Evgeny Yakovlev 339892d758 target-i386: Correct family/model/stepping for Opteron_G3
Current CPU definition for AMD Opteron third generation includes
features like SSE4a and LAHF_LM support in emulated CPUID. These
features are present in K8 rev.E or K10 CPUs and later. However,
current G3 family and model describe 2nd generation K8 cores instead.

This is incorrect but was considered harmless until our tests found a
problem with linux kernels >= 3.10 (and maybe earlier) which specifically
check for Opteron K8 model when parsing CPUID leaf 0x80000001:
http://lxr.free-electrons.com/source/arch/x86/kernel/cpu/amd.c?v=3.16#L552
This code will disable LAHF_LM feature in /proc/cpuinfo if model number
is inconsistent.

This change sets Opteron_G3 family/model/stepping to 16/2/3 which is
a proper Opteron 3rd generation 2350 CPU.

Signed-off-by: Evgeny Yakovlev <eyakovlev@virtuozzo.com>
Signed-off-by: Denis V. Lunev <den@openvz.org>
CC: Paolo Bonzini <pbonzini@redhat.com>
CC: Richard Henderson <rth@twiddle.net>
CC: Eduardo Habkost <ehabkost@redhat.com>
Signed-off-by: Eduardo Habkost <ehabkost@redhat.com>
2016-10-03 16:06:43 -03:00

3571 lines
120 KiB
C

/*
* i386 CPUID helper functions
*
* Copyright (c) 2003 Fabrice Bellard
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "qemu/cutils.h"
#include "cpu.h"
#include "exec/exec-all.h"
#include "sysemu/kvm.h"
#include "sysemu/cpus.h"
#include "kvm_i386.h"
#include "qemu/error-report.h"
#include "qemu/option.h"
#include "qemu/config-file.h"
#include "qapi/qmp/qerror.h"
#include "qapi-types.h"
#include "qapi-visit.h"
#include "qapi/visitor.h"
#include "sysemu/arch_init.h"
#if defined(CONFIG_KVM)
#include <linux/kvm_para.h>
#endif
#include "sysemu/sysemu.h"
#include "hw/qdev-properties.h"
#include "hw/i386/topology.h"
#ifndef CONFIG_USER_ONLY
#include "exec/address-spaces.h"
#include "hw/hw.h"
#include "hw/xen/xen.h"
#include "hw/i386/apic_internal.h"
#endif
/* Cache topology CPUID constants: */
/* CPUID Leaf 2 Descriptors */
#define CPUID_2_L1D_32KB_8WAY_64B 0x2c
#define CPUID_2_L1I_32KB_8WAY_64B 0x30
#define CPUID_2_L2_2MB_8WAY_64B 0x7d
#define CPUID_2_L3_16MB_16WAY_64B 0x4d
/* CPUID Leaf 4 constants: */
/* EAX: */
#define CPUID_4_TYPE_DCACHE 1
#define CPUID_4_TYPE_ICACHE 2
#define CPUID_4_TYPE_UNIFIED 3
#define CPUID_4_LEVEL(l) ((l) << 5)
#define CPUID_4_SELF_INIT_LEVEL (1 << 8)
#define CPUID_4_FULLY_ASSOC (1 << 9)
/* EDX: */
#define CPUID_4_NO_INVD_SHARING (1 << 0)
#define CPUID_4_INCLUSIVE (1 << 1)
#define CPUID_4_COMPLEX_IDX (1 << 2)
#define ASSOC_FULL 0xFF
