME_INTERNAL_DEV_ERROR;
}
static uint16_t nvme_check_zone_read(NvmeNamespace *ns, uint64_t slba,
uint32_t nlb)
{
NvmeZone *zone = nvme_get_zone_by_slba(ns, slba);
uint64_t bndry = nvme_zone_rd_boundary(ns, zone);
uint64_t end = slba + nlb;
uint16_t status;
status = nvme_check_zone_state_for_read(zone);
if (status) {
;
} else if (unlikely(end > bndry)) {
if (!ns->params.cross_zone_read) {
status = NVME_ZONE_BOUNDARY_ERROR;
} else {
/*
* Read across zone boundary - check that all subsequent
* zones that are being read have an appropriate state.
*/
do {
zone++;
status = nvme_check_zone_state_for_read(zone);
if (status) {
break;
}
} while (end > nvme_zone_rd_boundary(ns, zone));
}
}
return status;
}
static uint16_t nvme_zrm_finish(NvmeNamespace *ns, NvmeZone *zone)
{
switch (nvme_get_zone_state(zone)) {
case NVME_ZONE_STATE_FULL:
return NVME_SUCCESS;
case NVME_ZONE_STATE_IMPLICITLY_OPEN:
case NVME_ZONE_STATE_EXPLICITLY_OPEN:
nvme_aor_dec_open(ns);
/* fallthrough */
case NVME_ZONE_STATE_CLOSED:
nvme_aor_dec_active(ns);
/* fallthrough */
case NVME_ZONE_STATE_EMPTY:
nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_FULL);
return NVME_SUCCESS;
default:
return NVME_ZONE_INVAL_TRANSITION;
}
}
static uint16_t nvme_zrm_close(NvmeNamespace *ns, NvmeZone *zone)
{
switch (nvme_get_zone_state(zone)) {
case NVME_ZONE_STATE_EXPLICITLY_OPEN:
case NVME_ZONE_STATE_IMPLICITLY_OPEN:
nvme_aor_dec_open(ns);
nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_CLOSED);
/* fall through */
case NVME_ZONE_STATE_CLOSED:
return NVME_SUCCESS;
default:
return NVME_ZONE_INVAL_TRANSITION;
}
}
static void nvme_zrm_auto_transition_zone(NvmeNamespace *ns)
{
NvmeZone *zone;
if (ns->params.max_open_zones &&
ns->nr_open_zones == ns->params.max_open_zones) {
zone = QTAILQ_FIRST(&ns->imp_open_zones);
if (zone) {
/*
* Automatically close this implicitly open zone.
*/
QTAILQ_REMOVE(&ns->imp_open_zones, zone, entry);
nvme_zrm_close(ns, zone);
}
}
}
enum {
NVME_ZRM_AUTO = 1 << 0,
};
static uint16_t nvme_zrm_open_flags(NvmeNamespace *ns, NvmeZone *zone,
int flags)
{
int act = 0;
uint16_t status;
switch (nvme_get_zone_state(zone)) {
case NVME_ZONE_STATE_EMPTY:
act = 1;
/* fallthrough */
case NVME_ZONE_STATE_CLOSED:
nvme_zrm_auto_transition_zone(ns);
status = nvme_aor_check(ns, act, 1);
if (status) {
return status;
}
if (act) {
nvme_aor_inc_active(ns);
}
nvme_aor_inc_open(ns);
if (flags & NVME_ZRM_AUTO) {
nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_IMPLICITLY_OPEN);
return NVME_SUCCESS;
}
/* fallthrough */
case NVME_ZONE_STATE_IMPLICITLY_OPEN:
if (flags & NVME_ZRM_AUTO) {
return NVME_SUCCESS;
}
nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_EXPLICITLY_OPEN);
/* fallthrough */
case NVME_ZONE_STATE_EXPLICITLY_OPEN:
return NVME_SUCCESS;
default:
return NVME_ZONE_INVAL_TRANSITION;
}
}
static inline uint16_t nvme_zrm_auto(NvmeNamespace *ns, NvmeZone *zone)
{
return nvme_zrm_open_flags(ns, zone, NVME_ZRM_AUTO);
}
static inline uint16_t nvme_zrm_open(NvmeNamespace *ns, NvmeZone *zone)
{
return nvme_zrm_open_flags(ns, zone, 0);
}
static void nvme_advance_zone_wp(NvmeNamespace *ns, NvmeZone *zone,
uint32_t nlb)
{
zone->d.wp += nlb;
if (zone->d.wp == nvme_zone_wr_boundary(zone)) {
nvme_zrm_finish(ns, zone);
}
}
static void nvme_finalize_zoned_write(NvmeNamespace *ns, NvmeRequest *req)
{
NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
NvmeZone *zone;
uint64_t slba;
uint32_t nlb;
slba = le64_to_cpu(rw->slba);
nlb = le16_to_cpu(rw->nlb) + 1;
zone = nvme_get_zone_by_slba(ns, slba);
nvme_advance_zone_wp(ns, zone, nlb);
}
static inline bool nvme_is_write(NvmeRequest *req)
{
NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
return rw->opcode == NVME_CMD_WRITE ||
rw->opcode == NVME_CMD_ZONE_APPEND ||
rw->opcode == NVME_CMD_WRITE_ZEROES;
}
static void nvme_misc_cb(void *opaque, int ret)
{
NvmeRequest *req = opaque;
NvmeNamespace *ns = req->ns;
BlockBackend *blk = ns->blkconf.blk;
BlockAcctCookie *acct = &req->acct;
BlockAcctStats *stats = blk_get_stats(blk);
trace_pci_nvme_misc_cb(nvme_cid(req), blk_name(blk));
if (ret) {
block_acct_failed(stats, acct);
nvme_aio_err(req, ret);
} else {
block_acct_done(stats, acct);
}
nvme_enqueue_req_completion(nvme_cq(req), req);
}
void nvme_rw_complete_cb(void *opaque, int ret)
{
NvmeRequest *req = opaque;
NvmeNamespace *ns = req->ns;
BlockBackend *blk = ns->blkconf.blk;
BlockAcctCookie *acct = &req->acct;
BlockAcctStats *stats = blk_get_stats(blk);
trace_pci_nvme_rw_complete_cb(nvme_cid(req), blk_name(blk));
if (ret) {
block_acct_failed(stats, acct);
nvme_aio_err(req, ret);
} else {
block_acct_done(stats, acct);
}
if (ns->params.zoned && nvme_is_write(req)) {
nvme_finalize_zoned_write(ns, req);
}
nvme_enqueue_req_completion(nvme_cq(req), req);
}
static void nvme_rw_cb(void *opaque, int ret)
{
NvmeRequest *req = opaque;
NvmeNamespace *ns = req->ns;
BlockBackend *blk = ns->blkconf.blk;
trace_pci_nvme_rw_cb(nvme_cid(req), blk_name(blk));
if (ret) {
goto out;
}
if (nvme_msize(ns)) {
NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
uint64_t slba = le64_to_cpu(rw->slba);
uint32_t nlb = (uint32_t)le16_to_cpu(rw->nlb) + 1;
uint64_t offset = ns->mdata_offset + nvme_m2b(ns, slba);
if (req->cmd.opcode == NVME_CMD_WRITE_ZEROES) {
size_t mlen = nvme_m2b(ns, nlb);
req->aiocb = blk_aio_pwrite_zeroes(blk, offset, mlen,
BDRV_REQ_MAY_UNMAP,
nvme_rw_complete_cb, req);
return;
}
if (nvme_ns_ext(ns) || req->cmd.mptr) {
uint16_t status;
nvme_sg_unmap(&req->sg);
status = nvme_map_mdata(nvme_ctrl(req), nlb, req);
if (status) {
ret = -EFAULT;
goto out;
}
if (req->cmd.opcode == NVME_CMD_READ) {
return nvme_blk_read(blk, offset, nvme_rw_complete_cb, req);
}
return nvme_blk_write(blk, offset, nvme_rw_complete_cb, req);
}
}
out:
nvme_rw_complete_cb(req, ret);
}
struct nvme_aio_format_ctx {
NvmeRequest *req;
NvmeNamespace *ns;
/* number of outstanding write zeroes for this namespace */
int *count;
};
static void nvme_aio_format_cb(void *opaque, int ret)
{
struct nvme_aio_format_ctx *ctx = opaque;
NvmeRequest *req = ctx->req;
NvmeNamespace *ns = ctx->ns;
uintptr_t *num_formats = (uintptr_t *)&req->opaque;
int *count = ctx->count;
g_free(ctx);
if (ret) {
nvme_aio_err(req, ret);
}
if (--(*count)) {
return;
}
g_free(count);
ns->status = 0x0;
if (--(*num_formats)) {
return;
}
nvme_enqueue_req_completion(nvme_cq(req), req);
}
struct nvme_aio_flush_ctx {
NvmeRequest *req;
NvmeNamespace *ns;
BlockAcctCookie acct;
};
static void nvme_aio_flush_cb(void *opaque, int ret)
{
struct nvme_aio_flush_ctx *ctx = opaque;
NvmeRequest *req = ctx->req;
uintptr_t *num_flushes = (uintptr_t *)&req->opaque;
BlockBackend *blk = ctx->ns->blkconf.blk;
BlockAcctCookie *acct = &ctx->acct;
BlockAcctStats *stats = blk_get_stats(blk);
trace_pci_nvme_aio_flush_cb(nvme_cid(req), blk_name(blk));
if (!ret) {
block_acct_done(stats, acct);
} else {
block_acct_failed(stats, acct);
nvme_aio_err(req, ret);
}
(*num_flushes)--;
g_free(ctx);
if (*num_flushes) {
return;
}
nvme_enqueue_req_completion(nvme_cq(req), req);
}
static void nvme_verify_cb(void *opaque, int ret)
{
NvmeBounceContext *ctx = opaque;
NvmeRequest *req = ctx->req;
NvmeNamespace *ns = req->ns;
BlockBackend *blk = ns->blkconf.blk;
BlockAcctCookie *acct = &req->acct;
BlockAcctStats *stats = blk_get_stats(blk);
NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
uint64_t slba = le64_to_cpu(rw->slba);
uint16_t ctrl = le16_to_cpu(rw->control);
uint16_t apptag = le16_to_cpu(rw->apptag);
uint16_t appmask = le16_to_cpu(rw->appmask);
uint32_t reftag = le32_to_cpu(rw->reftag);
uint16_t status;
trace_pci_nvme_verify_cb(nvme_cid(req), NVME_RW_PRINFO(ctrl), apptag,
appmask, reftag);
if (ret) {
block_acct_failed(stats, acct);
nvme_aio_err(req, ret);
goto out;
}
block_acct_done(stats, acct);
if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
status = nvme_dif_mangle_mdata(ns, ctx->mdata.bounce,
ctx->mdata.iov.size, slba);
if (status) {
req->status = status;
goto out;
}
req->status = nvme_dif_check(ns, ctx->data.bounce, ctx->data.iov.size,
ctx->mdata.bounce, ctx->mdata.iov.size,
ctrl, slba, apptag, appmask, reftag);
}
out:
qemu_iovec_destroy(&ctx->data.iov);
g_free(ctx->data.bounce);
qemu_iovec_destroy(&ctx->mdata.iov);
g_free(ctx->mdata.bounce);
g_free(ctx);
nvme_enqueue_req_completion(nvme_cq(req), req);
}
static void nvme_verify_mdata_in_cb(void *opaque, int ret)
{
NvmeBounceContext *ctx = opaque;
NvmeRequest *req = ctx->req;
NvmeNamespace *ns = req->ns;
NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
uint64_t slba = le64_to_cpu(rw->slba);
uint32_t nlb = le16_to_cpu(rw->nlb) + 1;
size_t mlen = nvme_m2b(ns, nlb);
uint64_t offset = ns->mdata_offset + nvme_m2b(ns, slba);
BlockBackend *blk = ns->blkconf.blk;
trace_pci_nvme_verify_mdata_in_cb(nvme_cid(req), blk_name(blk));
if (ret) {
goto out;
}
ctx->mdata.bounce = g_malloc(mlen);
qemu_iovec_reset(&ctx->mdata.iov);
qemu_iovec_add(&ctx->mdata.iov, ctx->mdata.bounce, mlen);
req->aiocb = blk_aio_preadv(blk, offset, &ctx->mdata.iov, 0,
nvme_verify_cb, ctx);
return;
out:
nvme_verify_cb(ctx, ret);
}
static void nvme_aio_discard_cb(void *opaque, int ret)
{
NvmeRequest *req = opaque;
uintptr_t *discards = (uintptr_t *)&req->opaque;
trace_pci_nvme_aio_discard_cb(nvme_cid(req));
if (ret) {
nvme_aio_err(req, ret);
}
(*discards)--;
if (*discards) {
return;
}
nvme_enqueue_req_completion(nvme_cq(req), req);
}
struct nvme_zone_reset_ctx {
NvmeRequest *req;
NvmeZone *zone;
};
static void nvme_aio_zone_reset_complete_cb(void *opaque, int ret)
{
struct nvme_zone_reset_ctx *ctx = opaque;
NvmeRequest *req = ctx->req;
NvmeNamespace *ns = req->ns;
NvmeZone *zone = ctx->zone;
uintptr_t *resets = (uintptr_t *)&req->opaque;
if (ret) {
nvme_aio_err(req, ret);
goto out;
}
switch (nvme_get_zone_state(zone)) {
case NVME_ZONE_STATE_EXPLICITLY_OPEN:
case NVME_ZONE_STATE_IMPLICITLY_OPEN:
nvme_aor_dec_open(ns);
/* fall through */
case NVME_ZONE_STATE_CLOSED:
nvme_aor_dec_active(ns);
/* fall through */
case NVME_ZONE_STATE_FULL:
zone->w_ptr = zone->d.zslba;
zone->d.wp = zone->w_ptr;
nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_EMPTY);
/* fall through */
default:
break;
}
out:
g_free(ctx);
(*resets)--;
if (*resets) {
return;
}
nvme_enqueue_req_completion(nvme_cq(req), req);
}
static void nvme_aio_zone_reset_cb(void *opaque, int ret)
{
struct nvme_zone_reset_ctx *ctx = opaque;
NvmeRequest *req = ctx->req;
NvmeNamespace *ns = req->ns;
NvmeZone *zone = ctx->zone;
trace_pci_nvme_aio_zone_reset_cb(nvme_cid(req), zone->d.zslba);
if (ret) {
goto out;
}
if (nvme_msize(ns)) {
int64_t offset = ns->mdata_offset + nvme_m2b(ns, zone->d.zslba);
blk_aio_pwrite_zeroes(ns->blkconf.blk, offset,
nvme_m2b(ns, ns->zone_size), BDRV_REQ_MAY_UNMAP,
nvme_aio_zone_reset_complete_cb, ctx);
return;
}
out:
nvme_aio_zone_reset_complete_cb(opaque, ret);
}
struct nvme_copy_ctx {
int copies;
uint8_t *bounce;
uint8_t *mbounce;
uint32_t nlb;
NvmeCopySourceRange *ranges;
};
struct nvme_copy_in_ctx {
NvmeRequest *req;
QEMUIOVector iov;
NvmeCopySourceRange *range;
};
static void nvme_copy_complete_cb(void *opaque, int ret)
{
NvmeRequest *req = opaque;
NvmeNamespace *ns = req->ns;
struct nvme_copy_ctx *ctx = req->opaque;
if (ret) {
block_acct_failed(blk_get_stats(ns->blkconf.blk), &req->acct);
nvme_aio_err(req, ret);
goto out;
}
block_acct_done(blk_get_stats(ns->blkconf.blk), &req->acct);
out:
if (ns->params.zoned) {
NvmeCopyCmd *copy = (NvmeCopyCmd *)&req->cmd;
uint64_t sdlba = le64_to_cpu(copy->sdlba);
NvmeZone *zone = nvme_get_zone_by_slba(ns, sdlba);
nvme_advance_zone_wp(ns, zone, ctx->nlb);
}
g_free(ctx->bounce);
g_free(ctx->mbounce);
g_free(ctx);
nvme_enqueue_req_completion(nvme_cq(req), req);
}
static void nvme_copy_cb(void *opaque, int ret)
{
NvmeRequest *req = opaque;
NvmeNamespace *ns = req->ns;
struct nvme_copy_ctx *ctx = req->opaque;
trace_pci_nvme_copy_cb(nvme_cid(req));
if (ret) {
goto out;
}
if (nvme_msize(ns)) {
NvmeCopyCmd *copy = (NvmeCopyCmd *)&req->cmd;
uint64_t sdlba = le64_to_cpu(copy->sdlba);
int64_t offset = ns->mdata_offset + nvme_m2b(ns, sdlba);
qemu_iovec_reset(&req->sg.iov);
qemu_iovec_add(&req->sg.iov, ctx->mbounce, nvme_m2b(ns, ctx->nlb));
req->aiocb = blk_aio_pwritev(ns->blkconf.blk, offset, &req->sg.iov, 0,
nvme_copy_complete_cb, req);
return;
}
out:
nvme_copy_complete_cb(opaque, ret);
}
static void nvme_copy_in_complete(NvmeRequest *req)
{
NvmeNamespace *ns = req->ns;
NvmeCopyCmd *copy = (NvmeCopyCmd *)&req->cmd;
struct nvme_copy_ctx *ctx = req->opaque;
uint64_t sdlba = le64_to_cpu(copy->sdlba);
uint16_t status;
trace_pci_nvme_copy_in_complete(nvme_cid(req));
block_acct_done(blk_get_stats(ns->blkconf.blk), &req->acct);
if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
uint16_t prinfor = (copy->control[0] >> 4) & 0xf;
uint16_t prinfow = (copy->control[2] >> 2) & 0xf;
uint16_t nr = copy->nr + 1;
NvmeCopySourceRange *range;
uint64_t slba;
uint32_t nlb;
uint16_t apptag, appmask;
uint32_t reftag;
uint8_t *buf = ctx->bounce, *mbuf = ctx->mbounce;
size_t len, mlen;
int i;
/*
* The dif helpers expects prinfo to be similar to the control field of
* the NvmeRwCmd, so shift by 10 to fake it.