/* AMD associativity encoding used on CPUID Leaf 0x80000006: */
#define AMD_ENC_ASSOC(a) (a <= 1 ? a : \
a == 2 ? 0x2 : \
a == 4 ? 0x4 : \
a == 8 ? 0x6 : \
a == 16 ? 0x8 : \
a == 32 ? 0xA : \
a == 48 ? 0xB : \
a == 64 ? 0xC : \
a == 96 ? 0xD : \
a == 128 ? 0xE : \
a == ASSOC_FULL ? 0xF : \
0 /* invalid value */)
/* Definitions of the hardcoded cache entries we expose: */
/* L1 data cache: */
#define L1D_LINE_SIZE 64
#define L1D_ASSOCIATIVITY 8
#define L1D_SETS 64
#define L1D_PARTITIONS 1
/* Size = LINE_SIZE*ASSOCIATIVITY*SETS*PARTITIONS = 32KiB */
#define L1D_DESCRIPTOR CPUID_2_L1D_32KB_8WAY_64B
/*FIXME: CPUID leaf 0x80000005 is inconsistent with leaves 2 & 4 */
#define L1D_LINES_PER_TAG 1
#define L1D_SIZE_KB_AMD 64
#define L1D_ASSOCIATIVITY_AMD 2
/* L1 instruction cache: */
#define L1I_LINE_SIZE 64
#define L1I_ASSOCIATIVITY 8
#define L1I_SETS 64
#define L1I_PARTITIONS 1
/* Size = LINE_SIZE*ASSOCIATIVITY*SETS*PARTITIONS = 32KiB */
#define L1I_DESCRIPTOR CPUID_2_L1I_32KB_8WAY_64B
/*FIXME: CPUID leaf 0x80000005 is inconsistent with leaves 2 & 4 */
#define L1I_LINES_PER_TAG 1
#define L1I_SIZE_KB_AMD 64
#define L1I_ASSOCIATIVITY_AMD 2
/* Level 2 unified cache: */
#define L2_LINE_SIZE 64
#define L2_ASSOCIATIVITY 16
#define L2_SETS 4096
#define L2_PARTITIONS 1
/* Size = LINE_SIZE*ASSOCIATIVITY*SETS*PARTITIONS = 4MiB */
/*FIXME: CPUID leaf 2 descriptor is inconsistent with CPUID leaf 4 */
#define L2_DESCRIPTOR CPUID_2_L2_2MB_8WAY_64B
/*FIXME: CPUID leaf 0x80000006 is inconsistent with leaves 2 & 4 */
#define L2_LINES_PER_TAG 1
#define L2_SIZE_KB_AMD 512
/* Level 3 unified cache: */
#define L3_SIZE_KB 0 /* disabled */
#define L3_ASSOCIATIVITY 0 /* disabled */
#define L3_LINES_PER_TAG 0 /* disabled */
#define L3_LINE_SIZE 0 /* disabled */
#define L3_N_LINE_SIZE 64
#define L3_N_ASSOCIATIVITY 16
#define L3_N_SETS 16384
#define L3_N_PARTITIONS 1
#define L3_N_DESCRIPTOR CPUID_2_L3_16MB_16WAY_64B
#define L3_N_LINES_PER_TAG 1
#define L3_N_SIZE_KB_AMD 16384
/* TLB definitions: */
#define L1_DTLB_2M_ASSOC 1
#define L1_DTLB_2M_ENTRIES 255
#define L1_DTLB_4K_ASSOC 1
#define L1_DTLB_4K_ENTRIES 255
#define L1_ITLB_2M_ASSOC 1
#define L1_ITLB_2M_ENTRIES 255
#define L1_ITLB_4K_ASSOC 1
#define L1_ITLB_4K_ENTRIES 255
#define L2_DTLB_2M_ASSOC 0 /* disabled */
#define L2_DTLB_2M_ENTRIES 0 /* disabled */
#define L2_DTLB_4K_ASSOC 4
#define L2_DTLB_4K_ENTRIES 512
#define L2_ITLB_2M_ASSOC 0 /* disabled */
#define L2_ITLB_2M_ENTRIES 0 /* disabled */
#define L2_ITLB_4K_ASSOC 4
#define L2_ITLB_4K_ENTRIES 512