*/
prinfor = prinfor << 10;
prinfow = prinfow << 10;
for (i = 0; i < nr; i++) {
range = &ctx->ranges[i];
slba = le64_to_cpu(range->slba);
nlb = le16_to_cpu(range->nlb) + 1;
len = nvme_l2b(ns, nlb);
mlen = nvme_m2b(ns, nlb);
apptag = le16_to_cpu(range->apptag);
appmask = le16_to_cpu(range->appmask);
reftag = le32_to_cpu(range->reftag);
status = nvme_dif_check(ns, buf, len, mbuf, mlen, prinfor, slba,
apptag, appmask, reftag);
if (status) {
goto invalid;
}
buf += len;
mbuf += mlen;
}
apptag = le16_to_cpu(copy->apptag);
appmask = le16_to_cpu(copy->appmask);
reftag = le32_to_cpu(copy->reftag);
if (prinfow & NVME_RW_PRINFO_PRACT) {
size_t len = nvme_l2b(ns, ctx->nlb);
size_t mlen = nvme_m2b(ns, ctx->nlb);
status = nvme_check_prinfo(ns, prinfow, sdlba, reftag);
if (status) {
goto invalid;
}
nvme_dif_pract_generate_dif(ns, ctx->bounce, len, ctx->mbounce,
mlen, apptag, reftag);
} else {
status = nvme_dif_check(ns, ctx->bounce, len, ctx->mbounce, mlen,
prinfow, sdlba, apptag, appmask, reftag);
if (status) {
goto invalid;
}
}
}
status = nvme_check_bounds(ns, sdlba, ctx->nlb);
if (status) {
goto invalid;
}
if (ns->params.zoned) {
NvmeZone *zone = nvme_get_zone_by_slba(ns, sdlba);
status = nvme_check_zone_write(ns, zone, sdlba, ctx->nlb);
if (status) {
goto invalid;
}
status = nvme_zrm_auto(ns, zone);
if (status) {
goto invalid;
}
zone->w_ptr += ctx->nlb;
}
qemu_iovec_init(&req->sg.iov, 1);
qemu_iovec_add(&req->sg.iov, ctx->bounce, nvme_l2b(ns, ctx->nlb));
block_acct_start(blk_get_stats(ns->blkconf.blk), &req->acct, 0,
BLOCK_ACCT_WRITE);
req->aiocb = blk_aio_pwritev(ns->blkconf.blk, nvme_l2b(ns, sdlba),
&req->sg.iov, 0, nvme_copy_cb, req);
return;
invalid:
req->status = status;
g_free(ctx->bounce);
g_free(ctx);
nvme_enqueue_req_completion(nvme_cq(req), req);
}
static void nvme_aio_copy_in_cb(void *opaque, int ret)
{
struct nvme_copy_in_ctx *in_ctx = opaque;
NvmeRequest *req = in_ctx->req;
NvmeNamespace *ns = req->ns;
struct nvme_copy_ctx *ctx = req->opaque;
qemu_iovec_destroy(&in_ctx->iov);
g_free(in_ctx);
trace_pci_nvme_aio_copy_in_cb(nvme_cid(req));
if (ret) {
nvme_aio_err(req, ret);
}
ctx->copies--;
if (ctx->copies) {
return;
}
if (req->status) {
block_acct_failed(blk_get_stats(ns->blkconf.blk), &req->acct);
g_free(ctx->bounce);
g_free(ctx->mbounce);
g_free(ctx);
nvme_enqueue_req_completion(nvme_cq(req), req);
return;
}
nvme_copy_in_complete(req);
}
struct nvme_compare_ctx {
struct {
QEMUIOVector iov;
uint8_t *bounce;
} data;
struct {
QEMUIOVector iov;
uint8_t *bounce;
} mdata;
};
static void nvme_compare_mdata_cb(void *opaque, int ret)
{
NvmeRequest *req = opaque;
NvmeNamespace *ns = req->ns;
NvmeCtrl *n = nvme_ctrl(req);
NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
uint16_t ctrl = le16_to_cpu(rw->control);
uint16_t apptag = le16_to_cpu(rw->apptag);
uint16_t appmask = le16_to_cpu(rw->appmask);
uint32_t reftag = le32_to_cpu(rw->reftag);
struct nvme_compare_ctx *ctx = req->opaque;
g_autofree uint8_t *buf = NULL;
BlockBackend *blk = ns->blkconf.blk;
BlockAcctCookie *acct = &req->acct;
BlockAcctStats *stats = blk_get_stats(blk);
uint16_t status = NVME_SUCCESS;
trace_pci_nvme_compare_mdata_cb(nvme_cid(req));
if (ret) {
block_acct_failed(stats, acct);
nvme_aio_err(req, ret);
goto out;
}
buf = g_malloc(ctx->mdata.iov.size);
status = nvme_bounce_mdata(n, buf, ctx->mdata.iov.size,
NVME_TX_DIRECTION_TO_DEVICE, req);
if (status) {
req->status = status;
goto out;
}
if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
uint64_t slba = le64_to_cpu(rw->slba);
uint8_t *bufp;
uint8_t *mbufp = ctx->mdata.bounce;
uint8_t *end = mbufp + ctx->mdata.iov.size;
size_t msize = nvme_msize(ns);
int16_t pil = 0;
status = nvme_dif_check(ns, ctx->data.bounce, ctx->data.iov.size,
ctx->mdata.bounce, ctx->mdata.iov.size, ctrl,
slba, apptag, appmask, reftag);
if (status) {
req->status = status;
goto out;
}
/*
* When formatted with protection information, do not compare the DIF
* tuple.
*/
if (!(ns->id_ns.dps & NVME_ID_NS_DPS_FIRST_EIGHT)) {
pil = nvme_msize(ns) - sizeof(NvmeDifTuple);
}
for (bufp = buf; mbufp < end; bufp += msize, mbufp += msize) {
if (memcmp(bufp + pil, mbufp + pil, msize - pil)) {
req->status = NVME_CMP_FAILURE;
goto out;
}
}
goto out;
}
if (memcmp(buf, ctx->mdata.bounce, ctx->mdata.iov.size)) {
req->status = NVME_CMP_FAILURE;
goto out;
}
block_acct_done(stats, acct);
out:
qemu_iovec_destroy(&ctx->data.iov);
g_free(ctx->data.bounce);
qemu_iovec_destroy(&ctx->mdata.iov);
g_free(ctx->mdata.bounce);
g_free(ctx);
nvme_enqueue_req_completion(nvme_cq(req), req);
}
static void nvme_compare_data_cb(void *opaque, int ret)
{
NvmeRequest *req = opaque;
NvmeCtrl *n = nvme_ctrl(req);
NvmeNamespace *ns = req->ns;
BlockBackend *blk = ns->blkconf.blk;
BlockAcctCookie *acct = &req->acct;
BlockAcctStats *stats = blk_get_stats(blk);
struct nvme_compare_ctx *ctx = req->opaque;
g_autofree uint8_t *buf = NULL;
uint16_t status;
trace_pci_nvme_compare_data_cb(nvme_cid(req));
if (ret) {
block_acct_failed(stats, acct);
nvme_aio_err(req, ret);
goto out;
}
buf = g_malloc(ctx->data.iov.size);
status = nvme_bounce_data(n, buf, ctx->data.iov.size,
NVME_TX_DIRECTION_TO_DEVICE, req);
if (status) {
req->status = status;
goto out;
}
if (memcmp(buf, ctx->data.bounce, ctx->data.iov.size)) {
req->status = NVME_CMP_FAILURE;
goto out;
}
if (nvme_msize(ns)) {
NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
uint64_t slba = le64_to_cpu(rw->slba);
uint32_t nlb = le16_to_cpu(rw->nlb) + 1;
size_t mlen = nvme_m2b(ns, nlb);
uint64_t offset = ns->mdata_offset + nvme_m2b(ns, slba);
ctx->mdata.bounce = g_malloc(mlen);
qemu_iovec_init(&ctx->mdata.iov, 1);
qemu_iovec_add(&ctx->mdata.iov, ctx->mdata.bounce, mlen);
req->aiocb = blk_aio_preadv(blk, offset, &ctx->mdata.iov, 0,
nvme_compare_mdata_cb, req);
return;
}
block_acct_done(stats, acct);
out:
qemu_iovec_destroy(&ctx->data.iov);
g_free(ctx->data.bounce);
g_free(ctx);
nvme_enqueue_req_completion(nvme_cq(req), req);
}
static uint16_t nvme_dsm(NvmeCtrl *n, NvmeRequest *req)
{
NvmeNamespace *ns = req->ns;
NvmeDsmCmd *dsm = (NvmeDsmCmd *) &req->cmd;
uint32_t attr = le32_to_cpu(dsm->attributes);
uint32_t nr = (le32_to_cpu(dsm->nr) & 0xff) + 1;
uint16_t status = NVME_SUCCESS;
trace_pci_nvme_dsm(nvme_cid(req), nvme_nsid(ns), nr, attr);
if (attr & NVME_DSMGMT_AD) {
int64_t offset;
size_t len;
NvmeDsmRange range[nr];
uintptr_t *discards = (uintptr_t *)&req->opaque;
status = nvme_h2c(n, (uint8_t *)range, sizeof(range), req);
if (status) {
return status;
}
/*
* AIO callbacks may be called immediately, so initialize discards to 1
* to make sure the the callback does not complete the request before
* all discards have been issued.
*/
*discards = 1;
for (int i = 0; i < nr; i++) {
uint64_t slba = le64_to_cpu(range[i].slba);
uint32_t nlb = le32_to_cpu(range[i].nlb);
if (nvme_check_bounds(ns, slba, nlb)) {
continue;
}
trace_pci_nvme_dsm_deallocate(nvme_cid(req), nvme_nsid(ns), slba,
nlb);
if (nlb > n->dmrsl) {
trace_pci_nvme_dsm_single_range_limit_exceeded(nlb, n->dmrsl);
}
offset = nvme_l2b(ns, slba);
len = nvme_l2b(ns, nlb);
while (len) {
size_t bytes = MIN(BDRV_REQUEST_MAX_BYTES, len);
(*discards)++;
blk_aio_pdiscard(ns->blkconf.blk, offset, bytes,
nvme_aio_discard_cb, req);
offset += bytes;
len -= bytes;
}
}
/* account for the 1-initialization */
(*discards)--;
if (*discards) {
status = NVME_NO_COMPLETE;
} else {
status = req->status;
}
}
return status;
}
static uint16_t nvme_verify(NvmeCtrl *n, NvmeRequest *req)
{
NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
NvmeNamespace *ns = req->ns;
BlockBackend *blk = ns->blkconf.blk;
uint64_t slba = le64_to_cpu(rw->slba);
uint32_t nlb = le16_to_cpu(rw->nlb) + 1;
size_t len = nvme_l2b(ns, nlb);
int64_t offset = nvme_l2b(ns, slba);
uint16_t ctrl = le16_to_cpu(rw->control);
uint32_t reftag = le32_to_cpu(rw->reftag);
NvmeBounceContext *ctx = NULL;
uint16_t status;
trace_pci_nvme_verify(nvme_cid(req), nvme_nsid(ns), slba, nlb);
if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
status = nvme_check_prinfo(ns, ctrl, slba, reftag);
if (status) {
return status;
}
if (ctrl & NVME_RW_PRINFO_PRACT) {
return NVME_INVALID_PROT_INFO | NVME_DNR;
}
}
if (len > n->page_size << n->params.vsl) {
return NVME_INVALID_FIELD | NVME_DNR;
}
status = nvme_check_bounds(ns, slba, nlb);
if (status) {
return status;
}
if (NVME_ERR_REC_DULBE(ns->features.err_rec)) {
status = nvme_check_dulbe(ns, slba, nlb);
if (status) {
return status;
}
}
ctx = g_new0(NvmeBounceContext, 1);
ctx->req = req;
ctx->data.bounce = g_malloc(len);
qemu_iovec_init(&ctx->data.iov, 1);
qemu_iovec_add(&ctx->data.iov, ctx->data.bounce, len);
block_acct_start(blk_get_stats(blk), &req->acct, ctx->data.iov.size,
BLOCK_ACCT_READ);
req->aiocb = blk_aio_preadv(ns->blkconf.blk, offset, &ctx->data.iov, 0,
nvme_verify_mdata_in_cb, ctx);
return NVME_NO_COMPLETE;
}
static uint16_t nvme_copy(NvmeCtrl *n, NvmeRequest *req)
{
NvmeNamespace *ns = req->ns;
NvmeCopyCmd *copy = (NvmeCopyCmd *)&req->cmd;
uint16_t nr = copy->nr + 1;
uint8_t format = copy->control[0] & 0xf;
/*
* Shift the PRINFOR/PRINFOW values by 10 to allow reusing the
* NVME_RW_PRINFO constants.
*/
uint16_t prinfor = ((copy->control[0] >> 4) & 0xf) << 10;
uint16_t prinfow = ((copy->control[2] >> 2) & 0xf) << 10;
uint32_t nlb = 0;
uint8_t *bounce = NULL, *bouncep = NULL;
uint8_t *mbounce = NULL, *mbouncep = NULL;
struct nvme_copy_ctx *ctx;
uint16_t status;
int i;
trace_pci_nvme_copy(nvme_cid(req), nvme_nsid(ns), nr, format);
if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps) &&
((prinfor & NVME_RW_PRINFO_PRACT) != (prinfow & NVME_RW_PRINFO_PRACT))) {
return NVME_INVALID_FIELD | NVME_DNR;
}
if (!(n->id_ctrl.ocfs & (1 << format))) {
trace_pci_nvme_err_copy_invalid_format(format);
return NVME_INVALID_FIELD | NVME_DNR;
}
if (nr > ns->id_ns.msrc + 1) {
return NVME_CMD_SIZE_LIMIT | NVME_DNR;
}
ctx = g_new(struct nvme_copy_ctx, 1);
ctx->ranges = g_new(NvmeCopySourceRange, nr);
status = nvme_h2c(n, (uint8_t *)ctx->ranges,
nr * sizeof(NvmeCopySourceRange), req);
if (status) {
goto out;
}
for (i = 0; i < nr; i++) {
uint64_t slba = le64_to_cpu(ctx->ranges[i].slba);
uint32_t _nlb = le16_to_cpu(ctx->ranges[i].nlb) + 1;
if (_nlb > le16_to_cpu(ns->id_ns.mssrl)) {
status = NVME_CMD_SIZE_LIMIT | NVME_DNR;
goto out;
}
status = nvme_check_bounds(ns, slba, _nlb);
if (status) {
goto out;
}
if (NVME_ERR_REC_DULBE(ns->features.err_rec)) {
status = nvme_check_dulbe(ns, slba, _nlb);
if (status) {
goto out;
}
}
if (ns->params.zoned) {
status = nvme_check_zone_read(ns, slba, _nlb);
if (status) {
goto out;
}
}
nlb += _nlb;
}
if (nlb > le32_to_cpu(ns->id_ns.mcl)) {
status = NVME_CMD_SIZE_LIMIT | NVME_DNR;
goto out;
}
bounce = bouncep = g_malloc(nvme_l2b(ns, nlb));
if (nvme_msize(ns)) {
mbounce = mbouncep = g_malloc(nvme_m2b(ns, nlb));
}
block_acct_start(blk_get_stats(ns->blkconf.blk), &req->acct, 0,
BLOCK_ACCT_READ);
ctx->bounce = bounce;
ctx->mbounce = mbounce;
ctx->nlb = nlb;
ctx->copies = 1;
req->opaque = ctx;
for (i = 0; i < nr; i++) {
uint64_t slba = le64_to_cpu(ctx->ranges[i].slba);
uint32_t nlb = le16_to_cpu(ctx->ranges[i].nlb) + 1;
size_t len = nvme_l2b(ns, nlb);
int64_t offset = nvme_l2b(ns, slba);
trace_pci_nvme_copy_source_range(slba, nlb);
struct nvme_copy_in_ctx *in_ctx = g_new(struct nvme_copy_in_ctx, 1);
in_ctx->req = req;
qemu_iovec_init(&in_ctx->iov, 1);
qemu_iovec_add(&in_ctx->iov, bouncep, len);
ctx->copies++;
blk_aio_preadv(ns->blkconf.blk, offset, &in_ctx->iov, 0,
nvme_aio_copy_in_cb, in_ctx);
bouncep += len;
if (nvme_msize(ns)) {
len = nvme_m2b(ns, nlb);
offset = ns->mdata_offset + nvme_m2b(ns, slba);
in_ctx = g_new(struct nvme_copy_in_ctx, 1);
in_ctx->req = req;
qemu_iovec_init(&in_ctx->iov, 1);
qemu_iovec_add(&in_ctx->iov, mbouncep, len);
ctx->copies++;
blk_aio_preadv(ns->blkconf.blk, offset, &in_ctx->iov, 0,
nvme_aio_copy_in_cb, in_ctx);
mbouncep += len;
}
}
/* account for the 1-initialization */
ctx->copies--;
if (!ctx->copies) {
nvme_copy_in_complete(req);
}
return NVME_NO_COMPLETE;
out:
g_free(ctx->ranges);
g_free(ctx);
return status;
}
static uint16_t nvme_compare(NvmeCtrl *n, NvmeRequest *req)
{
NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
NvmeNamespace *ns = req->ns;
BlockBackend *blk = ns->blkconf.blk;
uint64_t slba = le64_to_cpu(rw->slba);
uint32_t nlb = le16_to_cpu(rw->nlb) + 1;
uint16_t ctrl = le16_to_cpu(rw->control);
size_t data_len = nvme_l2b(ns, nlb);
size_t len = data_len;
int64_t offset = nvme_l2b(ns, slba);
struct nvme_compare_ctx *ctx = NULL;
uint16_t status;
trace_pci_nvme_compare(nvme_cid(req), nvme_nsid(ns), slba, nlb);
if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps) && (ctrl & NVME_RW_PRINFO_PRACT)) {
return NVME_INVALID_PROT_INFO | NVME_DNR;
}
if (nvme_ns_ext(ns)) {
len += nvme_m2b(ns, nlb);
}
status = nvme_check_mdts(n, len);
if (status) {
return status;
}
status = nvme_check_bounds(ns, slba, nlb);
if (status) {
return status;
}
if (NVME_ERR_REC_DULBE(ns->features.err_rec)) {
status = nvme_check_dulbe(ns, slba, nlb);
if (status) {
return status;
}
}
status = nvme_map_dptr(n, &req->sg, len, &req->cmd);
if (status) {
return status;
}
ctx = g_new(struct nvme_compare_ctx, 1);
ctx->data.bounce = g_malloc(data_len);
req->opaque = ctx;
qemu_iovec_init(&ctx->data.iov, 1);
qemu_iovec_add(&ctx->data.iov, ctx->data.bounce, data_len);
block_acct_start(blk_get_stats(blk), &req->acct, data_len,
BLOCK_ACCT_READ);
req->aiocb = blk_aio_preadv(blk, offset, &ctx->data.iov, 0,
nvme_compare_data_cb, req);
return NVME_NO_COMPLETE;
}
static uint16_t nvme_flush(NvmeCtrl *n, NvmeRequest *req)
{
uint32_t nsid = le32_to_cpu(req->cmd.nsid);
uintptr_t *num_flushes = (uintptr_t *)&req->opaque;
uint16_t status;
struct nvme_aio_flush_ctx *ctx;
NvmeNamespace *ns;
trace_pci_nvme_flush(nvme_cid(req), nsid);
if (nsid != NVME_NSID_BROADCAST) {
req->ns = nvme_ns(n, nsid);
if (unlikely(!req->ns)) {
return NVME_INVALID_FIELD | NVME_DNR;
}
block_acct_start(blk_get_stats(req->ns->blkconf.blk), &req->acct, 0,
BLOCK_ACCT_FLUSH);
req->aiocb = blk_aio_flush(req->ns->blkconf.blk, nvme_misc_cb, req);
return NVME_NO_COMPLETE;
}
/* 1-initialize; see comment in nvme_dsm */
*num_flushes = 1;
for (int i = 1; i <= n->num_namespaces; i++) {
ns = nvme_ns(n, i);
if (!ns) {
continue;
}
ctx = g_new(struct nvme_aio_flush_ctx, 1);
ctx->req = req;
ctx->ns = ns;
(*num_flushes)++;
block_acct_start(blk_get_stats(ns->blkconf.blk), &ctx->acct, 0,
BLOCK_ACCT_FLUSH);
blk_aio_flush(ns->blkconf.blk, nvme_aio_flush_cb, ctx);
}
/* account for the 1-initialization */
(*num_flushes)--;
if (*num_flushes) {
status = NVME_NO_COMPLETE;
} else {
status = req->status;
}
return status;
}
static uint16_t nvme_read(NvmeCtrl *n, NvmeRequest *req)
{
NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
NvmeNamespace *ns = req->ns;
uint64_t slba = le64_to_cpu(rw->slba);
uint32_t nlb = (uint32_t)le16_to_cpu(rw->nlb) + 1;
uint16_t ctrl = le16_to_cpu(rw->control);
uint64_t data_size = nvme_l2b(ns, nlb);
uint64_t mapped_size = data_size;
uint64_t data_offset;
BlockBackend *blk = ns->blkconf.blk;
uint16_t status;
if (nvme_ns_ext(ns)) {
mapped_size += nvme_m2b(ns, nlb);
if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
bool pract = ctrl & NVME_RW_PRINFO_PRACT;
if (pract && nvme_msize(ns) == 8) {
mapped_size = data_size;
}
}
}
trace_pci_nvme_read(nvme_cid(req), nvme_nsid(ns), nlb, mapped_size, slba);
status = nvme_check_mdts(n, mapped_size);
if (status) {
goto invalid;
}
status = nvme_check_bounds(ns, slba, nlb);
if (status) {
goto invalid;
}
if (ns->params.zoned) {
status = nvme_check_zone_read(ns, slba, nlb);
if (status) {
trace_pci_nvme_err_zone_read_not_ok(slba, nlb, status);
goto invalid;
}
}
if (NVME_ERR_REC_DULBE(ns->features.err_rec)) {
status = nvme_check_dulbe(ns, slba, nlb);
if (status) {
goto invalid;
}
}
if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
return nvme_dif_rw(n, req);
}
status = nvme_map_data(n, nlb, req);
if (status) {
goto invalid;
}
data_offset = nvme_l2b(ns, slba);
block_acct_start(blk_get_stats(blk), &req->acct, data_size,
BLOCK_ACCT_READ);
nvme_blk_read(blk, data_offset, nvme_rw_cb, req);
return NVME_NO_COMPLETE;
invalid:
block_acct_invalid(blk_get_stats(blk), BLOCK_ACCT_READ);
return status | NVME_DNR;
}
static uint16_t nvme_do_write(NvmeCtrl *n, NvmeRequest *req, bool append,
bool wrz)
{
NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
NvmeNamespace *ns = req->ns;
uint64_t slba = le64_to_cpu(rw->slba);
uint32_t nlb = (uint32_t)le16_to_cpu(rw->nlb) + 1;
uint16_t ctrl = le16_to_cpu(rw->control);
uint64_t data_size = nvme_l2b(ns, nlb);
uint64_t mapped_size = data_size;
uint64_t data_offset;
NvmeZone *zone;
NvmeZonedResult *res = (NvmeZonedResult *)&req->cqe;
BlockBackend *blk = ns->blkconf.blk;
uint16_t status;
if (nvme_ns_ext(ns)) {
mapped_size += nvme_m2b(ns, nlb);
if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
bool pract = ctrl & NVME_RW_PRINFO_PRACT;
if (pract && nvme_msize(ns) == 8) {
mapped_size -= nvme_m2b(ns, nlb);
}
}
}
trace_pci_nvme_write(nvme_cid(req), nvme_io_opc_str(rw->opcode),
nvme_nsid(ns), nlb, mapped_size, slba);
if (!wrz) {
status = nvme_check_mdts(n, mapped_size);
if (status) {
goto invalid;
}
}
status = nvme_check_bounds(ns, slba, nlb);
if (status) {
goto invalid;
}
if (ns->params.zoned) {
zone = nvme_get_zone_by_slba(ns, slba);
if (append) {
bool piremap = !!(ctrl & NVME_RW_PIREMAP);
if (unlikely(slba != zone->d.zslba)) {
trace_pci_nvme_err_append_not_at_start(slba, zone->d.zslba);
status = NVME_INVALID_FIELD;
goto invalid;
}
if (n->params.zasl &&
data_size > (uint64_t)n->page_size << n->params.zasl) {
trace_pci_nvme_err_zasl(data_size);
return NVME_INVALID_FIELD | NVME_DNR;
}
slba = zone->w_ptr;
rw->slba = cpu_to_le64(slba);
res->slba = cpu_to_le64(slba);
switch (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
case NVME_ID_NS_DPS_TYPE_1:
if (!piremap) {
return NVME_INVALID_PROT_INFO | NVME_DNR;
}
/* fallthrough */
case NVME_ID_NS_DPS_TYPE_2:
if (piremap) {
uint32_t reftag = le32_to_cpu(rw->reftag);
rw->reftag = cpu_to_le32(reftag + (slba - zone->d.zslba));
}
break;
case NVME_ID_NS_DPS_TYPE_3:
if (piremap) {
return NVME_INVALID_PROT_INFO | NVME_DNR;
}
break;
}
}
status = nvme_check_zone_write(ns, zone, slba, nlb);
if (status) {
goto invalid;
}
status = nvme_zrm_auto(ns, zone);
if (status) {
goto invalid;
}
zone->w_ptr += nlb;
}
data_offset = nvme_l2b(ns, slba);
if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
return nvme_dif_rw(n, req);
}
if (!wrz) {
status = nvme_map_data(n, nlb, req);
if (status) {
goto invalid;
}
block_acct_start(blk_get_stats(blk), &req->acct, data_size,
BLOCK_ACCT_WRITE);
nvme_blk_write(blk, data_offset, nvme_rw_cb, req);
} else {
req->aiocb = blk_aio_pwrite_zeroes(blk, data_offset, data_size,
BDRV_REQ_MAY_UNMAP, nvme_rw_cb,
req);
}
return NVME_NO_COMPLETE;
invalid:
block_acct_invalid(blk_get_stats(blk), BLOCK_ACCT_WRITE);
return status | NVME_DNR;
}
static inline uint16_t nvme_write(NvmeCtrl *n, NvmeRequest *req)
{
return nvme_do_write(n, req, false, false);
}
static inline uint16_t nvme_write_zeroes(NvmeCtrl *n, NvmeRequest *req)
{
return nvme_do_write(n, req, false, true);
}
static inline uint16_t nvme_zone_append(NvmeCtrl *n, NvmeRequest *req)
{
return nvme_do_write(n, req, true, false);
}
static uint16_t nvme_get_mgmt_zone_slba_idx(NvmeNamespace *ns, NvmeCmd *c,
uint64_t *slba, uint32_t *zone_idx)
{
uint32_t dw10 = le32_to_cpu(c->cdw10);
uint32_t dw11 = le32_to_cpu(c->cdw11);
if (!ns->params.zoned) {
trace_pci_nvme_err_invalid_opc(c->opcode);
return NVME_INVALID_OPCODE | NVME_DNR;
}
*slba = ((uint64_t)dw11) << 32 | dw10;
if (unlikely(*slba >= ns->id_ns.nsze)) {
trace_pci_nvme_err_invalid_lba_range(*slba, 0, ns->id_ns.nsze);
*slba = 0;
return NVME_LBA_RANGE | NVME_DNR;
}
*zone_idx = nvme_zone_idx(ns, *slba);
assert(*zone_idx < ns->num_zones);
return NVME_SUCCESS;
}
typedef uint16_t (*op_handler_t)(NvmeNamespace *, NvmeZone *, NvmeZoneState,
NvmeRequest *);
enum NvmeZoneProcessingMask {
NVME_PROC_CURRENT_ZONE = 0,
NVME_PROC_OPENED_ZONES = 1 << 0,
NVME_PROC_CLOSED_ZONES = 1 << 1,
NVME_PROC_READ_ONLY_ZONES = 1 << 2,
NVME_PROC_FULL_ZONES = 1 << 3,
};
static uint16_t nvme_open_zone(NvmeNamespace *ns, NvmeZone *zone,
NvmeZoneState state, NvmeRequest *req)
{
return nvme_zrm_open(ns, zone);
}
static uint16_t nvme_close_zone(NvmeNamespace *ns, NvmeZone *zone,
NvmeZoneState state, NvmeRequest *req)
{
return nvme_zrm_close(ns, zone);
}
static uint16_t nvme_finish_zone(NvmeNamespace *ns, NvmeZone *zone,
NvmeZoneState state, NvmeRequest *req)
{
return nvme_zrm_finish(ns, zone);
}
static uint16_t nvme_reset_zone(NvmeNamespace *ns, NvmeZone *zone,
NvmeZoneState state, NvmeRequest *req)
{
uintptr_t *resets = (uintptr_t *)&req->opaque;
struct nvme_zone_reset_ctx *ctx;
switch (state) {
case NVME_ZONE_STATE_EMPTY:
return NVME_SUCCESS;
case NVME_ZONE_STATE_EXPLICITLY_OPEN:
case NVME_ZONE_STATE_IMPLICITLY_OPEN:
case NVME_ZONE_STATE_CLOSED:
case NVME_ZONE_STATE_FULL:
break;
default:
return NVME_ZONE_INVAL_TRANSITION;
}
/*
* The zone reset aio callback needs to know the zone that is being reset
* in order to transition the zone on completion.
*/
ctx = g_new(struct nvme_zone_reset_ctx, 1);
ctx->req = req;
ctx->zone = zone;
(*resets)++;
blk_aio_pwrite_zeroes(ns->blkconf.blk, nvme_l2b(ns, zone->d.zslba),
nvme_l2b(ns, ns->zone_size), BDRV_REQ_MAY_UNMAP,
nvme_aio_zone_reset_cb, ctx);
return NVME_NO_COMPLETE;
}
static uint16_t nvme_offline_zone(NvmeNamespace *ns, NvmeZone *zone,
NvmeZoneState state, NvmeRequest *req)
{
switch (state) {
case NVME_ZONE_STATE_READ_ONLY:
nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_OFFLINE);
/* fall through */
case NVME_ZONE_STATE_OFFLINE:
return NVME_SUCCESS;
default:
return NVME_ZONE_INVAL_TRANSITION;
}
}
static uint16_t nvme_set_zd_ext(NvmeNamespace *ns, NvmeZone *zone)
{
uint16_t status;
uint8_t state = nvme_get_zone_state(zone);
if (state == NVME_ZONE_STATE_EMPTY) {
status = nvme_aor_check(ns, 1, 0);
if (status) {
return status;
}
nvme_aor_inc_active(ns);
zone->d.za |= NVME_ZA_ZD_EXT_VALID;
nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_CLOSED);
return NVME_SUCCESS;
}
return NVME_ZONE_INVAL_TRANSITION;
}
static uint16_t nvme_bulk_proc_zone(NvmeNamespace *ns, NvmeZone *zone,
enum NvmeZoneProcessingMask proc_mask,
op_handler_t op_hndlr, NvmeRequest *req)
{
uint16_t status = NVME_SUCCESS;
NvmeZoneState zs = nvme_get_zone_state(zone);
bool proc_zone;
switch (zs) {
case NVME_ZONE_STATE_IMPLICITLY_OPEN:
case NVME_ZONE_STATE_EXPLICITLY_OPEN:
proc_zone = proc_mask & NVME_PROC_OPENED_ZONES;
break;
case NVME_ZONE_STATE_CLOSED:
proc_zone = proc_mask & NVME_PROC_CLOSED_ZONES;
break;
case NVME_ZONE_STATE_READ_ONLY:
proc_zone = proc_mask & NVME_PROC_READ_ONLY_ZONES;
break;
case NVME_ZONE_STATE_FULL:
proc_zone = proc_mask & NVME_PROC_FULL_ZONES;
break;
default:
proc_zone = false;
}
if (proc_zone) {
status = op_hndlr(ns, zone, zs, req);
}
return status;
}
static uint16_t nvme_do_zone_op(NvmeNamespace *ns, NvmeZone *zone,
enum NvmeZoneProcessingMask proc_mask,
op_handler_t op_hndlr, NvmeRequest *req)
{
NvmeZone *next;
uint16_t status = NVME_SUCCESS;
int i;
if (!proc_mask) {
status = op_hndlr(ns, zone, nvme_get_zone_state(zone), req);
} else {
if (proc_mask & NVME_PROC_CLOSED_ZONES) {
QTAILQ_FOREACH_SAFE(zone, &ns->closed_zones, entry, next) {
status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr,
req);
if (status && status != NVME_NO_COMPLETE) {
goto out;
}
}
}
if (proc_mask & NVME_PROC_OPENED_ZONES) {
QTAILQ_FOREACH_SAFE(zone, &ns->imp_open_zones, entry, next) {
status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr,
req);
if (status && status != NVME_NO_COMPLETE) {
goto out;
}
}
QTAILQ_FOREACH_SAFE(zone, &ns->exp_open_zones, entry, next) {
status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr,
req);
if (status && status != NVME_NO_COMPLETE) {
goto out;
}
}
}
if (proc_mask & NVME_PROC_FULL_ZONES) {
QTAILQ_FOREACH_SAFE(zone, &ns->full_zones, entry, next) {
status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr,
req);
if (status && status != NVME_NO_COMPLETE) {
goto out;
}
}
}
if (proc_mask & NVME_PROC_READ_ONLY_ZONES) {
for (i = 0; i < ns->num_zones; i++, zone++) {
status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr,
req);
if (status && status != NVME_NO_COMPLETE) {
goto out;
}
}
}
}
out:
return status;
}
static uint16_t nvme_zone_mgmt_send(NvmeCtrl *n, NvmeRequest *req)
{
NvmeCmd *cmd = (NvmeCmd *)&req->cmd;
NvmeNamespace *ns = req->ns;
NvmeZone *zone;
uintptr_t *resets;
uint8_t *zd_ext;
uint32_t dw13 = le32_to_cpu(cmd->cdw13);
uint64_t slba = 0;
uint32_t zone_idx = 0;
uint16_t status;
uint8_t action;
bool all;
enum NvmeZoneProcessingMask proc_mask = NVME_PROC_CURRENT_ZONE;
action = dw13 & 0xff;
all = dw13 & 0x100;
req->status = NVME_SUCCESS;
if (!all) {
status = nvme_get_mgmt_zone_slba_idx(ns, cmd, &slba, &zone_idx);
if (status) {
return status;
}
}
zone = &ns->zone_array[zone_idx];
if (slba != zone->d.zslba) {
trace_pci_nvme_err_unaligned_zone_cmd(action, slba, zone->d.zslba);
return NVME_INVALID_FIELD | NVME_DNR;
}
switch (action) {
case NVME_ZONE_ACTION_OPEN:
if (all) {
proc_mask = NVME_PROC_CLOSED_ZONES;
}
trace_pci_nvme_open_zone(slba, zone_idx, all);
status = nvme_do_zone_op(ns, zone, proc_mask, nvme_open_zone, req);
break;
case NVME_ZONE_ACTION_CLOSE:
if (all) {
proc_mask = NVME_PROC_OPENED_ZONES;
}
trace_pci_nvme_close_zone(slba, zone_idx, all);
status = nvme_do_zone_op(ns, zone, proc_mask, nvme_close_zone, req);
break;
case NVME_ZONE_ACTION_FINISH:
if (all) {
proc_mask = NVME_PROC_OPENED_ZONES | NVME_PROC_CLOSED_ZONES;
}
trace_pci_nvme_finish_zone(slba, zone_idx, all);
status = nvme_do_zone_op(ns, zone, proc_mask, nvme_finish_zone, req);
break;
case NVME_ZONE_ACTION_RESET:
resets = (uintptr_t *)&req->opaque;
if (all) {
proc_mask = NVME_PROC_OPENED_ZONES | NVME_PROC_CLOSED_ZONES |
NVME_PROC_FULL_ZONES;
}
trace_pci_nvme_reset_zone(slba, zone_idx, all);
*resets = 1;
status = nvme_do_zone_op(ns, zone, proc_mask, nvme_reset_zone, req);
(*resets)--;
return *resets ? NVME_NO_COMPLETE : req->status;
case NVME_ZONE_ACTION_OFFLINE:
if (all) {
proc_mask = NVME_PROC_READ_ONLY_ZONES;
}
trace_pci_nvme_offline_zone(slba, zone_idx, all);
status = nvme_do_zone_op(ns, zone, proc_mask, nvme_offline_zone, req);
break;
case NVME_ZONE_ACTION_SET_ZD_EXT:
trace_pci_nvme_set_descriptor_extension(slba, zone_idx);
if (all || !ns->params.zd_extension_size) {
return NVME_INVALID_FIELD | NVME_DNR;
}
zd_ext = nvme_get_zd_extension(ns, zone_idx);
status = nvme_h2c(n, zd_ext, ns->params.zd_extension_size, req);
if (status) {
trace_pci_nvme_err_zd_extension_map_error(zone_idx);
return status;
}
status = nvme_set_zd_ext(ns, zone);
if (status == NVME_SUCCESS) {
trace_pci_nvme_zd_extension_set(zone_idx);
return status;
}
break;
default:
trace_pci_nvme_err_invalid_mgmt_action(action);
status = NVME_INVALID_FIELD;
}
if (status == NVME_ZONE_INVAL_TRANSITION) {
trace_pci_nvme_err_invalid_zone_state_transition(action, slba,
zone->d.za);
}
if (status) {
status |= NVME_DNR;
}
return status;
}
static bool nvme_zone_matches_filter(uint32_t zafs, NvmeZone *zl)
{
NvmeZoneState zs = nvme_get_zone_state(zl);
switch (zafs) {
case NVME_ZONE_REPORT_ALL:
return true;
case NVME_ZONE_REPORT_EMPTY:
return zs == NVME_ZONE_STATE_EMPTY;
case NVME_ZONE_REPORT_IMPLICITLY_OPEN:
return zs == NVME_ZONE_STATE_IMPLICITLY_OPEN;
case NVME_ZONE_REPORT_EXPLICITLY_OPEN:
return zs == NVME_ZONE_STATE_EXPLICITLY_OPEN;
case NVME_ZONE_REPORT_CLOSED:
return zs == NVME_ZONE_STATE_CLOSED;
case NVME_ZONE_REPORT_FULL:
return zs == NVME_ZONE_STATE_FULL;
case NVME_ZONE_REPORT_READ_ONLY:
return zs == NVME_ZONE_STATE_READ_ONLY;
case NVME_ZONE_REPORT_OFFLINE:
return zs == NVME_ZONE_STATE_OFFLINE;
default:
return false;
}
}
static uint16_t nvme_zone_mgmt_recv(NvmeCtrl *n, NvmeRequest *req)
{
NvmeCmd *cmd = (NvmeCmd *)&req->cmd;
NvmeNamespace *ns = req->ns;
/* cdw12 is zero-based number of dwords to return. Convert to bytes */
uint32_t data_size = (le32_to_cpu(cmd->cdw12) + 1) << 2;
uint32_t dw13 = le32_to_cpu(cmd->cdw13);
uint32_t zone_idx, zra, zrasf, partial;
uint64_t max_zones, nr_zones = 0;
uint16_t status;
uint64_t slba;
NvmeZoneDescr *z;
NvmeZone *zone;
NvmeZoneReportHeader *header;
void *buf, *buf_p;
size_t zone_entry_sz;
int i;
req->status = NVME_SUCCESS;
status = nvme_get_mgmt_zone_slba_idx(ns, cmd, &slba, &zone_idx);
if (status) {
return status;
}
zra = dw13 & 0xff;
if (zra != NVME_ZONE_REPORT && zra != NVME_ZONE_REPORT_EXTENDED) {
return NVME_INVALID_FIELD | NVME_DNR;
}
if (zra == NVME_ZONE_REPORT_EXTENDED && !ns->params.zd_extension_size) {
return NVME_INVALID_FIELD | NVME_DNR;
}
zrasf = (dw13 >> 8) & 0xff;
if (zrasf > NVME_ZONE_REPORT_OFFLINE) {
return NVME_INVALID_FIELD | NVME_DNR;
}
if (data_size < sizeof(NvmeZoneReportHeader)) {
return NVME_INVALID_FIELD | NVME_DNR;
}
status = nvme_check_mdts(n, data_size);
if (status) {
return status;
}
partial = (dw13 >> 16) & 0x01;
zone_entry_sz = sizeof(NvmeZoneDescr);
if (zra == NVME_ZONE_REPORT_EXTENDED) {
zone_entry_sz += ns->params.zd_extension_size;
}
max_zones = (data_size - sizeof(NvmeZoneReportHeader)) / zone_entry_sz;
buf = g_malloc0(data_size);
zone = &ns->zone_array[zone_idx];
for (i = zone_idx; i < ns->num_zones; i++) {
if (partial && nr_zones >= max_zones) {
break;
}
if (nvme_zone_matches_filter(zrasf, zone++)) {
nr_zones++;
}
}
header = (NvmeZoneReportHeader *)buf;
header->nr_zones = cpu_to_le64(nr_zones);
buf_p = buf + sizeof(NvmeZoneReportHeader);
for (; zone_idx < ns->num_zones && max_zones > 0; zone_idx++) {
zone = &ns->zone_array[zone_idx];
if (nvme_zone_matches_filter(zrasf, zone)) {
z = (NvmeZoneDescr *)buf_p;
buf_p += sizeof(NvmeZoneDescr);
z->zt = zone->d.zt;
z->zs = zone->d.zs;
z->zcap = cpu_to_le64(zone->d.zcap);
z->zslba = cpu_to_le64(zone->d.zslba);
z->za = zone->d.za;
if (nvme_wp_is_valid(zone)) {
z->wp = cpu_to_le64(zone->d.wp);
} else {
z->wp = cpu_to_le64(~0ULL);
}
if (zra == NVME_ZONE_REPORT_EXTENDED) {
if (zone->d.za & NVME_ZA_ZD_EXT_VALID) {
memcpy(buf_p, nvme_get_zd_extension(ns, zone_idx),
ns->params.zd_extension_size);
}
buf_p += ns->params.zd_extension_size;
}
max_zones--;
}
}
status = nvme_c2h(n, (uint8_t *)buf, data_size, req);
g_free(buf);
return status;
}
static uint16_t nvme_io_cmd(NvmeCtrl *n, NvmeRequest *req)
{
uint32_t nsid = le32_to_cpu(req->cmd.nsid);
uint16_t status;
trace_pci_nvme_io_cmd(nvme_cid(req), nsid, nvme_sqid(req),
req->cmd.opcode, nvme_io_opc_str(req->cmd.opcode));
if (!nvme_nsid_valid(n, nsid)) {
return NVME_INVALID_NSID | NVME_DNR;
}
/*
* In the base NVM command set, Flush may apply to all namespaces
* (indicated by NSID being set to FFFFFFFFh). But if that feature is used
* along with TP 4056 (Namespace Types), it may be pretty screwed up.