static void x86_cpu_vendor_words2str(char *dst, uint32_t vendor1,
uint32_t vendor2, uint32_t vendor3)
{
int i;
for (i = 0; i < 4; i++) {
dst[i] = vendor1 >> (8 * i);
dst[i + 4] = vendor2 >> (8 * i);
dst[i + 8] = vendor3 >> (8 * i);
}
dst[CPUID_VENDOR_SZ] = '\0';
}
#define I486_FEATURES (CPUID_FP87 | CPUID_VME | CPUID_PSE)
#define PENTIUM_FEATURES (I486_FEATURES | CPUID_DE | CPUID_TSC | \
CPUID_MSR | CPUID_MCE | CPUID_CX8 | CPUID_MMX | CPUID_APIC)
#define PENTIUM2_FEATURES (PENTIUM_FEATURES | CPUID_PAE | CPUID_SEP | \
CPUID_MTRR | CPUID_PGE | CPUID_MCA | CPUID_CMOV | CPUID_PAT | \
CPUID_PSE36 | CPUID_FXSR)
#define PENTIUM3_FEATURES (PENTIUM2_FEATURES | CPUID_SSE)
#define PPRO_FEATURES (CPUID_FP87 | CPUID_DE | CPUID_PSE | CPUID_TSC | \
CPUID_MSR | CPUID_MCE | CPUID_CX8 | CPUID_PGE | CPUID_CMOV | \
CPUID_PAT | CPUID_FXSR | CPUID_MMX | CPUID_SSE | CPUID_SSE2 | \
CPUID_PAE | CPUID_SEP | CPUID_APIC)
#define TCG_FEATURES (CPUID_FP87 | CPUID_PSE | CPUID_TSC | CPUID_MSR | \
CPUID_PAE | CPUID_MCE | CPUID_CX8 | CPUID_APIC | CPUID_SEP | \
CPUID_MTRR | CPUID_PGE | CPUID_MCA | CPUID_CMOV | CPUID_PAT | \
CPUID_PSE36 | CPUID_CLFLUSH | CPUID_ACPI | CPUID_MMX | \
CPUID_FXSR | CPUID_SSE | CPUID_SSE2 | CPUID_SS | CPUID_DE)
/* partly implemented:
CPUID_MTRR, CPUID_MCA, CPUID_CLFLUSH (needed for Win64) */
/* missing:
CPUID_VME, CPUID_DTS, CPUID_SS, CPUID_HT, CPUID_TM, CPUID_PBE */
#define TCG_EXT_FEATURES (CPUID_EXT_SSE3 | CPUID_EXT_PCLMULQDQ | \
CPUID_EXT_MONITOR | CPUID_EXT_SSSE3 | CPUID_EXT_CX16 | \
CPUID_EXT_SSE41 | CPUID_EXT_SSE42 | CPUID_EXT_POPCNT | \
CPUID_EXT_XSAVE | /* CPUID_EXT_OSXSAVE is dynamic */ \
CPUID_EXT_MOVBE | CPUID_EXT_AES | CPUID_EXT_HYPERVISOR)
/* missing:
CPUID_EXT_DTES64, CPUID_EXT_DSCPL, CPUID_EXT_VMX, CPUID_EXT_SMX,
CPUID_EXT_EST, CPUID_EXT_TM2, CPUID_EXT_CID, CPUID_EXT_FMA,
CPUID_EXT_XTPR, CPUID_EXT_PDCM, CPUID_EXT_PCID, CPUID_EXT_DCA,
CPUID_EXT_X2APIC, CPUID_EXT_TSC_DEADLINE_TIMER, CPUID_EXT_AVX,
CPUID_EXT_F16C, CPUID_EXT_RDRAND */
#ifdef TARGET_X86_64
#define TCG_EXT2_X86_64_FEATURES (CPUID_EXT2_SYSCALL | CPUID_EXT2_LM)
#else
#define TCG_EXT2_X86_64_FEATURES 0
#endif
#define TCG_EXT2_FEATURES ((TCG_FEATURES & CPUID_EXT2_AMD_ALIASES) | \
CPUID_EXT2_NX | CPUID_EXT2_MMXEXT | CPUID_EXT2_RDTSCP | \
CPUID_EXT2_3DNOW | CPUID_EXT2_3DNOWEXT | CPUID_EXT2_PDPE1GB | \
TCG_EXT2_X86_64_FEATURES)
#define TCG_EXT3_FEATURES (CPUID_EXT3_LAHF_LM | CPUID_EXT3_SVM | \
CPUID_EXT3_CR8LEG | CPUID_EXT3_ABM | CPUID_EXT3_SSE4A)
#define TCG_EXT4_FEATURES 0
#define TCG_SVM_FEATURES 0
#define TCG_KVM_FEATURES 0