*
* If NSID is indeed set to FFFFFFFFh, we simply cannot associate the
* opcode with a specific command since we cannot determine a unique I/O
* command set. Opcode 0h could have any other meaning than something
* equivalent to flushing and say it DOES have completely different
* semantics in some other command set - does an NSID of FFFFFFFFh then
* mean "for all namespaces, apply whatever command set specific command
* that uses the 0h opcode?" Or does it mean "for all namespaces, apply
* whatever command that uses the 0h opcode if, and only if, it allows NSID
* to be FFFFFFFFh"?
*
* Anyway (and luckily), for now, we do not care about this since the
* device only supports namespace types that includes the NVM Flush command
* (NVM and Zoned), so always do an NVM Flush.
*/
if (req->cmd.opcode == NVME_CMD_FLUSH) {
return nvme_flush(n, req);
}
req->ns = nvme_ns(n, nsid);
if (unlikely(!req->ns)) {
return NVME_INVALID_FIELD | NVME_DNR;
}
if (!(req->ns->iocs[req->cmd.opcode] & NVME_CMD_EFF_CSUPP)) {
trace_pci_nvme_err_invalid_opc(req->cmd.opcode);
return NVME_INVALID_OPCODE | NVME_DNR;
}
status = nvme_ns_status(req->ns);
if (unlikely(status)) {
return status;
}
switch (req->cmd.opcode) {
case NVME_CMD_WRITE_ZEROES:
return nvme_write_zeroes(n, req);
case NVME_CMD_ZONE_APPEND:
return nvme_zone_append(n, req);
case NVME_CMD_WRITE:
return nvme_write(n, req);
case NVME_CMD_READ:
return nvme_read(n, req);
case NVME_CMD_COMPARE:
return nvme_compare(n, req);
case NVME_CMD_DSM:
return nvme_dsm(n, req);
case NVME_CMD_VERIFY:
return nvme_verify(n, req);
case NVME_CMD_COPY:
return nvme_copy(n, req);
case NVME_CMD_ZONE_MGMT_SEND:
return nvme_zone_mgmt_send(n, req);
case NVME_CMD_ZONE_MGMT_RECV:
return nvme_zone_mgmt_recv(n, req);
default:
assert(false);
}
return NVME_INVALID_OPCODE | NVME_DNR;
}
static void nvme_free_sq(NvmeSQueue *sq, NvmeCtrl *n)
{
n->sq[sq->sqid] = NULL;
timer_free(sq->timer);
g_free(sq->io_req);
if (sq->sqid) {
g_free(sq);
}
}
static uint16_t nvme_del_sq(NvmeCtrl *n, NvmeRequest *req)
{
NvmeDeleteQ *c = (NvmeDeleteQ *)&req->cmd;
NvmeRequest *r, *next;
NvmeSQueue *sq;
NvmeCQueue *cq;
uint16_t qid = le16_to_cpu(c->qid);
uint32_t nsid;
if (unlikely(!qid || nvme_check_sqid(n, qid))) {
trace_pci_nvme_err_invalid_del_sq(qid);
return NVME_INVALID_QID | NVME_DNR;
}
trace_pci_nvme_del_sq(qid);
sq = n->sq[qid];
while (!QTAILQ_EMPTY(&sq->out_req_list)) {
r = QTAILQ_FIRST(&sq->out_req_list);
if (r->aiocb) {
blk_aio_cancel(r->aiocb);
}
}
/*
* Drain all namespaces if there are still outstanding requests that we
* could not cancel explicitly.
*/
if (!QTAILQ_EMPTY(&sq->out_req_list)) {
for (nsid = 1; nsid <= NVME_MAX_NAMESPACES; nsid++) {
NvmeNamespace *ns = nvme_ns(n, nsid);
if (ns) {
nvme_ns_drain(ns);
}
}
}
assert(QTAILQ_EMPTY(&sq->out_req_list));
if (!nvme_check_cqid(n, sq->cqid)) {
cq = n->cq[sq->cqid];
QTAILQ_REMOVE(&cq->sq_list, sq, entry);
nvme_post_cqes(cq);
QTAILQ_FOREACH_SAFE(r, &cq->req_list, entry, next) {
if (r->sq == sq) {
QTAILQ_REMOVE(&cq->req_list, r, entry);
QTAILQ_INSERT_TAIL(&sq->req_list, r, entry);
}
}
}
nvme_free_sq(sq, n);
return NVME_SUCCESS;
}
static void nvme_init_sq(NvmeSQueue *sq, NvmeCtrl *n, uint64_t dma_addr,
uint16_t sqid, uint16_t cqid, uint16_t size)
{
int i;
NvmeCQueue *cq;
sq->ctrl = n;
sq->dma_addr = dma_addr;
sq->sqid = sqid;
sq->size = size;
sq->cqid = cqid;
sq->head = sq->tail = 0;
sq->io_req = g_new0(NvmeRequest, sq->size);
QTAILQ_INIT(&sq->req_list);
QTAILQ_INIT(&sq->out_req_list);
for (i = 0; i < sq->size; i++) {
sq->io_req[i].sq = sq;
QTAILQ_INSERT_TAIL(&(sq->req_list), &sq->io_req[i], entry);
}
sq->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, nvme_process_sq, sq);
assert(n->cq[cqid]);
cq = n->cq[cqid];
QTAILQ_INSERT_TAIL(&(cq->sq_list), sq, entry);
n->sq[sqid] = sq;
}
static uint16_t nvme_create_sq(NvmeCtrl *n, NvmeRequest *req)
{
NvmeSQueue *sq;
NvmeCreateSq *c = (NvmeCreateSq *)&req->cmd;
uint16_t cqid = le16_to_cpu(c->cqid);
uint16_t sqid = le16_to_cpu(c->sqid);
uint16_t qsize = le16_to_cpu(c->qsize);
uint16_t qflags = le16_to_cpu(c->sq_flags);
uint64_t prp1 = le64_to_cpu(c->prp1);
trace_pci_nvme_create_sq(prp1, sqid, cqid, qsize, qflags);
if (unlikely(!cqid || nvme_check_cqid(n, cqid))) {
trace_pci_nvme_err_invalid_create_sq_cqid(cqid);
return NVME_INVALID_CQID | NVME_DNR;
}
if (unlikely(!sqid || sqid > n->params.max_ioqpairs ||
n->sq[sqid] != NULL)) {
trace_pci_nvme_err_invalid_create_sq_sqid(sqid);
return NVME_INVALID_QID | NVME_DNR;
}
if (unlikely(!qsize || qsize > NVME_CAP_MQES(n->bar.cap))) {
trace_pci_nvme_err_invalid_create_sq_size(qsize);
return NVME_MAX_QSIZE_EXCEEDED | NVME_DNR;
}
if (unlikely(prp1 & (n->page_size - 1))) {
trace_pci_nvme_err_invalid_create_sq_addr(prp1);
return NVME_INVALID_PRP_OFFSET | NVME_DNR;
}
if (unlikely(!(NVME_SQ_FLAGS_PC(qflags)))) {
trace_pci_nvme_err_invalid_create_sq_qflags(NVME_SQ_FLAGS_PC(qflags));
return NVME_INVALID_FIELD | NVME_DNR;
}
sq = g_malloc0(sizeof(*sq));
nvme_init_sq(sq, n, prp1, sqid, cqid, qsize + 1);
return NVME_SUCCESS;
}
struct nvme_stats {
uint64_t units_read;
uint64_t units_written;
uint64_t read_commands;
uint64_t write_commands;
};
static void nvme_set_blk_stats(NvmeNamespace *ns, struct nvme_stats *stats)
{
BlockAcctStats *s = blk_get_stats(ns->blkconf.blk);
stats->units_read += s->nr_bytes[BLOCK_ACCT_READ] >> BDRV_SECTOR_BITS;
stats->units_written += s->nr_bytes[BLOCK_ACCT_WRITE] >> BDRV_SECTOR_BITS;
stats->read_commands += s->nr_ops[BLOCK_ACCT_READ];
stats->write_commands += s->nr_ops[BLOCK_ACCT_WRITE];
}
static uint16_t nvme_smart_info(NvmeCtrl *n, uint8_t rae, uint32_t buf_len,
uint64_t off, NvmeRequest *req)
{
uint32_t nsid = le32_to_cpu(req->cmd.nsid);
struct nvme_stats stats = { 0 };
NvmeSmartLog smart = { 0 };
uint32_t trans_len;
NvmeNamespace *ns;
time_t current_ms;
if (off >= sizeof(smart)) {
return NVME_INVALID_FIELD | NVME_DNR;
}
if (nsid != 0xffffffff) {
ns = nvme_ns(n, nsid);
if (!ns) {
return NVME_INVALID_NSID | NVME_DNR;
}
nvme_set_blk_stats(ns, &stats);
} else {
int i;
for (i = 1; i <= n->num_namespaces; i++) {
ns = nvme_ns(n, i);
if (!ns) {
continue;
}
nvme_set_blk_stats(ns, &stats);
}
}
trans_len = MIN(sizeof(smart) - off, buf_len);
smart.critical_warning = n->smart_critical_warning;
smart.data_units_read[0] = cpu_to_le64(DIV_ROUND_UP(stats.units_read,
1000));
smart.data_units_written[0] = cpu_to_le64(DIV_ROUND_UP(stats.units_written,
1000));
smart.host_read_commands[0] = cpu_to_le64(stats.read_commands);
smart.host_write_commands[0] = cpu_to_le64(stats.write_commands);
smart.temperature = cpu_to_le16(n->temperature);
if ((n->temperature >= n->features.temp_thresh_hi) ||
(n->temperature <= n->features.temp_thresh_low)) {
smart.critical_warning |= NVME_SMART_TEMPERATURE;
}
current_ms = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL);
smart.power_on_hours[0] =
cpu_to_le64((((current_ms - n->starttime_ms) / 1000) / 60) / 60);
if (!rae) {
nvme_clear_events(n, NVME_AER_TYPE_SMART);
}
return nvme_c2h(n, (uint8_t *) &smart + off, trans_len, req);
}
static uint16_t nvme_fw_log_info(NvmeCtrl *n, uint32_t buf_len, uint64_t off,
NvmeRequest *req)
{
uint32_t trans_len;
NvmeFwSlotInfoLog fw_log = {
.afi = 0x1,
};
if (off >= sizeof(fw_log)) {
return NVME_INVALID_FIELD | NVME_DNR;
}
strpadcpy((char *)&fw_log.frs1, sizeof(fw_log.frs1), "1.0", ' ');
trans_len = MIN(sizeof(fw_log) - off, buf_len);
return nvme_c2h(n, (uint8_t *) &fw_log + off, trans_len, req);
}
static uint16_t nvme_error_info(NvmeCtrl *n, uint8_t rae, uint32_t buf_len,
uint64_t off, NvmeRequest *req)
{
uint32_t trans_len;
NvmeErrorLog errlog;
if (off >= sizeof(errlog)) {
return NVME_INVALID_FIELD | NVME_DNR;
}
if (!rae) {
nvme_clear_events(n, NVME_AER_TYPE_ERROR);
}
memset(&errlog, 0x0, sizeof(errlog));
trans_len = MIN(sizeof(errlog) - off, buf_len);
return nvme_c2h(n, (uint8_t *)&errlog, trans_len, req);
}
static uint16_t nvme_changed_nslist(NvmeCtrl *n, uint8_t rae, uint32_t buf_len,
uint64_t off, NvmeRequest *req)
{
uint32_t nslist[1024];
uint32_t trans_len;
int i = 0;
uint32_t nsid;
memset(nslist, 0x0, sizeof(nslist));
trans_len = MIN(sizeof(nslist) - off, buf_len);
while ((nsid = find_first_bit(n->changed_nsids, NVME_CHANGED_NSID_SIZE)) !=
NVME_CHANGED_NSID_SIZE) {
/*
* If more than 1024 namespaces, the first entry in the log page should
* be set to FFFFFFFFh and the others to 0 as spec.
*/
if (i == ARRAY_SIZE(nslist)) {
memset(nslist, 0x0, sizeof(nslist));
nslist[0] = 0xffffffff;
break;
}
nslist[i++] = nsid;
clear_bit(nsid, n->changed_nsids);
}
/*
* Remove all the remaining list entries in case returns directly due to
* more than 1024 namespaces.
*/
if (nslist[0] == 0xffffffff) {
bitmap_zero(n->changed_nsids, NVME_CHANGED_NSID_SIZE);
}
if (!rae) {
nvme_clear_events(n, NVME_AER_TYPE_NOTICE);
}
return nvme_c2h(n, ((uint8_t *)nslist) + off, trans_len, req);
}
static uint16_t nvme_cmd_effects(NvmeCtrl *n, uint8_t csi, uint32_t buf_len,
uint64_t off, NvmeRequest *req)
{
NvmeEffectsLog log = {};
const uint32_t *src_iocs = NULL;
uint32_t trans_len;
if (off >= sizeof(log)) {
trace_pci_nvme_err_invalid_log_page_offset(off, sizeof(log));
return NVME_INVALID_FIELD | NVME_DNR;
}
switch (NVME_CC_CSS(n->bar.cc)) {
case NVME_CC_CSS_NVM:
src_iocs = nvme_cse_iocs_nvm;
/* fall through */
case NVME_CC_CSS_ADMIN_ONLY:
break;
case NVME_CC_CSS_CSI:
switch (csi) {
case NVME_CSI_NVM:
src_iocs = nvme_cse_iocs_nvm;
break;
case NVME_CSI_ZONED:
src_iocs = nvme_cse_iocs_zoned;
break;
}
}
memcpy(log.acs, nvme_cse_acs, sizeof(nvme_cse_acs));
if (src_iocs) {
memcpy(log.iocs, src_iocs, sizeof(log.iocs));
}
trans_len = MIN(sizeof(log) - off, buf_len);
return nvme_c2h(n, ((uint8_t *)&log) + off, trans_len, req);
}
static uint16_t nvme_get_log(NvmeCtrl *n, NvmeRequest *req)
{
NvmeCmd *cmd = &req->cmd;
uint32_t dw10 = le32_to_cpu(cmd->cdw10);
uint32_t dw11 = le32_to_cpu(cmd->cdw11);
uint32_t dw12 = le32_to_cpu(cmd->cdw12);
uint32_t dw13 = le32_to_cpu(cmd->cdw13);
uint8_t lid = dw10 & 0xff;
uint8_t lsp = (dw10 >> 8) & 0xf;
uint8_t rae = (dw10 >> 15) & 0x1;
uint8_t csi = le32_to_cpu(cmd->cdw14) >> 24;
uint32_t numdl, numdu;
uint64_t off, lpol, lpou;
size_t len;
uint16_t status;
numdl = (dw10 >> 16);
numdu = (dw11 & 0xffff);
lpol = dw12;
lpou = dw13;
len = (((numdu << 16) | numdl) + 1) << 2;
off = (lpou << 32ULL) | lpol;
if (off & 0x3) {
return NVME_INVALID_FIELD | NVME_DNR;
}
trace_pci_nvme_get_log(nvme_cid(req), lid, lsp, rae, len, off);
status = nvme_check_mdts(n, len);
if (status) {
return status;
}
switch (lid) {
case NVME_LOG_ERROR_INFO:
return nvme_error_info(n, rae, len, off, req);
case NVME_LOG_SMART_INFO:
return nvme_smart_info(n, rae, len, off, req);
case NVME_LOG_FW_SLOT_INFO:
return nvme_fw_log_info(n, len, off, req);
case NVME_LOG_CHANGED_NSLIST:
return nvme_changed_nslist(n, rae, len, off, req);
case NVME_LOG_CMD_EFFECTS:
return nvme_cmd_effects(n, csi, len, off, req);
default:
trace_pci_nvme_err_invalid_log_page(nvme_cid(req), lid);
return NVME_INVALID_FIELD | NVME_DNR;
}
}
static void nvme_free_cq(NvmeCQueue *cq, NvmeCtrl *n)
{
n->cq[cq->cqid] = NULL;
timer_free(cq->timer);
if (msix_enabled(&n->parent_obj)) {
msix_vector_unuse(&n->parent_obj, cq->vector);
}
if (cq->cqid) {
g_free(cq);
}
}
static uint16_t nvme_del_cq(NvmeCtrl *n, NvmeRequest *req)
{
NvmeDeleteQ *c = (NvmeDeleteQ *)&req->cmd;
NvmeCQueue *cq;
uint16_t qid = le16_to_cpu(c->qid);
if (unlikely(!qid || nvme_check_cqid(n, qid))) {
trace_pci_nvme_err_invalid_del_cq_cqid(qid);
return NVME_INVALID_CQID | NVME_DNR;
}
cq = n->cq[qid];
if (unlikely(!QTAILQ_EMPTY(&cq->sq_list))) {
trace_pci_nvme_err_invalid_del_cq_notempty(qid);
return NVME_INVALID_QUEUE_DEL;
}
nvme_irq_deassert(n, cq);
trace_pci_nvme_del_cq(qid);
nvme_free_cq(cq, n);
return NVME_SUCCESS;
}
static void nvme_init_cq(NvmeCQueue *cq, NvmeCtrl *n, uint64_t dma_addr,
uint16_t cqid, uint16_t vector, uint16_t size,
uint16_t irq_enabled)
{
int ret;
if (msix_enabled(&n->parent_obj)) {
ret = msix_vector_use(&n->parent_obj, vector);
assert(ret == 0);
}
cq->ctrl = n;
cq->cqid = cqid;
cq->size = size;
cq->dma_addr = dma_addr;
cq->phase = 1;
cq->irq_enabled = irq_enabled;
cq->vector = vector;
cq->head = cq->tail = 0;
QTAILQ_INIT(&cq->req_list);
QTAILQ_INIT(&cq->sq_list);
n->cq[cqid] = cq;
cq->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, nvme_post_cqes, cq);
}
static uint16_t nvme_create_cq(NvmeCtrl *n, NvmeRequest *req)
{
NvmeCQueue *cq;
NvmeCreateCq *c = (NvmeCreateCq *)&req->cmd;
uint16_t cqid = le16_to_cpu(c->cqid);
uint16_t vector = le16_to_cpu(c->irq_vector);
uint16_t qsize = le16_to_cpu(c->qsize);
uint16_t qflags = le16_to_cpu(c->cq_flags);
uint64_t prp1 = le64_to_cpu(c->prp1);
trace_pci_nvme_create_cq(prp1, cqid, vector, qsize, qflags,
NVME_CQ_FLAGS_IEN(qflags) != 0);
if (unlikely(!cqid || cqid > n->params.max_ioqpairs ||
n->cq[cqid] != NULL)) {
trace_pci_nvme_err_invalid_create_cq_cqid(cqid);
return NVME_INVALID_QID | NVME_DNR;
}
if (unlikely(!qsize || qsize > NVME_CAP_MQES(n->bar.cap))) {
trace_pci_nvme_err_invalid_create_cq_size(qsize);
return NVME_MAX_QSIZE_EXCEEDED | NVME_DNR;
}
if (unlikely(prp1 & (n->page_size - 1))) {
trace_pci_nvme_err_invalid_create_cq_addr(prp1);
return NVME_INVALID_PRP_OFFSET | NVME_DNR;
}
if (unlikely(!msix_enabled(&n->parent_obj) && vector)) {
trace_pci_nvme_err_invalid_create_cq_vector(vector);
return NVME_INVALID_IRQ_VECTOR | NVME_DNR;
}
if (unlikely(vector >= n->params.msix_qsize)) {
trace_pci_nvme_err_invalid_create_cq_vector(vector);
return NVME_INVALID_IRQ_VECTOR | NVME_DNR;
}
if (unlikely(!(NVME_CQ_FLAGS_PC(qflags)))) {
trace_pci_nvme_err_invalid_create_cq_qflags(NVME_CQ_FLAGS_PC(qflags));
return NVME_INVALID_FIELD | NVME_DNR;
}
cq = g_malloc0(sizeof(*cq));
nvme_init_cq(cq, n, prp1, cqid, vector, qsize + 1,
NVME_CQ_FLAGS_IEN(qflags));
/*
* It is only required to set qs_created when creating a completion queue;
* creating a submission queue without a matching completion queue will
* fail.
*/
n->qs_created = true;
return NVME_SUCCESS;
}
static uint16_t nvme_rpt_empty_id_struct(NvmeCtrl *n, NvmeRequest *req)
{
uint8_t id[NVME_IDENTIFY_DATA_SIZE] = {};
return nvme_c2h(n, id, sizeof(id), req);
}
static inline bool nvme_csi_has_nvm_support(NvmeNamespace *ns)
{
switch (ns->csi) {
case NVME_CSI_NVM:
case NVME_CSI_ZONED:
return true;
}
return false;
}
static uint16_t nvme_identify_ctrl(NvmeCtrl *n, NvmeRequest *req)
{
trace_pci_nvme_identify_ctrl();
return nvme_c2h(n, (uint8_t *)&n->id_ctrl, sizeof(n->id_ctrl), req);
}
static uint16_t nvme_identify_ctrl_csi(NvmeCtrl *n, NvmeRequest *req)
{
NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
uint8_t id[NVME_IDENTIFY_DATA_SIZE] = {};
NvmeIdCtrlNvm *id_nvm = (NvmeIdCtrlNvm *)&id;
trace_pci_nvme_identify_ctrl_csi(c->csi);
switch (c->csi) {
case NVME_CSI_NVM:
id_nvm->vsl = n->params.vsl;
id_nvm->dmrsl = cpu_to_le32(n->dmrsl);
break;
case NVME_CSI_ZONED:
((NvmeIdCtrlZoned *)&id)->zasl = n->params.zasl;
break;
default:
return NVME_INVALID_FIELD | NVME_DNR;
}
return nvme_c2h(n, id, sizeof(id), req);
}
static uint16_t nvme_identify_ns(NvmeCtrl *n, NvmeRequest *req, bool active)
{
NvmeNamespace *ns;
NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
uint32_t nsid = le32_to_cpu(c->nsid);
trace_pci_nvme_identify_ns(nsid);
if (!nvme_nsid_valid(n, nsid) || nsid == NVME_NSID_BROADCAST) {
return NVME_INVALID_NSID | NVME_DNR;
}
ns = nvme_ns(n, nsid);
if (unlikely(!ns)) {
if (!active) {
ns = nvme_subsys_ns(n->subsys, nsid);
if (!ns) {
return nvme_rpt_empty_id_struct(n, req);
}
} else {
return nvme_rpt_empty_id_struct(n, req);
}
}
if (c->csi == NVME_CSI_NVM && nvme_csi_has_nvm_support(ns)) {
return nvme_c2h(n, (uint8_t *)&ns->id_ns, sizeof(NvmeIdNs), req);
}
return NVME_INVALID_CMD_SET | NVME_DNR;
}
static uint16_t nvme_identify_ns_attached_list(NvmeCtrl *n, NvmeRequest *req)
{
NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
uint16_t min_id = le16_to_cpu(c->ctrlid);
uint16_t list[NVME_CONTROLLER_LIST_SIZE] = {};
uint16_t *ids = &list[1];
NvmeNamespace *ns;
NvmeCtrl *ctrl;
int cntlid, nr_ids = 0;
trace_pci_nvme_identify_ns_attached_list(min_id);
if (c->nsid == NVME_NSID_BROADCAST) {
return NVME_INVALID_FIELD | NVME_DNR;
}
ns = nvme_subsys_ns(n->subsys, c->nsid);
if (!ns) {
return NVME_INVALID_FIELD | NVME_DNR;
}
for (cntlid = min_id; cntlid < ARRAY_SIZE(n->subsys->ctrls); cntlid++) {
ctrl = nvme_subsys_ctrl(n->subsys, cntlid);
if (!ctrl) {
continue;
}
if (!nvme_ns(ctrl, c->nsid)) {
continue;
}
ids[nr_ids++] = cntlid;
}
list[0] = nr_ids;
return nvme_c2h(n, (uint8_t *)list, sizeof(list), req);
}
static uint16_t nvme_identify_ns_csi(NvmeCtrl *n, NvmeRequest *req,
bool active)
{
NvmeNamespace *ns;
NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
uint32_t nsid = le32_to_cpu(c->nsid);
trace_pci_nvme_identify_ns_csi(nsid, c->csi);
if (!nvme_nsid_valid(n, nsid) || nsid == NVME_NSID_BROADCAST) {
return NVME_INVALID_NSID | NVME_DNR;
}
ns = nvme_ns(n, nsid);
if (unlikely(!ns)) {
if (!active) {
ns = nvme_subsys_ns(n->subsys, nsid);
if (!ns) {
return nvme_rpt_empty_id_struct(n, req);
}
} else {
return nvme_rpt_empty_id_struct(n, req);
}
}
if (c->csi == NVME_CSI_NVM && nvme_csi_has_nvm_support(ns)) {
return nvme_rpt_empty_id_struct(n, req);
} else if (c->csi == NVME_CSI_ZONED && ns->csi == NVME_CSI_ZONED) {
return nvme_c2h(n, (uint8_t *)ns->id_ns_zoned, sizeof(NvmeIdNsZoned),
req);
}
return NVME_INVALID_FIELD | NVME_DNR;
}
static uint16_t nvme_identify_nslist(NvmeCtrl *n, NvmeRequest *req,
bool active)
{
NvmeNamespace *ns;
NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
uint32_t min_nsid = le32_to_cpu(c->nsid);
uint8_t list[NVME_IDENTIFY_DATA_SIZE] = {};
static const int data_len = sizeof(list);
uint32_t *list_ptr = (uint32_t *)list;
int i, j = 0;
trace_pci_nvme_identify_nslist(min_nsid);
/*
* Both FFFFFFFFh (NVME_NSID_BROADCAST) and FFFFFFFFEh are invalid values
* since the Active Namespace ID List should return namespaces with ids
* *higher* than the NSID specified in the command. This is also specified
* in the spec (NVM Express v1.3d, Section 5.15.4).
*/
if (min_nsid >= NVME_NSID_BROADCAST - 1) {
return NVME_INVALID_NSID | NVME_DNR;
}
for (i = 1; i <= n->num_namespaces; i++) {
ns = nvme_ns(n, i);
if (!ns) {
if (!active) {
ns = nvme_subsys_ns(n->subsys, i);
if (!ns) {
continue;
}
} else {
continue;
}
}
if (ns->params.nsid <= min_nsid) {
continue;
}
list_ptr[j++] = cpu_to_le32(ns->params.nsid);
if (j == data_len / sizeof(uint32_t)) {
break;
}
}
return nvme_c2h(n, list, data_len, req);
}
static uint16_t nvme_identify_nslist_csi(NvmeCtrl *n, NvmeRequest *req,
bool active)
{
NvmeNamespace *ns;
NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
uint32_t min_nsid = le32_to_cpu(c->nsid);
uint8_t list[NVME_IDENTIFY_DATA_SIZE] = {};
static const int data_len = sizeof(list);
uint32_t *list_ptr = (uint32_t *)list;
int i, j = 0;
trace_pci_nvme_identify_nslist_csi(min_nsid, c->csi);
/*
* Same as in nvme_identify_nslist(), FFFFFFFFh/FFFFFFFFEh are invalid.
*/
if (min_nsid >= NVME_NSID_BROADCAST - 1) {
return NVME_INVALID_NSID | NVME_DNR;
}
if (c->csi != NVME_CSI_NVM && c->csi != NVME_CSI_ZONED) {
return NVME_INVALID_FIELD | NVME_DNR;
}
for (i = 1; i <= n->num_namespaces; i++) {
ns = nvme_ns(n, i);
if (!ns) {
if (!active) {
ns = nvme_subsys_ns(n->subsys, i);
if (!ns) {
continue;
}
} else {
continue;
}
}
if (ns->params.nsid <= min_nsid || c->csi != ns->csi) {
continue;
}
list_ptr[j++] = cpu_to_le32(ns->params.nsid);
if (j == data_len / sizeof(uint32_t)) {
break;
}
}
return nvme_c2h(n, list, data_len, req);
}
static uint16_t nvme_identify_ns_descr_list(NvmeCtrl *n, NvmeRequest *req)
{
NvmeNamespace *ns;
NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
uint32_t nsid = le32_to_cpu(c->nsid);
uint8_t list[NVME_IDENTIFY_DATA_SIZE] = {};
struct data {
struct {
NvmeIdNsDescr hdr;
uint8_t v[NVME_NIDL_UUID];
} uuid;
struct {
NvmeIdNsDescr hdr;
uint8_t v;
} csi;
};
struct data *ns_descrs = (struct data *)list;
trace_pci_nvme_identify_ns_descr_list(nsid);
if (!nvme_nsid_valid(n, nsid) || nsid == NVME_NSID_BROADCAST) {
return NVME_INVALID_NSID | NVME_DNR;
}
ns = nvme_ns(n, nsid);
if (unlikely(!ns)) {
return NVME_INVALID_FIELD | NVME_DNR;
}
/*
* Because the NGUID and EUI64 fields are 0 in the Identify Namespace data
* structure, a Namespace UUID (nidt = 3h) must be reported in the
* Namespace Identification Descriptor. Add the namespace UUID here.
*/
ns_descrs->uuid.hdr.nidt = NVME_NIDT_UUID;
ns_descrs->uuid.hdr.nidl = NVME_NIDL_UUID;
memcpy(&ns_descrs->uuid.v, ns->params.uuid.data, NVME_NIDL_UUID);
ns_descrs->csi.hdr.nidt = NVME_NIDT_CSI;
ns_descrs->csi.hdr.nidl = NVME_NIDL_CSI;
ns_descrs->csi.v = ns->csi;
return nvme_c2h(n, list, sizeof(list), req);
}
static uint16_t nvme_identify_cmd_set(NvmeCtrl *n, NvmeRequest *req)
{
uint8_t list[NVME_IDENTIFY_DATA_SIZE] = {};
static const int data_len = sizeof(list);
trace_pci_nvme_identify_cmd_set();
NVME_SET_CSI(*list, NVME_CSI_NVM);
NVME_SET_CSI(*list, NVME_CSI_ZONED);
return nvme_c2h(n, list, data_len, req);
}
static uint16_t nvme_identify(NvmeCtrl *n, NvmeRequest *req)
{
NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
trace_pci_nvme_identify(nvme_cid(req), c->cns, le16_to_cpu(c->ctrlid),
c->csi);
switch (c->cns) {
case NVME_ID_CNS_NS:
return nvme_identify_ns(n, req, true);
case NVME_ID_CNS_NS_PRESENT:
return nvme_identify_ns(n, req, false);
case NVME_ID_CNS_NS_ATTACHED_CTRL_LIST:
return nvme_identify_ns_attached_list(n, req);
case NVME_ID_CNS_CS_NS:
return nvme_identify_ns_csi(n, req, true);
case NVME_ID_CNS_CS_NS_PRESENT:
return nvme_identify_ns_csi(n, req, false);
case NVME_ID_CNS_CTRL:
return nvme_identify_ctrl(n, req);
case NVME_ID_CNS_CS_CTRL:
return nvme_identify_ctrl_csi(n, req);
case NVME_ID_CNS_NS_ACTIVE_LIST:
return nvme_identify_nslist(n, req, true);
case NVME_ID_CNS_NS_PRESENT_LIST:
return nvme_identify_nslist(n, req, false);
case NVME_ID_CNS_CS_NS_ACTIVE_LIST:
return nvme_identify_nslist_csi(n, req, true);
case NVME_ID_CNS_CS_NS_PRESENT_LIST:
return nvme_identify_nslist_csi(n, req, false);
case NVME_ID_CNS_NS_DESCR_LIST:
return nvme_identify_ns_descr_list(n, req);
case NVME_ID_CNS_IO_COMMAND_SET:
return nvme_identify_cmd_set(n, req);
default:
trace_pci_nvme_err_invalid_identify_cns(le32_to_cpu(c->cns));
return NVME_INVALID_FIELD | NVME_DNR;
}
}
static uint16_t nvme_abort(NvmeCtrl *n, NvmeRequest *req)
{
uint16_t sqid = le32_to_cpu(req->cmd.cdw10) & 0xffff;
req->cqe.result = 1;
if (nvme_check_sqid(n, sqid)) {
return NVME_INVALID_FIELD | NVME_DNR;
}
return NVME_SUCCESS;
}
static inline void nvme_set_timestamp(NvmeCtrl *n, uint64_t ts)
{
trace_pci_nvme_setfeat_timestamp(ts);
n->host_timestamp = le64_to_cpu(ts);
n->timestamp_set_qemu_clock_ms = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL);
}
static inline uint64_t nvme_get_timestamp(const NvmeCtrl *n)
{
uint64_t current_time = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL);
uint64_t elapsed_time = current_time - n->timestamp_set_qemu_clock_ms;
union nvme_timestamp {
struct {
uint64_t timestamp:48;
uint64_t sync:1;
uint64_t origin:3;
uint64_t rsvd1:12;
};
uint64_t all;
};
union nvme_timestamp ts;
ts.all = 0;
ts.timestamp = n->host_timestamp + elapsed_time;
/* If the host timestamp is non-zero, set the timestamp origin */
ts.origin = n->host_timestamp ? 0x01 : 0x00;
trace_pci_nvme_getfeat_timestamp(ts.all);
return cpu_to_le64(ts.all);
}
static uint16_t nvme_get_feature_timestamp(NvmeCtrl *n, NvmeRequest *req)
{
uint64_t timestamp = nvme_get_timestamp(n);
return nvme_c2h(n, (uint8_t *)&timestamp, sizeof(timestamp), req);
}
static uint16_t nvme_get_feature(NvmeCtrl *n, NvmeRequest *req)
{
NvmeCmd *cmd = &req->cmd;
uint32_t dw10 = le32_to_cpu(cmd->cdw10);
uint32_t dw11 = le32_to_cpu(cmd->cdw11);
uint32_t nsid = le32_to_cpu(cmd->nsid);
uint32_t result;
uint8_t fid = NVME_GETSETFEAT_FID(dw10);
NvmeGetFeatureSelect sel = NVME_GETFEAT_SELECT(dw10);
uint16_t iv;
NvmeNamespace *ns;
int i;
static const uint32_t nvme_feature_default[NVME_FID_MAX] = {
[NVME_ARBITRATION] = NVME_ARB_AB_NOLIMIT,
};
trace_pci_nvme_getfeat(nvme_cid(req), nsid, fid, sel, dw11);
if (!nvme_feature_support[fid]) {
return NVME_INVALID_FIELD | NVME_DNR;
}
if (nvme_feature_cap[fid] & NVME_FEAT_CAP_NS) {
if (!nvme_nsid_valid(n, nsid) || nsid == NVME_NSID_BROADCAST) {
/*
* The Reservation Notification Mask and Reservation Persistence
* features require a status code of Invalid Field in Command when
* NSID is FFFFFFFFh. Since the device does not support those
* features we can always return Invalid Namespace or Format as we
* should do for all other features.
*/
return NVME_INVALID_NSID | NVME_DNR;
}
if (!nvme_ns(n, nsid)) {
return NVME_INVALID_FIELD | NVME_DNR;
}
}
switch (sel) {
case NVME_GETFEAT_SELECT_CURRENT:
break;
case NVME_GETFEAT_SELECT_SAVED:
/* no features are saveable by the controller; fallthrough */
case NVME_GETFEAT_SELECT_DEFAULT:
goto defaults;
case NVME_GETFEAT_SELECT_CAP:
result = nvme_feature_cap[fid];
goto out;
}
switch (fid) {
case NVME_TEMPERATURE_THRESHOLD:
result = 0;
/*
* The controller only implements the Composite Temperature sensor, so
* return 0 for all other sensors.