#define TCG_7_0_EBX_FEATURES (CPUID_7_0_EBX_SMEP | CPUID_7_0_EBX_SMAP | \
CPUID_7_0_EBX_BMI1 | CPUID_7_0_EBX_BMI2 | CPUID_7_0_EBX_ADX | \
CPUID_7_0_EBX_PCOMMIT | CPUID_7_0_EBX_CLFLUSHOPT | \
CPUID_7_0_EBX_CLWB | CPUID_7_0_EBX_MPX | CPUID_7_0_EBX_FSGSBASE | \
CPUID_7_0_EBX_ERMS)
/* missing:
CPUID_7_0_EBX_HLE, CPUID_7_0_EBX_AVX2,
CPUID_7_0_EBX_INVPCID, CPUID_7_0_EBX_RTM,
CPUID_7_0_EBX_RDSEED */
#define TCG_7_0_ECX_FEATURES (CPUID_7_0_ECX_PKU | CPUID_7_0_ECX_OSPKE)
#define TCG_APM_FEATURES 0
#define TCG_6_EAX_FEATURES CPUID_6_EAX_ARAT
#define TCG_XSAVE_FEATURES (CPUID_XSAVE_XSAVEOPT | CPUID_XSAVE_XGETBV1)
/* missing:
CPUID_XSAVE_XSAVEC, CPUID_XSAVE_XSAVES */
typedef struct FeatureWordInfo {
/* feature flags names are taken from "Intel Processor Identification and
* the CPUID Instruction" and AMD's "CPUID Specification".
* In cases of disagreement between feature naming conventions,
* aliases may be added.
*/
const char *feat_names[32];
uint32_t cpuid_eax; /* Input EAX for CPUID */
bool cpuid_needs_ecx; /* CPUID instruction uses ECX as input */
uint32_t cpuid_ecx; /* Input ECX value for CPUID */
int cpuid_reg; /* output register (R_* constant) */
uint32_t tcg_features; /* Feature flags supported by TCG */
uint32_t unmigratable_flags; /* Feature flags known to be unmigratable */
uint32_t migratable_flags; /* Feature flags known to be migratable */
} FeatureWordInfo;
static FeatureWordInfo feature_word_info[FEATURE_WORDS] = {
[FEAT_1_EDX] = {
.feat_names = {
"fpu", "vme", "de", "pse",
"tsc", "msr", "pae", "mce",
"cx8", "apic", NULL, "sep",
"mtrr", "pge", "mca", "cmov",
"pat", "pse36", "pn" /* Intel psn */, "clflush" /* Intel clfsh */,
NULL, "ds" /* Intel dts */, "acpi", "mmx",
"fxsr", "sse", "sse2", "ss",
"ht" /* Intel htt */, "tm", "ia64", "pbe",
},
.cpuid_eax = 1, .cpuid_reg = R_EDX,
.tcg_features = TCG_FEATURES,
},
[FEAT_1_ECX] = {
.feat_names = {
"pni|sse3" /* Intel,AMD sse3 */, "pclmulqdq|pclmuldq", "dtes64", "monitor",
"ds_cpl", "vmx", "smx", "est",
"tm2", "ssse3", "cid", NULL,
"fma", "cx16", "xtpr", "pdcm",
NULL, "pcid", "dca", "sse4.1|sse4_1",
"sse4.2|sse4_2", "x2apic", "movbe", "popcnt",
"tsc-deadline", "aes", "xsave", "osxsave",
"avx", "f16c", "rdrand", "hypervisor",
},
.cpuid_eax = 1, .cpuid_reg = R_ECX,
.tcg_features = TCG_EXT_FEATURES,
},
/* Feature names that are already defined on feature_name[] but
* are set on CPUID[8000_0001].EDX on AMD CPUs don't have their
* names on feat_names below. They are copied automatically
* to features[FEAT_8000_0001_EDX] if and only if CPU vendor is AMD.
*/
[FEAT_8000_0001_EDX] = {
.feat_names = {
NULL /* fpu */, NULL /* vme */, NULL /* de */, NULL /* pse */,
NULL /* tsc */, NULL /* msr */, NULL /* pae */, NULL /* mce */,
NULL /* cx8 */, NULL /* apic */, NULL, "syscall",
NULL /* mtrr */, NULL /* pge */, NULL /* mca */, NULL /* cmov */,
NULL /* pat */, NULL /* pse36 */, NULL, NULL /* Linux mp */,
"nx|xd", NULL, "mmxext", NULL /* mmx */,
NULL /* fxsr */, "fxsr_opt|ffxsr", "pdpe1gb", "rdtscp",
NULL, "lm|i64", "3dnowext", "3dnow",
},
.cpuid_eax = 0x80000001, .cpuid_reg = R_EDX,
.tcg_features = TCG_EXT2_FEATURES,
},
[FEAT_8000_0001_ECX] = {
.feat_names = {
"lahf_lm", "cmp_legacy", "svm", "extapic",
"cr8legacy", "abm", "sse4a", "misalignsse",
"3dnowprefetch", "osvw", "ibs", "xop",
"skinit", "wdt", NULL, "lwp",
"fma4", "tce", NULL, "nodeid_msr",
NULL, "tbm", "topoext", "perfctr_core",
"perfctr_nb", NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
},
.cpuid_eax = 0x80000001, .cpuid_reg = R_ECX,
.tcg_features = TCG_EXT3_FEATURES,
},
[FEAT_C000_0001_EDX] = {
.feat_names = {
NULL, NULL, "xstore", "xstore-en",
NULL, NULL, "xcrypt", "xcrypt-en",
"ace2", "ace2-en", "phe", "phe-en",
"pmm", "pmm-en", NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
},
.cpuid_eax = 0xC0000001, .cpuid_reg = R_EDX,
.tcg_features = TCG_EXT4_FEATURES,
},
[FEAT_KVM] = {
.feat_names = {
"kvmclock", "kvm_nopiodelay", "kvm_mmu", "kvmclock",
"kvm_asyncpf", "kvm_steal_time", "kvm_pv_eoi", "kvm_pv_unhalt",
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
"kvmclock-stable-bit", NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
},
.cpuid_eax = KVM_CPUID_FEATURES, .cpuid_reg = R_EAX,
.tcg_features = TCG_KVM_FEATURES,
},
[FEAT_HYPERV_EAX] = {
.feat_names = {
NULL /* hv_msr_vp_runtime_access */, NULL /* hv_msr_time_refcount_access */,
NULL /* hv_msr_synic_access */, NULL /* hv_msr_stimer_access */,
NULL /* hv_msr_apic_access */, NULL /* hv_msr_hypercall_access */,
NULL /* hv_vpindex_access */, NULL /* hv_msr_reset_access */,
NULL /* hv_msr_stats_access */, NULL /* hv_reftsc_access */,
NULL /* hv_msr_idle_access */, NULL /* hv_msr_frequency_access */,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
},
.cpuid_eax = 0x40000003, .cpuid_reg = R_EAX,
},
[FEAT_HYPERV_EBX] = {
.feat_names = {
NULL /* hv_create_partitions */, NULL /* hv_access_partition_id */,
NULL /* hv_access_memory_pool */, NULL /* hv_adjust_message_buffers */,
NULL /* hv_post_messages */, NULL /* hv_signal_events */,
NULL /* hv_create_port */, NULL /* hv_connect_port */,
NULL /* hv_access_stats */, NULL, NULL, NULL /* hv_debugging */,