*/
if (NVME_TEMP_TMPSEL(dw11) != NVME_TEMP_TMPSEL_COMPOSITE) {
goto out;
}
switch (NVME_TEMP_THSEL(dw11)) {
case NVME_TEMP_THSEL_OVER:
result = n->features.temp_thresh_hi;
goto out;
case NVME_TEMP_THSEL_UNDER:
result = n->features.temp_thresh_low;
goto out;
}
return NVME_INVALID_FIELD | NVME_DNR;
case NVME_ERROR_RECOVERY:
if (!nvme_nsid_valid(n, nsid)) {
return NVME_INVALID_NSID | NVME_DNR;
}
ns = nvme_ns(n, nsid);
if (unlikely(!ns)) {
return NVME_INVALID_FIELD | NVME_DNR;
}
result = ns->features.err_rec;
goto out;
case NVME_VOLATILE_WRITE_CACHE:
result = 0;
for (i = 1; i <= n->num_namespaces; i++) {
ns = nvme_ns(n, i);
if (!ns) {
continue;
}
result = blk_enable_write_cache(ns->blkconf.blk);
if (result) {
break;
}
}
trace_pci_nvme_getfeat_vwcache(result ? "enabled" : "disabled");
goto out;
case NVME_ASYNCHRONOUS_EVENT_CONF:
result = n->features.async_config;
goto out;
case NVME_TIMESTAMP:
return nvme_get_feature_timestamp(n, req);
default:
break;
}
defaults:
switch (fid) {
case NVME_TEMPERATURE_THRESHOLD:
result = 0;
if (NVME_TEMP_TMPSEL(dw11) != NVME_TEMP_TMPSEL_COMPOSITE) {
break;
}
if (NVME_TEMP_THSEL(dw11) == NVME_TEMP_THSEL_OVER) {
result = NVME_TEMPERATURE_WARNING;
}
break;
case NVME_NUMBER_OF_QUEUES:
result = (n->params.max_ioqpairs - 1) |
((n->params.max_ioqpairs - 1) << 16);
trace_pci_nvme_getfeat_numq(result);
break;
case NVME_INTERRUPT_VECTOR_CONF:
iv = dw11 & 0xffff;
if (iv >= n->params.max_ioqpairs + 1) {
return NVME_INVALID_FIELD | NVME_DNR;
}
result = iv;
if (iv == n->admin_cq.vector) {
result |= NVME_INTVC_NOCOALESCING;
}
break;
default:
result = nvme_feature_default[fid];
break;
}
out:
req->cqe.result = cpu_to_le32(result);
return NVME_SUCCESS;
}
static uint16_t nvme_set_feature_timestamp(NvmeCtrl *n, NvmeRequest *req)
{
uint16_t ret;
uint64_t timestamp;
ret = nvme_h2c(n, (uint8_t *)&timestamp, sizeof(timestamp), req);
if (ret) {
return ret;
}
nvme_set_timestamp(n, timestamp);
return NVME_SUCCESS;
}
static uint16_t nvme_set_feature(NvmeCtrl *n, NvmeRequest *req)
{
NvmeNamespace *ns = NULL;
NvmeCmd *cmd = &req->cmd;
uint32_t dw10 = le32_to_cpu(cmd->cdw10);
uint32_t dw11 = le32_to_cpu(cmd->cdw11);
uint32_t nsid = le32_to_cpu(cmd->nsid);
uint8_t fid = NVME_GETSETFEAT_FID(dw10);
uint8_t save = NVME_SETFEAT_SAVE(dw10);
int i;
trace_pci_nvme_setfeat(nvme_cid(req), nsid, fid, save, dw11);
if (save && !(nvme_feature_cap[fid] & NVME_FEAT_CAP_SAVE)) {
return NVME_FID_NOT_SAVEABLE | NVME_DNR;
}
if (!nvme_feature_support[fid]) {
return NVME_INVALID_FIELD | NVME_DNR;
}
if (nvme_feature_cap[fid] & NVME_FEAT_CAP_NS) {
if (nsid != NVME_NSID_BROADCAST) {
if (!nvme_nsid_valid(n, nsid)) {
return NVME_INVALID_NSID | NVME_DNR;
}
ns = nvme_ns(n, nsid);
if (unlikely(!ns)) {
return NVME_INVALID_FIELD | NVME_DNR;
}
}
} else if (nsid && nsid != NVME_NSID_BROADCAST) {
if (!nvme_nsid_valid(n, nsid)) {
return NVME_INVALID_NSID | NVME_DNR;
}
return NVME_FEAT_NOT_NS_SPEC | NVME_DNR;
}
if (!(nvme_feature_cap[fid] & NVME_FEAT_CAP_CHANGE)) {
return NVME_FEAT_NOT_CHANGEABLE | NVME_DNR;
}
switch (fid) {
case NVME_TEMPERATURE_THRESHOLD:
if (NVME_TEMP_TMPSEL(dw11) != NVME_TEMP_TMPSEL_COMPOSITE) {
break;
}
switch (NVME_TEMP_THSEL(dw11)) {
case NVME_TEMP_THSEL_OVER:
n->features.temp_thresh_hi = NVME_TEMP_TMPTH(dw11);
break;
case NVME_TEMP_THSEL_UNDER:
n->features.temp_thresh_low = NVME_TEMP_TMPTH(dw11);
break;
default:
return NVME_INVALID_FIELD | NVME_DNR;
}
if ((n->temperature >= n->features.temp_thresh_hi) ||
(n->temperature <= n->features.temp_thresh_low)) {
nvme_smart_event(n, NVME_AER_INFO_SMART_TEMP_THRESH);
}
break;
case NVME_ERROR_RECOVERY:
if (nsid == NVME_NSID_BROADCAST) {
for (i = 1; i <= n->num_namespaces; i++) {
ns = nvme_ns(n, i);
if (!ns) {
continue;
}
if (NVME_ID_NS_NSFEAT_DULBE(ns->id_ns.nsfeat)) {
ns->features.err_rec = dw11;
}
}
break;
}
assert(ns);
if (NVME_ID_NS_NSFEAT_DULBE(ns->id_ns.nsfeat)) {
ns->features.err_rec = dw11;
}
break;
case NVME_VOLATILE_WRITE_CACHE:
for (i = 1; i <= n->num_namespaces; i++) {
ns = nvme_ns(n, i);
if (!ns) {
continue;
}
if (!(dw11 & 0x1) && blk_enable_write_cache(ns->blkconf.blk)) {
blk_flush(ns->blkconf.blk);
}
blk_set_enable_write_cache(ns->blkconf.blk, dw11 & 1);
}
break;
case NVME_NUMBER_OF_QUEUES:
if (n->qs_created) {
return NVME_CMD_SEQ_ERROR | NVME_DNR;
}
/*
* NVMe v1.3, Section 5.21.1.7: FFFFh is not an allowed value for NCQR
* and NSQR.
*/
if ((dw11 & 0xffff) == 0xffff || ((dw11 >> 16) & 0xffff) == 0xffff) {
return NVME_INVALID_FIELD | NVME_DNR;
}
trace_pci_nvme_setfeat_numq((dw11 & 0xffff) + 1,
((dw11 >> 16) & 0xffff) + 1,
n->params.max_ioqpairs,
n->params.max_ioqpairs);
req->cqe.result = cpu_to_le32((n->params.max_ioqpairs - 1) |
((n->params.max_ioqpairs - 1) << 16));
break;
case NVME_ASYNCHRONOUS_EVENT_CONF:
n->features.async_config = dw11;
break;
case NVME_TIMESTAMP:
return nvme_set_feature_timestamp(n, req);
case NVME_COMMAND_SET_PROFILE:
if (dw11 & 0x1ff) {
trace_pci_nvme_err_invalid_iocsci(dw11 & 0x1ff);
return NVME_CMD_SET_CMB_REJECTED | NVME_DNR;
}
break;
default:
return NVME_FEAT_NOT_CHANGEABLE | NVME_DNR;
}
return NVME_SUCCESS;
}
static uint16_t nvme_aer(NvmeCtrl *n, NvmeRequest *req)
{
trace_pci_nvme_aer(nvme_cid(req));
if (n->outstanding_aers > n->params.aerl) {
trace_pci_nvme_aer_aerl_exceeded();
return NVME_AER_LIMIT_EXCEEDED;
}
n->aer_reqs[n->outstanding_aers] = req;
n->outstanding_aers++;
if (!QTAILQ_EMPTY(&n->aer_queue)) {
nvme_process_aers(n);
}
return NVME_NO_COMPLETE;
}
static void nvme_update_dmrsl(NvmeCtrl *n)
{
int nsid;
for (nsid = 1; nsid <= NVME_MAX_NAMESPACES; nsid++) {
NvmeNamespace *ns = nvme_ns(n, nsid);
if (!ns) {
continue;
}
n->dmrsl = MIN_NON_ZERO(n->dmrsl,
BDRV_REQUEST_MAX_BYTES / nvme_l2b(ns, 1));
}
}
static void nvme_select_iocs_ns(NvmeCtrl *n, NvmeNamespace *ns)
{
ns->iocs = nvme_cse_iocs_none;
switch (ns->csi) {
case NVME_CSI_NVM:
if (NVME_CC_CSS(n->bar.cc) != NVME_CC_CSS_ADMIN_ONLY) {
ns->iocs = nvme_cse_iocs_nvm;
}
break;
case NVME_CSI_ZONED:
if (NVME_CC_CSS(n->bar.cc) == NVME_CC_CSS_CSI) {
ns->iocs = nvme_cse_iocs_zoned;
} else if (NVME_CC_CSS(n->bar.cc) == NVME_CC_CSS_NVM) {
ns->iocs = nvme_cse_iocs_nvm;
}
break;
}
}
static uint16_t nvme_ns_attachment(NvmeCtrl *n, NvmeRequest *req)
{
NvmeNamespace *ns;
NvmeCtrl *ctrl;
uint16_t list[NVME_CONTROLLER_LIST_SIZE] = {};
uint32_t nsid = le32_to_cpu(req->cmd.nsid);
uint32_t dw10 = le32_to_cpu(req->cmd.cdw10);
bool attach = !(dw10 & 0xf);
uint16_t *nr_ids = &list[0];
uint16_t *ids = &list[1];
uint16_t ret;
int i;
trace_pci_nvme_ns_attachment(nvme_cid(req), dw10 & 0xf);
if (!nvme_nsid_valid(n, nsid)) {
return NVME_INVALID_NSID | NVME_DNR;
}
ns = nvme_subsys_ns(n->subsys, nsid);
if (!ns) {
return NVME_INVALID_FIELD | NVME_DNR;
}
ret = nvme_h2c(n, (uint8_t *)list, 4096, req);
if (ret) {
return ret;
}
if (!*nr_ids) {
return NVME_NS_CTRL_LIST_INVALID | NVME_DNR;
}
*nr_ids = MIN(*nr_ids, NVME_CONTROLLER_LIST_SIZE - 1);
for (i = 0; i < *nr_ids; i++) {
ctrl = nvme_subsys_ctrl(n->subsys, ids[i]);
if (!ctrl) {
return NVME_NS_CTRL_LIST_INVALID | NVME_DNR;
}
if (attach) {
if (nvme_ns(ctrl, nsid)) {
return NVME_NS_ALREADY_ATTACHED | NVME_DNR;
}
if (ns->attached && !ns->params.shared) {
return NVME_NS_PRIVATE | NVME_DNR;
}
nvme_attach_ns(ctrl, ns);
nvme_select_iocs_ns(ctrl, ns);
} else {
if (!nvme_ns(ctrl, nsid)) {
return NVME_NS_NOT_ATTACHED | NVME_DNR;
}
ctrl->namespaces[nsid - 1] = NULL;
ns->attached--;
nvme_update_dmrsl(ctrl);
}
/*
* Add namespace id to the changed namespace id list for event clearing
* via Get Log Page command.
*/
if (!test_and_set_bit(nsid, ctrl->changed_nsids)) {
nvme_enqueue_event(ctrl, NVME_AER_TYPE_NOTICE,
NVME_AER_INFO_NOTICE_NS_ATTR_CHANGED,
NVME_LOG_CHANGED_NSLIST);
}
}
return NVME_SUCCESS;
}
static uint16_t nvme_format_ns(NvmeCtrl *n, NvmeNamespace *ns, uint8_t lbaf,
uint8_t mset, uint8_t pi, uint8_t pil,
NvmeRequest *req)
{
int64_t len, offset;
struct nvme_aio_format_ctx *ctx;
BlockBackend *blk = ns->blkconf.blk;
uint16_t ms;
uintptr_t *num_formats = (uintptr_t *)&req->opaque;
int *count;
if (ns->params.zoned) {
return NVME_INVALID_FORMAT | NVME_DNR;
}
trace_pci_nvme_format_ns(nvme_cid(req), nvme_nsid(ns), lbaf, mset, pi, pil);
if (lbaf > ns->id_ns.nlbaf) {
return NVME_INVALID_FORMAT | NVME_DNR;
}
ms = ns->id_ns.lbaf[lbaf].ms;
if (pi && (ms < sizeof(NvmeDifTuple))) {
return NVME_INVALID_FORMAT | NVME_DNR;
}
if (pi && pi > NVME_ID_NS_DPS_TYPE_3) {
return NVME_INVALID_FIELD | NVME_DNR;
}
nvme_ns_drain(ns);
nvme_ns_shutdown(ns);
nvme_ns_cleanup(ns);
ns->id_ns.dps = (pil << 3) | pi;
ns->id_ns.flbas = lbaf | (mset << 4);
nvme_ns_init_format(ns);
ns->status = NVME_FORMAT_IN_PROGRESS;
len = ns->size;
offset = 0;
count = g_new(int, 1);
*count = 1;
(*num_formats)++;
while (len) {
ctx = g_new(struct nvme_aio_format_ctx, 1);
ctx->req = req;
ctx->ns = ns;
ctx->count = count;
size_t bytes = MIN(BDRV_REQUEST_MAX_BYTES, len);
(*count)++;
blk_aio_pwrite_zeroes(blk, offset, bytes, BDRV_REQ_MAY_UNMAP,
nvme_aio_format_cb, ctx);
offset += bytes;
len -= bytes;
}
if (--(*count)) {
return NVME_NO_COMPLETE;
}
g_free(count);
ns->status = 0x0;
(*num_formats)--;
return NVME_SUCCESS;
}
static uint16_t nvme_format(NvmeCtrl *n, NvmeRequest *req)
{
NvmeNamespace *ns;
uint32_t dw10 = le32_to_cpu(req->cmd.cdw10);
uint32_t nsid = le32_to_cpu(req->cmd.nsid);
uint8_t lbaf = dw10 & 0xf;
uint8_t mset = (dw10 >> 4) & 0x1;
uint8_t pi = (dw10 >> 5) & 0x7;
uint8_t pil = (dw10 >> 8) & 0x1;
uintptr_t *num_formats = (uintptr_t *)&req->opaque;
uint16_t status;
int i;
trace_pci_nvme_format(nvme_cid(req), nsid, lbaf, mset, pi, pil);
/* 1-initialize; see the comment in nvme_dsm */
*num_formats = 1;
if (nsid != NVME_NSID_BROADCAST) {
if (!nvme_nsid_valid(n, nsid)) {
return NVME_INVALID_NSID | NVME_DNR;
}
ns = nvme_ns(n, nsid);
if (!ns) {
return NVME_INVALID_FIELD | NVME_DNR;
}
status = nvme_format_ns(n, ns, lbaf, mset, pi, pil, req);
if (status && status != NVME_NO_COMPLETE) {
req->status = status;
}
} else {
for (i = 1; i <= n->num_namespaces; i++) {
ns = nvme_ns(n, i);
if (!ns) {
continue;
}
status = nvme_format_ns(n, ns, lbaf, mset, pi, pil, req);
if (status && status != NVME_NO_COMPLETE) {
req->status = status;
break;
}
}
}
/* account for the 1-initialization */
if (--(*num_formats)) {
return NVME_NO_COMPLETE;
}
return req->status;
}
static uint16_t nvme_admin_cmd(NvmeCtrl *n, NvmeRequest *req)
{
trace_pci_nvme_admin_cmd(nvme_cid(req), nvme_sqid(req), req->cmd.opcode,
nvme_adm_opc_str(req->cmd.opcode));
if (!(nvme_cse_acs[req->cmd.opcode] & NVME_CMD_EFF_CSUPP)) {
trace_pci_nvme_err_invalid_admin_opc(req->cmd.opcode);
return NVME_INVALID_OPCODE | NVME_DNR;
}
/* SGLs shall not be used for Admin commands in NVMe over PCIe */
if (NVME_CMD_FLAGS_PSDT(req->cmd.flags) != NVME_PSDT_PRP) {
return NVME_INVALID_FIELD | NVME_DNR;
}
switch (req->cmd.opcode) {
case NVME_ADM_CMD_DELETE_SQ:
return nvme_del_sq(n, req);
case NVME_ADM_CMD_CREATE_SQ:
return nvme_create_sq(n, req);
case NVME_ADM_CMD_GET_LOG_PAGE:
return nvme_get_log(n, req);
case NVME_ADM_CMD_DELETE_CQ:
return nvme_del_cq(n, req);
case NVME_ADM_CMD_CREATE_CQ:
return nvme_create_cq(n, req);
case NVME_ADM_CMD_IDENTIFY:
return nvme_identify(n, req);
case NVME_ADM_CMD_ABORT:
return nvme_abort(n, req);
case NVME_ADM_CMD_SET_FEATURES:
return nvme_set_feature(n, req);
case NVME_ADM_CMD_GET_FEATURES:
return nvme_get_feature(n, req);
case NVME_ADM_CMD_ASYNC_EV_REQ:
return nvme_aer(n, req);
case NVME_ADM_CMD_NS_ATTACHMENT:
return nvme_ns_attachment(n, req);
case NVME_ADM_CMD_FORMAT_NVM:
return nvme_format(n, req);
default:
assert(false);
}
return NVME_INVALID_OPCODE | NVME_DNR;
}
static void nvme_process_sq(void *opaque)
{
NvmeSQueue *sq = opaque;
NvmeCtrl *n = sq->ctrl;
NvmeCQueue *cq = n->cq[sq->cqid];
uint16_t status;
hwaddr addr;
NvmeCmd cmd;
NvmeRequest *req;
while (!(nvme_sq_empty(sq) || QTAILQ_EMPTY(&sq->req_list))) {
addr = sq->dma_addr + sq->head * n->sqe_size;
if (nvme_addr_read(n, addr, (void *)&cmd, sizeof(cmd))) {
trace_pci_nvme_err_addr_read(addr);
trace_pci_nvme_err_cfs();
n->bar.csts = NVME_CSTS_FAILED;
break;
}
nvme_inc_sq_head(sq);
req = QTAILQ_FIRST(&sq->req_list);
QTAILQ_REMOVE(&sq->req_list, req, entry);
QTAILQ_INSERT_TAIL(&sq->out_req_list, req, entry);
nvme_req_clear(req);
req->cqe.cid = cmd.cid;
memcpy(&req->cmd, &cmd, sizeof(NvmeCmd));
status = sq->sqid ? nvme_io_cmd(n, req) :
nvme_admin_cmd(n, req);
if (status != NVME_NO_COMPLETE) {
req->status = status;
nvme_enqueue_req_completion(cq, req);
}
}
}
static void nvme_ctrl_reset(NvmeCtrl *n)
{
NvmeNamespace *ns;
int i;
for (i = 1; i <= n->num_namespaces; i++) {
ns = nvme_ns(n, i);
if (!ns) {
continue;
}
nvme_ns_drain(ns);
}
for (i = 0; i < n->params.max_ioqpairs + 1; i++) {
if (n->sq[i] != NULL) {
nvme_free_sq(n->sq[i], n);
}
}
for (i = 0; i < n->params.max_ioqpairs + 1; i++) {
if (n->cq[i] != NULL) {
nvme_free_cq(n->cq[i], n);
}
}
while (!QTAILQ_EMPTY(&n->aer_queue)) {
NvmeAsyncEvent *event = QTAILQ_FIRST(&n->aer_queue);
QTAILQ_REMOVE(&n->aer_queue, event, entry);
g_free(event);
}
n->aer_queued = 0;
n->outstanding_aers = 0;
n->qs_created = false;
n->bar.cc = 0;
}
static void nvme_ctrl_shutdown(NvmeCtrl *n)
{
NvmeNamespace *ns;
int i;
if (n->pmr.dev) {
memory_region_msync(&n->pmr.dev->mr, 0, n->pmr.dev->size);
}
for (i = 1; i <= n->num_namespaces; i++) {
ns = nvme_ns(n, i);
if (!ns) {
continue;
}
nvme_ns_shutdown(ns);
}
}
static void nvme_select_iocs(NvmeCtrl *n)
{
NvmeNamespace *ns;
int i;
for (i = 1; i <= n->num_namespaces; i++) {
ns = nvme_ns(n, i);
if (!ns) {
continue;
}
nvme_select_iocs_ns(n, ns);
}
}
static int nvme_start_ctrl(NvmeCtrl *n)
{
uint32_t page_bits = NVME_CC_MPS(n->bar.cc) + 12;
uint32_t page_size = 1 << page_bits;
if (unlikely(n->cq[0])) {
trace_pci_nvme_err_startfail_cq();
return -1;
}
if (unlikely(n->sq[0])) {
trace_pci_nvme_err_startfail_sq();
return -1;
}
if (unlikely(!n->bar.asq)) {
trace_pci_nvme_err_startfail_nbarasq();
return -1;
}
if (unlikely(!n->bar.acq)) {
trace_pci_nvme_err_startfail_nbaracq();
return -1;
}
if (unlikely(n->bar.asq & (page_size - 1))) {
trace_pci_nvme_err_startfail_asq_misaligned(n->bar.asq);
return -1;
}
if (unlikely(n->bar.acq & (page_size - 1))) {
trace_pci_nvme_err_startfail_acq_misaligned(n->bar.acq);
return -1;
}
if (unlikely(!(NVME_CAP_CSS(n->bar.cap) & (1 << NVME_CC_CSS(n->bar.cc))))) {
trace_pci_nvme_err_startfail_css(NVME_CC_CSS(n->bar.cc));
return -1;
}
if (unlikely(NVME_CC_MPS(n->bar.cc) <
NVME_CAP_MPSMIN(n->bar.cap))) {
trace_pci_nvme_err_startfail_page_too_small(
NVME_CC_MPS(n->bar.cc),
NVME_CAP_MPSMIN(n->bar.cap));
return -1;
}
if (unlikely(NVME_CC_MPS(n->bar.cc) >
NVME_CAP_MPSMAX(n->bar.cap))) {
trace_pci_nvme_err_startfail_page_too_large(
NVME_CC_MPS(n->bar.cc),
NVME_CAP_MPSMAX(n->bar.cap));
return -1;
}
if (unlikely(NVME_CC_IOCQES(n->bar.cc) <
NVME_CTRL_CQES_MIN(n->id_ctrl.cqes))) {
trace_pci_nvme_err_startfail_cqent_too_small(
NVME_CC_IOCQES(n->bar.cc),
NVME_CTRL_CQES_MIN(n->bar.cap));
return -1;
}
if (unlikely(NVME_CC_IOCQES(n->bar.cc) >
NVME_CTRL_CQES_MAX(n->id_ctrl.cqes))) {
trace_pci_nvme_err_startfail_cqent_too_large(
NVME_CC_IOCQES(n->bar.cc),
NVME_CTRL_CQES_MAX(n->bar.cap));
return -1;
}
if (unlikely(NVME_CC_IOSQES(n->bar.cc) <
NVME_CTRL_SQES_MIN(n->id_ctrl.sqes))) {
trace_pci_nvme_err_startfail_sqent_too_small(
NVME_CC_IOSQES(n->bar.cc),
NVME_CTRL_SQES_MIN(n->bar.cap));
return -1;
}
if (unlikely(NVME_CC_IOSQES(n->bar.cc) >
NVME_CTRL_SQES_MAX(n->id_ctrl.sqes))) {
trace_pci_nvme_err_startfail_sqent_too_large(
NVME_CC_IOSQES(n->bar.cc),
NVME_CTRL_SQES_MAX(n->bar.cap));
return -1;
}
if (unlikely(!NVME_AQA_ASQS(n->bar.aqa))) {
trace_pci_nvme_err_startfail_asqent_sz_zero();
return -1;
}
if (unlikely(!NVME_AQA_ACQS(n->bar.aqa))) {
trace_pci_nvme_err_startfail_acqent_sz_zero();
return -1;
}
n->page_bits = page_bits;
n->page_size = page_size;
n->max_prp_ents = n->page_size / sizeof(uint64_t);
n->cqe_size = 1 << NVME_CC_IOCQES(n->bar.cc);
n->sqe_size = 1 << NVME_CC_IOSQES(n->bar.cc);
nvme_init_cq(&n->admin_cq, n, n->bar.acq, 0, 0,
NVME_AQA_ACQS(n->bar.aqa) + 1, 1);
nvme_init_sq(&n->admin_sq, n, n->bar.asq, 0, 0,
NVME_AQA_ASQS(n->bar.aqa) + 1);
nvme_set_timestamp(n, 0ULL);
QTAILQ_INIT(&n->aer_queue);
nvme_select_iocs(n);
return 0;
}
static void nvme_cmb_enable_regs(NvmeCtrl *n)
{
NVME_CMBLOC_SET_CDPCILS(n->bar.cmbloc, 1);
NVME_CMBLOC_SET_CDPMLS(n->bar.cmbloc, 1);
NVME_CMBLOC_SET_BIR(n->bar.cmbloc, NVME_CMB_BIR);
NVME_CMBSZ_SET_SQS(n->bar.cmbsz, 1);
NVME_CMBSZ_SET_CQS(n->bar.cmbsz, 0);
NVME_CMBSZ_SET_LISTS(n->bar.cmbsz, 1);
NVME_CMBSZ_SET_RDS(n->bar.cmbsz, 1);
NVME_CMBSZ_SET_WDS(n->bar.cmbsz, 1);
NVME_CMBSZ_SET_SZU(n->bar.cmbsz, 2); /* MBs */
NVME_CMBSZ_SET_SZ(n->bar.cmbsz, n->params.cmb_size_mb);
}
static void nvme_write_bar(NvmeCtrl *n, hwaddr offset, uint64_t data,
unsigned size)
{
if (unlikely(offset & (sizeof(uint32_t) - 1))) {
NVME_GUEST_ERR(pci_nvme_ub_mmiowr_misaligned32,
"MMIO write not 32-bit aligned,"
" offset=0x%"PRIx64"", offset);
/* should be ignored, fall through for now */
}
if (unlikely(size < sizeof(uint32_t))) {
NVME_GUEST_ERR(pci_nvme_ub_mmiowr_toosmall,
"MMIO write smaller than 32-bits,"
" offset=0x%"PRIx64", size=%u",
offset, size);
/* should be ignored, fall through for now */
}
switch (offset) {
case 0xc: /* INTMS */
if (unlikely(msix_enabled(&(n->parent_obj)))) {
NVME_GUEST_ERR(pci_nvme_ub_mmiowr_intmask_with_msix,
"undefined access to interrupt mask set"
" when MSI-X is enabled");
/* should be ignored, fall through for now */
}
n->bar.intms |= data & 0xffffffff;
n->bar.intmc = n->bar.intms;
trace_pci_nvme_mmio_intm_set(data & 0xffffffff, n->bar.intmc);
nvme_irq_check(n);
break;
case 0x10: /* INTMC */
if (unlikely(msix_enabled(&(n->parent_obj)))) {
NVME_GUEST_ERR(pci_nvme_ub_mmiowr_intmask_with_msix,
"undefined access to interrupt mask clr"
" when MSI-X is enabled");
/* should be ignored, fall through for now */
}
n->bar.intms &= ~(data & 0xffffffff);
n->bar.intmc = n->bar.intms;
trace_pci_nvme_mmio_intm_clr(data & 0xffffffff, n->bar.intmc);
nvme_irq_check(n);
break;
case 0x14: /* CC */
trace_pci_nvme_mmio_cfg(data & 0xffffffff);
/* Windows first sends data, then sends enable bit */
if (!NVME_CC_EN(data) && !NVME_CC_EN(n->bar.cc) &&
!NVME_CC_SHN(data) && !NVME_CC_SHN(n->bar.cc))
{
n->bar.cc = data;
}
if (NVME_CC_EN(data) && !NVME_CC_EN(n->bar.cc)) {
n->bar.cc = data;
if (unlikely(nvme_start_ctrl(n))) {
trace_pci_nvme_err_startfail();
n->bar.csts = NVME_CSTS_FAILED;
} else {
trace_pci_nvme_mmio_start_success();
n->bar.csts = NVME_CSTS_READY;
}
} else if (!NVME_CC_EN(data) && NVME_CC_EN(n->bar.cc)) {
trace_pci_nvme_mmio_stopped();
nvme_ctrl_reset(n);
n->bar.csts &= ~NVME_CSTS_READY;
}
if (NVME_CC_SHN(data) && !(NVME_CC_SHN(n->bar.cc))) {
trace_pci_nvme_mmio_shutdown_set();
nvme_ctrl_shutdown(n);
n->bar.cc = data;
n->bar.csts |= NVME_CSTS_SHST_COMPLETE;
} else if (!NVME_CC_SHN(data) && NVME_CC_SHN(n->bar.cc)) {
trace_pci_nvme_mmio_shutdown_cleared();
n->bar.csts &= ~NVME_CSTS_SHST_COMPLETE;
n->bar.cc = data;
}
break;
case 0x1c: /* CSTS */
if (data & (1 << 4)) {
NVME_GUEST_ERR(pci_nvme_ub_mmiowr_ssreset_w1c_unsupported,
"attempted to W1C CSTS.NSSRO"
" but CAP.NSSRS is zero (not supported)");
} else if (data != 0) {
NVME_GUEST_ERR(pci_nvme_ub_mmiowr_ro_csts,
"attempted to set a read only bit"
" of controller status");
}
break;
case 0x20: /* NSSR */
if (data == 0x4e564d65) {
trace_pci_nvme_ub_mmiowr_ssreset_unsupported();
} else {
/* The spec says that writes of other values have no effect */
return;
}
break;
case 0x24: /* AQA */
n->bar.aqa = data & 0xffffffff;
trace_pci_nvme_mmio_aqattr(data & 0xffffffff);
break;
case 0x28: /* ASQ */
n->bar.asq = size == 8 ? data :
(n->bar.asq & ~0xffffffffULL) | (data & 0xffffffff);
trace_pci_nvme_mmio_asqaddr(data);
break;
case 0x2c: /* ASQ hi */
n->bar.asq = (n->bar.asq & 0xffffffff) | (data << 32);
trace_pci_nvme_mmio_asqaddr_hi(data, n->bar.asq);
break;
case 0x30: /* ACQ */
trace_pci_nvme_mmio_acqaddr(data);
n->bar.acq = size == 8 ? data :
(n->bar.acq & ~0xffffffffULL) | (data & 0xffffffff);
break;
case 0x34: /* ACQ hi */
n->bar.acq = (n->bar.acq & 0xffffffff) | (data << 32);
trace_pci_nvme_mmio_acqaddr_hi(data, n->bar.acq);
break;
case 0x38: /* CMBLOC */
NVME_GUEST_ERR(pci_nvme_ub_mmiowr_cmbloc_reserved,
"invalid write to reserved CMBLOC"
" when CMBSZ is zero, ignored");
return;
case 0x3C: /* CMBSZ */
NVME_GUEST_ERR(pci_nvme_ub_mmiowr_cmbsz_readonly,
"invalid write to read only CMBSZ, ignored");
return;
case 0x50: /* CMBMSC */
if (!NVME_CAP_CMBS(n->bar.cap)) {
return;
}
n->bar.cmbmsc = size == 8 ? data :
(n->bar.cmbmsc & ~0xffffffff) | (data & 0xffffffff);
n->cmb.cmse = false;
if (NVME_CMBMSC_CRE(data)) {
nvme_cmb_enable_regs(n);
if (NVME_CMBMSC_CMSE(data)) {
hwaddr cba = NVME_CMBMSC_CBA(data) << CMBMSC_CBA_SHIFT;
if (cba + int128_get64(n->cmb.mem.size) < cba) {
NVME_CMBSTS_SET_CBAI(n->bar.cmbsts, 1);
return;
}
n->cmb.cba = cba;
n->cmb.cmse = true;
}
} else {
n->bar.cmbsz = 0;
n->bar.cmbloc = 0;
}
return;
case 0x54: /* CMBMSC hi */
n->bar.cmbmsc = (n->bar.cmbmsc & 0xffffffff) | (data << 32);
return;
case 0xe00: /* PMRCAP */
NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrcap_readonly,
"invalid write to PMRCAP register, ignored");
return;
case 0xe04: /* PMRCTL */
n->bar.pmrctl = data;
if (NVME_PMRCTL_EN(data)) {
memory_region_set_enabled(&n->pmr.dev->mr, true);
n->bar.pmrsts = 0;
} else {
memory_region_set_enabled(&n->pmr.dev->mr, false);
NVME_PMRSTS_SET_NRDY(n->bar.pmrsts, 1);
n->pmr.cmse = false;
}
return;
case 0xe08: /* PMRSTS */
NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrsts_readonly,
"invalid write to PMRSTS register, ignored");
return;
case 0xe0C: /* PMREBS */
NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrebs_readonly,
"invalid write to PMREBS register, ignored");
return;
case 0xe10: /* PMRSWTP */
NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrswtp_readonly,
"invalid write to PMRSWTP register, ignored");
return;
case 0xe14: /* PMRMSCL */
if (!NVME_CAP_PMRS(n->bar.cap)) {
return;
}
n->bar.pmrmsc = (n->bar.pmrmsc & ~0xffffffff) | (data & 0xffffffff);
n->pmr.cmse = false;
if (NVME_PMRMSC_CMSE(n->bar.pmrmsc)) {
hwaddr cba = NVME_PMRMSC_CBA(n->bar.pmrmsc) << PMRMSC_CBA_SHIFT;
if (cba + int128_get64(n->pmr.dev->mr.size) < cba) {
NVME_PMRSTS_SET_CBAI(n->bar.pmrsts, 1);
return;
}
n->pmr.cmse = true;
n->pmr.cba = cba;
}
return;
case 0xe18: /* PMRMSCU */
if (!NVME_CAP_PMRS(n->bar.cap)) {
return;
}
n->bar.pmrmsc = (n->bar.pmrmsc & 0xffffffff) | (data << 32);
return;
default:
NVME_GUEST_ERR(pci_nvme_ub_mmiowr_invalid,
"invalid MMIO write,"
" offset=0x%"PRIx64", data=%"PRIx64"",
offset, data);
break;
}
}
static uint64_t nvme_mmio_read(void *opaque, hwaddr addr, unsigned size)
{
NvmeCtrl *n = (NvmeCtrl *)opaque;
uint8_t *ptr = (uint8_t *)&n->bar;
uint64_t val = 0;
trace_pci_nvme_mmio_read(addr, size);
if (unlikely(addr & (sizeof(uint32_t) - 1))) {
NVME_GUEST_ERR(pci_nvme_ub_mmiord_misaligned32,
"MMIO read not 32-bit aligned,"
" offset=0x%"PRIx64"", addr);
/* should RAZ, fall through for now */
} else if (unlikely(size < sizeof(uint32_t))) {
NVME_GUEST_ERR(pci_nvme_ub_mmiord_toosmall,
"MMIO read smaller than 32-bits,"
" offset=0x%"PRIx64"", addr);
/* should RAZ, fall through for now */
}
if (addr < sizeof(n->bar)) {
/*
* When PMRWBM bit 1 is set then read from
* from PMRSTS should ensure prior writes
* made it to persistent media
*/
if (addr == 0xe08 &&
(NVME_PMRCAP_PMRWBM(n->bar.pmrcap) & 0x02)) {
memory_region_msync(&n->pmr.dev->mr, 0, n->pmr.dev->size);
}
memcpy(&val, ptr + addr, size);
} else {
NVME_GUEST_ERR(pci_nvme_ub_mmiord_invalid_ofs,
"MMIO read beyond last register,"
" offset=0x%"PRIx64", returning 0", addr);
}
return val;
}
static void nvme_process_db(NvmeCtrl *n, hwaddr addr, int val)
{
uint32_t qid;
if (unlikely(addr & ((1 << 2) - 1))) {
NVME_GUEST_ERR(pci_nvme_ub_db_wr_misaligned,
"doorbell write not 32-bit aligned,"
" offset=0x%"PRIx64", ignoring", addr);
return;
}
if (((addr - 0x1000) >> 2) & 1) {
/* Completion queue doorbell write */
uint16_t new_head = val & 0xffff;
int start_sqs;
NvmeCQueue *cq;
qid = (addr - (0x1000 + (1 << 2))) >> 3;
if (unlikely(nvme_check_cqid(n, qid))) {
NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_cq,
"completion queue doorbell write"
" for nonexistent queue,"
" sqid=%"PRIu32", ignoring", qid);
/*
* NVM Express v1.3d, Section 4.1 state: "If host software writes
* an invalid value to the Submission Queue Tail Doorbell or
* Completion Queue Head Doorbell regiter and an Asynchronous Event
* Request command is outstanding, then an asynchronous event is
* posted to the Admin Completion Queue with a status code of
* Invalid Doorbell Write Value."
*
* Also note that the spec includes the "Invalid Doorbell Register"
* status code, but nowhere does it specify when to use it.
* However, it seems reasonable to use it here in a similar
* fashion.
*/
if (n->outstanding_aers) {
nvme_enqueue_event(n, NVME_AER_TYPE_ERROR,
NVME_AER_INFO_ERR_INVALID_DB_REGISTER,
NVME_LOG_ERROR_INFO);
}
return;
}
cq = n->cq[qid];
if (unlikely(new_head >= cq->size)) {
NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_cqhead,
"completion queue doorbell write value"
" beyond queue size, sqid=%"PRIu32","
" new_head=%"PRIu16", ignoring",
qid, new_head);
if (n->outstanding_aers) {
nvme_enqueue_event(n, NVME_AER_TYPE_ERROR,
NVME_AER_INFO_ERR_INVALID_DB_VALUE,
NVME_LOG_ERROR_INFO);
}
return;
}
trace_pci_nvme_mmio_doorbell_cq(cq->cqid, new_head);
start_sqs = nvme_cq_full(cq) ? 1 : 0;
cq->head = new_head;
if (start_sqs) {
NvmeSQueue *sq;
QTAILQ_FOREACH(sq, &cq->sq_list, entry) {
timer_mod(sq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500);
}
timer_mod(cq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500);
}
if (cq->tail == cq->head) {
nvme_irq_deassert(n, cq);
}
} else {
/* Submission queue doorbell write */
uint16_t new_tail = val & 0xffff;
NvmeSQueue *sq;
qid = (addr - 0x1000) >> 3;
if (unlikely(nvme_check_sqid(n, qid))) {
NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_sq,
"submission queue doorbell write"
" for nonexistent queue,"
" sqid=%"PRIu32", ignoring", qid);
if (n->outstanding_aers) {
nvme_enqueue_event(n, NVME_AER_TYPE_ERROR,
NVME_AER_INFO_ERR_INVALID_DB_REGISTER,
NVME_LOG_ERROR_INFO);
}
return;
}
sq = n->sq[qid];
if (unlikely(new_tail >= sq->size)) {
NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_sqtail,
"submission queue doorbell write value"
" beyond queue size, sqid=%"PRIu32","
" new_tail=%"PRIu16", ignoring",
qid, new_tail);
if (n->outstanding_aers) {
nvme_enqueue_event(n, NVME_AER_TYPE_ERROR,
NVME_AER_INFO_ERR_INVALID_DB_VALUE,
NVME_LOG_ERROR_INFO);
}
return;
}
trace_pci_nvme_mmio_doorbell_sq(sq->sqid, new_tail);
sq->tail = new_tail;
timer_mod(sq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500);
}
}
static void nvme_mmio_write(void *opaque, hwaddr addr, uint64_t data,
unsigned size)
{
NvmeCtrl *n = (NvmeCtrl *)opaque;
trace_pci_nvme_mmio_write(addr, data, size);
if (addr < sizeof(n->bar)) {
nvme_write_bar(n, addr, data, size);
} else {
nvme_process_db(n, addr, data);
}
}
static const MemoryRegionOps nvme_mmio_ops = {
.read = nvme_mmio_read,
.write = nvme_mmio_write,
.endianness = DEVICE_LITTLE_ENDIAN,
.impl = {
.min_access_size = 2,
.max_access_size = 8,
},
};
static void nvme_cmb_write(void *opaque, hwaddr addr, uint64_t data,
unsigned size)
{
NvmeCtrl *n = (NvmeCtrl *)opaque;
stn_le_p(&n->cmb.buf[addr], size, data);
}
static uint64_t nvme_cmb_read(void *opaque, hwaddr addr, unsigned size)
{
NvmeCtrl *n = (NvmeCtrl *)opaque;
return ldn_le_p(&n->cmb.buf[addr], size);
}
static const MemoryRegionOps nvme_cmb_ops = {
.read = nvme_cmb_read,
.write = nvme_cmb_write,
.endianness = DEVICE_LITTLE_ENDIAN,
.impl = {
.min_access_size = 1,
.max_access_size = 8,
},
};
static void nvme_check_constraints(NvmeCtrl *n, Error **errp)
{
NvmeParams *params = &n->params;
if (params->num_queues) {
warn_report("num_queues is deprecated; please use max_ioqpairs "
"instead");
params->max_ioqpairs = params->num_queues - 1;
}
if (n->namespace.blkconf.blk && n->subsys) {
error_setg(errp, "subsystem support is unavailable with legacy "
"namespace ('drive' property)");
return;
}
if (params->max_ioqpairs < 1 ||
params->max_ioqpairs > NVME_MAX_IOQPAIRS) {
error_setg(errp, "max_ioqpairs must be between 1 and %d",
NVME_MAX_IOQPAIRS);
return;
}
if (params->msix_qsize < 1 ||
params->msix_qsize > PCI_MSIX_FLAGS_QSIZE + 1) {
error_setg(errp, "msix_qsize must be between 1 and %d",
PCI_MSIX_FLAGS_QSIZE + 1);
return;
}
if (!params->serial) {
error_setg(errp, "serial property not set");
return;
}
if (n->pmr.dev) {
if (host_memory_backend_is_mapped(n->pmr.dev)) {
error_setg(errp, "can't use already busy memdev: %s",
object_get_canonical_path_component(OBJECT(n->pmr.dev)));
return;
}
if (!is_power_of_2(n->pmr.dev->size)) {
error_setg(errp, "pmr backend size needs to be power of 2 in size");
return;
}
host_memory_backend_set_mapped(n->pmr.dev, true);
}
if (n->params.zasl > n->params.mdts) {
error_setg(errp, "zoned.zasl (Zone Append Size Limit) must be less "
"than or equal to mdts (Maximum Data Transfer Size)");
return;
}
if (!n->params.vsl) {
error_setg(errp, "vsl must be non-zero");
return;
}
}
static void nvme_init_state(NvmeCtrl *n)
{
n->num_namespaces = NVME_MAX_NAMESPACES;
/* add one to max_ioqpairs to account for the admin queue pair */
n->reg_size = pow2ceil(sizeof(NvmeBar) +
2 * (n->params.max_ioqpairs + 1) * NVME_DB_SIZE);
n->sq = g_new0(NvmeSQueue *, n->params.max_ioqpairs + 1);
n->cq = g_new0(NvmeCQueue *, n->params.max_ioqpairs + 1);
n->temperature = NVME_TEMPERATURE;
n->features.temp_thresh_hi = NVME_TEMPERATURE_WARNING;
n->starttime_ms = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL);
n->aer_reqs = g_new0(NvmeRequest *, n->params.aerl + 1);
}
static void nvme_init_cmb(NvmeCtrl *n, PCIDevice *pci_dev)
{
uint64_t cmb_size = n->params.cmb_size_mb * MiB;
n->cmb.buf = g_malloc0(cmb_size);
memory_region_init_io(&n->cmb.mem, OBJECT(n), &nvme_cmb_ops, n,
"nvme-cmb", cmb_size);
pci_register_bar(pci_dev, NVME_CMB_BIR,
PCI_BASE_ADDRESS_SPACE_MEMORY |
PCI_BASE_ADDRESS_MEM_TYPE_64 |
PCI_BASE_ADDRESS_MEM_PREFETCH, &n->cmb.mem);
NVME_CAP_SET_CMBS(n->bar.cap, 1);
if (n->params.legacy_cmb) {
nvme_cmb_enable_regs(n);
n->cmb.cmse = true;
}
}
static void nvme_init_pmr(NvmeCtrl *n, PCIDevice *pci_dev)
{
NVME_PMRCAP_SET_RDS(n->bar.pmrcap, 1);
NVME_PMRCAP_SET_WDS(n->bar.pmrcap, 1);
NVME_PMRCAP_SET_BIR(n->bar.pmrcap, NVME_PMR_BIR);
/* Turn on bit 1 support */
NVME_PMRCAP_SET_PMRWBM(n->bar.pmrcap, 0x02);
NVME_PMRCAP_SET_CMSS(n->bar.pmrcap, 1);
pci_register_bar(pci_dev, NVME_PMRCAP_BIR(n->bar.pmrcap),
PCI_BASE_ADDRESS_SPACE_MEMORY |
PCI_BASE_ADDRESS_MEM_TYPE_64 |
PCI_BASE_ADDRESS_MEM_PREFETCH, &n->pmr.dev->mr);
memory_region_set_enabled(&n->pmr.dev->mr, false);
}
static int nvme_init_pci(NvmeCtrl *n, PCIDevice *pci_dev, Error **errp)
{
uint8_t *pci_conf = pci_dev->config;
uint64_t bar_size, msix_table_size, msix_pba_size;
unsigned msix_table_offset, msix_pba_offset;
int ret;
Error *err = NULL;
pci_conf[PCI_INTERRUPT_PIN] = 1;
pci_config_set_prog_interface(pci_conf, 0x2);
if (n->params.use_intel_id) {
pci_config_set_vendor_id(pci_conf, PCI_VENDOR_ID_INTEL);
pci_config_set_device_id(pci_conf, 0x5845);
} else {
pci_config_set_vendor_id(pci_conf, PCI_VENDOR_ID_REDHAT);
pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_REDHAT_NVME);
}
pci_config_set_class(pci_conf, PCI_CLASS_STORAGE_EXPRESS);
pcie_endpoint_cap_init(pci_dev, 0x80);
bar_size = QEMU_ALIGN_UP(n->reg_size, 4 * KiB);
msix_table_offset = bar_size;
msix_table_size = PCI_MSIX_ENTRY_SIZE * n->params.msix_qsize;
bar_size += msix_table_size;
bar_size = QEMU_ALIGN_UP(bar_size, 4 * KiB);
msix_pba_offset = bar_size;
msix_pba_size = QEMU_ALIGN_UP(n->params.msix_qsize, 64) / 8;
bar_size += msix_pba_size;
bar_size = pow2ceil(bar_size);
memory_region_init(&n->bar0, OBJECT(n), "nvme-bar0", bar_size);
memory_region_init_io(&n->iomem, OBJECT(n), &nvme_mmio_ops, n, "nvme",
n->reg_size);
memory_region_add_subregion(&n->bar0, 0, &n->iomem);
pci_register_bar(pci_dev, 0, PCI_BASE_ADDRESS_SPACE_MEMORY |
PCI_BASE_ADDRESS_MEM_TYPE_64, &n->bar0);
ret = msix_init(pci_dev, n->params.msix_qsize,
&n->bar0, 0, msix_table_offset,
&n->bar0, 0, msix_pba_offset, 0, &err);
if (ret < 0) {
if (ret == -ENOTSUP) {
warn_report_err(err);
} else {
error_propagate(errp, err);
return ret;
}
}
if (n->params.cmb_size_mb) {
nvme_init_cmb(n, pci_dev);
}
if (n->pmr.dev) {
nvme_init_pmr(n, pci_dev);
}
return 0;
}
static void nvme_init_subnqn(NvmeCtrl *n)
{
NvmeSubsystem *subsys = n->subsys;
NvmeIdCtrl *id = &n->id_ctrl;
if (!subsys) {
snprintf((char *)id->subnqn, sizeof(id->subnqn),
"nqn.2019-08.org.qemu:%s", n->params.serial);
} else {
pstrcpy((char *)id->subnqn, sizeof(id->subnqn), (char*)subsys->subnqn);
}
}
static void nvme_init_ctrl(NvmeCtrl *n, PCIDevice *pci_dev)
{
NvmeIdCtrl *id = &n->id_ctrl;
uint8_t *pci_conf = pci_dev->config;
id->vid = cpu_to_le16(pci_get_word(pci_conf + PCI_VENDOR_ID));
id->ssvid = cpu_to_le16(pci_get_word(pci_conf + PCI_SUBSYSTEM_VENDOR_ID));
strpadcpy((char *)id->mn, sizeof(id->mn), "QEMU NVMe Ctrl", ' ');
strpadcpy((char *)id->fr, sizeof(id->fr), "1.0", ' ');
strpadcpy((char *)id->sn, sizeof(id->sn), n->params.serial, ' ');
id->cntlid = cpu_to_le16(n->cntlid);
id->oaes = cpu_to_le32(NVME_OAES_NS_ATTR);
id->rab = 6;
if (n->params.use_intel_id) {
id->ieee[0] = 0xb3;
id->ieee[1] = 0x02;
id->ieee[2] = 0x00;
} else {
id->ieee[0] = 0x00;
id->ieee[1] = 0x54;
id->ieee[2] = 0x52;
}
id->mdts = n->params.mdts;
id->ver = cpu_to_le32(NVME_SPEC_VER);
id->oacs = cpu_to_le16(NVME_OACS_NS_MGMT | NVME_OACS_FORMAT);
id->cntrltype = 0x1;
/*
* Because the controller always completes the Abort command immediately,
* there can never be more than one concurrently executing Abort command,
* so this value is never used for anything. Note that there can easily be
* many Abort commands in the queues, but they are not considered
* "executing" until processed by nvme_abort.
*
* The specification recommends a value of 3 for Abort Command Limit (four
* concurrently outstanding Abort commands), so lets use that though it is
* inconsequential.
*/
id->acl = 3;
id->aerl = n->params.aerl;
id->frmw = (NVME_NUM_FW_SLOTS << 1) | NVME_FRMW_SLOT1_RO;
id->lpa = NVME_LPA_NS_SMART | NVME_LPA_CSE | NVME_LPA_EXTENDED;
/* recommended default value (~70 C) */
id->wctemp = cpu_to_le16(NVME_TEMPERATURE_WARNING);
id->cctemp = cpu_to_le16(NVME_TEMPERATURE_CRITICAL);
id->sqes = (0x6 << 4) | 0x6;
id->cqes = (0x4 << 4) | 0x4;
id->nn = cpu_to_le32(n->num_namespaces);
id->oncs = cpu_to_le16(NVME_ONCS_WRITE_ZEROES | NVME_ONCS_TIMESTAMP |
NVME_ONCS_FEATURES | NVME_ONCS_DSM |
NVME_ONCS_COMPARE | NVME_ONCS_COPY);
/*
* NOTE: If this device ever supports a command set that does NOT use 0x0
* as a Flush-equivalent operation, support for the broadcast NSID in Flush
* should probably be removed.
*
* See comment in nvme_io_cmd.
*/
id->vwc = NVME_VWC_NSID_BROADCAST_SUPPORT | NVME_VWC_PRESENT;
id->ocfs = cpu_to_le16(NVME_OCFS_COPY_FORMAT_0);
id->sgls = cpu_to_le32(NVME_CTRL_SGLS_SUPPORT_NO_ALIGN |
NVME_CTRL_SGLS_BITBUCKET);
nvme_init_subnqn(n);
id->psd[0].mp = cpu_to_le16(0x9c4);
id->psd[0].enlat = cpu_to_le32(0x10);
id->psd[0].exlat = cpu_to_le32(0x4);
if (n->subsys) {
id->cmic |= NVME_CMIC_MULTI_CTRL;
}
NVME_CAP_SET_MQES(n->bar.cap, 0x7ff);
NVME_CAP_SET_CQR(n->bar.cap, 1);
NVME_CAP_SET_TO(n->bar.cap, 0xf);
NVME_CAP_SET_CSS(n->bar.cap, NVME_CAP_CSS_NVM);
NVME_CAP_SET_CSS(n->bar.cap, NVME_CAP_CSS_CSI_SUPP);
NVME_CAP_SET_CSS(n->bar.cap, NVME_CAP_CSS_ADMIN_ONLY);
NVME_CAP_SET_MPSMAX(n->bar.cap, 4);
NVME_CAP_SET_CMBS(n->bar.cap, n->params.cmb_size_mb ? 1 : 0);
NVME_CAP_SET_PMRS(n->bar.cap, n->pmr.dev ? 1 : 0);
n->bar.vs = NVME_SPEC_VER;
n->bar.intmc = n->bar.intms = 0;
}
static int nvme_init_subsys(NvmeCtrl *n, Error **errp)
{
int cntlid;
if (!n->subsys) {
return 0;
}
cntlid = nvme_subsys_register_ctrl(n, errp);
if (cntlid < 0) {
return -1;
}
n->cntlid = cntlid;
return 0;
}
void nvme_attach_ns(NvmeCtrl *n, NvmeNamespace *ns)
{
uint32_t nsid = ns->params.nsid;
assert(nsid && nsid <= NVME_MAX_NAMESPACES);
n->namespaces[nsid - 1] = ns;
ns->attached++;
n->dmrsl = MIN_NON_ZERO(n->dmrsl,
BDRV_REQUEST_MAX_BYTES / nvme_l2b(ns, 1));
}
static void nvme_realize(PCIDevice *pci_dev, Error **errp)
{
NvmeCtrl *n = NVME(pci_dev);
NvmeNamespace *ns;
Error *local_err = NULL;
nvme_check_constraints(n, &local_err);
if (local_err) {
error_propagate(errp, local_err);
return;
}
qbus_create_inplace(&n->bus, sizeof(NvmeBus), TYPE_NVME_BUS,
&pci_dev->qdev, n->parent_obj.qdev.id);
nvme_init_state(n);
if (nvme_init_pci(n, pci_dev, errp)) {
return;
}
if (nvme_init_subsys(n, errp)) {
error_propagate(errp, local_err);
return;
}
nvme_init_ctrl(n, pci_dev);
/* setup a namespace if the controller drive property was given */
if (n->namespace.blkconf.blk) {
ns = &n->namespace;
ns->params.nsid = 1;
if (nvme_ns_setup(n, ns, errp)) {
return;
}
nvme_attach_ns(n, ns);
}
}
static void nvme_exit(PCIDevice *pci_dev)
{
NvmeCtrl *n = NVME(pci_dev);
NvmeNamespace *ns;
int i;
nvme_ctrl_reset(n);
for (i = 1; i <= n->num_namespaces; i++) {
ns = nvme_ns(n, i);
if (!ns) {
continue;
}
nvme_ns_cleanup(ns);
}
g_free(n->cq);
g_free(n->sq);
g_free(n->aer_reqs);
if (n->params.cmb_size_mb) {
g_free(n->cmb.buf);
}
if (n->pmr.dev) {
host_memory_backend_set_mapped(n->pmr.dev, false);
}
msix_uninit(pci_dev, &n->bar0, &n->bar0);
memory_region_del_subregion(&n->bar0, &n->iomem);
}
static Property nvme_props[] = {
DEFINE_BLOCK_PROPERTIES(NvmeCtrl, namespace.blkconf),
DEFINE_PROP_LINK("pmrdev", NvmeCtrl, pmr.dev, TYPE_MEMORY_BACKEND,
HostMemoryBackend *),
DEFINE_PROP_LINK("subsys", NvmeCtrl, subsys, TYPE_NVME_SUBSYS,
NvmeSubsystem *),
DEFINE_PROP_STRING("serial", NvmeCtrl, params.serial),
DEFINE_PROP_UINT32("cmb_size_mb", NvmeCtrl, params.cmb_size_mb, 0),
DEFINE_PROP_UINT32("num_queues", NvmeCtrl, params.num_queues, 0),
DEFINE_PROP_UINT32("max_ioqpairs", NvmeCtrl, params.max_ioqpairs, 64),
DEFINE_PROP_UINT16("msix_qsize", NvmeCtrl, params.msix_qsize, 65),
DEFINE_PROP_UINT8("aerl", NvmeCtrl, params.aerl, 3),
DEFINE_PROP_UINT32("aer_max_queued", NvmeCtrl, params.aer_max_queued, 64),
DEFINE_PROP_UINT8("mdts", NvmeCtrl, params.mdts, 7),
DEFINE_PROP_UINT8("vsl", NvmeCtrl, params.vsl, 7),
DEFINE_PROP_BOOL("use-intel-id", NvmeCtrl, params.use_intel_id, false),
DEFINE_PROP_BOOL("legacy-cmb", NvmeCtrl, params.legacy_cmb, false),
DEFINE_PROP_UINT8("zoned.zasl", NvmeCtrl, params.zasl, 0),
DEFINE_PROP_END_OF_LIST(),
};
static void nvme_get_smart_warning(Object *obj, Visitor *v, const char *name,
void *opaque, Error **errp)
{
NvmeCtrl *n = NVME(obj);
uint8_t value = n->smart_critical_warning;
visit_type_uint8(v, name, &value, errp);
}
static void nvme_set_smart_warning(Object *obj, Visitor *v, const char *name,
void *opaque, Error **errp)
{
NvmeCtrl *n = NVME(obj);
uint8_t value, old_value, cap = 0, index, event;
if (!visit_type_uint8(v, name, &value, errp)) {
return;
}
cap = NVME_SMART_SPARE | NVME_SMART_TEMPERATURE | NVME_SMART_RELIABILITY
| NVME_SMART_MEDIA_READ_ONLY | NVME_SMART_FAILED_VOLATILE_MEDIA;
if (NVME_CAP_PMRS(n->bar.cap)) {
cap |= NVME_SMART_PMR_UNRELIABLE;
}
if ((value & cap) != value) {
error_setg(errp, "unsupported smart critical warning bits: 0x%x",
value & ~cap);
return;
}
old_value = n->smart_critical_warning;
n->smart_critical_warning = value;
/* only inject new bits of smart critical warning */
for (index = 0; index < NVME_SMART_WARN_MAX; index++) {
event = 1 << index;
if (value & ~old_value & event)
nvme_smart_event(n, event);
}
}
static const VMStateDescription nvme_vmstate = {
.name = "nvme",
.unmigratable = 1,
};
static void nvme_class_init(ObjectClass *oc, void *data)
{
DeviceClass *dc = DEVICE_CLASS(oc);
PCIDeviceClass *pc = PCI_DEVICE_CLASS(oc);
pc->realize = nvme_realize;
pc->exit = nvme_exit;
pc->class_id = PCI_CLASS_STORAGE_EXPRESS;
pc->revision = 2;
set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
dc->desc = "Non-Volatile Memory Express";
device_class_set_props(dc, nvme_props);
dc->vmsd = &nvme_vmstate;
}
static void nvme_instance_init(Object *obj)
{
NvmeCtrl *n = NVME(obj);
device_add_bootindex_property(obj, &n->namespace.blkconf.bootindex,
"bootindex", "/namespace@1,0",
DEVICE(obj));
object_property_add(obj, "smart_critical_warning", "uint8",
nvme_get_smart_warning,
nvme_set_smart_warning, NULL, NULL);
}
static const TypeInfo nvme_info = {
.name = TYPE_NVME,
.parent = TYPE_PCI_DEVICE,
.instance_size = sizeof(NvmeCtrl),
.instance_init = nvme_instance_init,
.class_init = nvme_class_init,
.interfaces = (InterfaceInfo[]) {
{ INTERFACE_PCIE_DEVICE },
{ }
},
};
static const TypeInfo nvme_bus_info = {
.name = TYPE_NVME_BUS,
.parent = TYPE_BUS,
.instance_size = sizeof(NvmeBus),
};
static void nvme_register_types(void)
{
type_register_static(&nvme_info);
type_register_static(&nvme_bus_info);
}
type_init(nvme_register_types)