NULL /* hv_cpu_power_management */, NULL /* hv_configure_profiler */,
NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
},
.cpuid_eax = 0x40000003, .cpuid_reg = R_EBX,
},
[FEAT_HYPERV_EDX] = {
.feat_names = {
NULL /* hv_mwait */, NULL /* hv_guest_debugging */,
NULL /* hv_perf_monitor */, NULL /* hv_cpu_dynamic_part */,
NULL /* hv_hypercall_params_xmm */, NULL /* hv_guest_idle_state */,
NULL, NULL,
NULL, NULL, NULL /* hv_guest_crash_msr */, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
},
.cpuid_eax = 0x40000003, .cpuid_reg = R_EDX,
},
[FEAT_SVM] = {
.feat_names = {
"npt", "lbrv", "svm_lock", "nrip_save",
"tsc_scale", "vmcb_clean", "flushbyasid", "decodeassists",
NULL, NULL, "pause_filter", NULL,
"pfthreshold", NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
},
.cpuid_eax = 0x8000000A, .cpuid_reg = R_EDX,
.tcg_features = TCG_SVM_FEATURES,
},
[FEAT_7_0_EBX] = {
.feat_names = {
"fsgsbase", "tsc_adjust", NULL, "bmi1",
"hle", "avx2", NULL, "smep",
"bmi2", "erms", "invpcid", "rtm",
NULL, NULL, "mpx", NULL,
"avx512f", "avx512dq", "rdseed", "adx",
"smap", "avx512ifma", "pcommit", "clflushopt",
"clwb", NULL, "avx512pf", "avx512er",
"avx512cd", NULL, "avx512bw", "avx512vl",
},
.cpuid_eax = 7,
.cpuid_needs_ecx = true, .cpuid_ecx = 0,
.cpuid_reg = R_EBX,
.tcg_features = TCG_7_0_EBX_FEATURES,
},
[FEAT_7_0_ECX] = {
.feat_names = {
NULL, "avx512vbmi", "umip", "pku",
"ospke", NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, "rdpid", NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
},
.cpuid_eax = 7,
.cpuid_needs_ecx = true, .cpuid_ecx = 0,
.cpuid_reg = R_ECX,
.tcg_features = TCG_7_0_ECX_FEATURES,
},
[FEAT_8000_0007_EDX] = {
.feat_names = {
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
"invtsc", NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
},
.cpuid_eax = 0x80000007,
.cpuid_reg = R_EDX,
.tcg_features = TCG_APM_FEATURES,
.unmigratable_flags = CPUID_APM_INVTSC,
},
[FEAT_XSAVE] = {
.feat_names = {
"xsaveopt", "xsavec", "xgetbv1", "xsaves",
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
},
.cpuid_eax = 0xd,
.cpuid_needs_ecx = true, .cpuid_ecx = 1,
.cpuid_reg = R_EAX,
.tcg_features = TCG_XSAVE_FEATURES,
},
[FEAT_6_EAX] = {
.feat_names = {
NULL, NULL, "arat", NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
},
.cpuid_eax = 6, .cpuid_reg = R_EAX,
.tcg_features = TCG_6_EAX_FEATURES,
},
[FEAT_XSAVE_COMP_LO] = {
.cpuid_eax = 0xD,
.cpuid_needs_ecx = true, .cpuid_ecx = 0,
.cpuid_reg = R_EAX,
.tcg_features = ~0U,
.migratable_flags = XSTATE_FP_MASK | XSTATE_SSE_MASK |
XSTATE_YMM_MASK | XSTATE_BNDREGS_MASK | XSTATE_BNDCSR_MASK |
XSTATE_OPMASK_MASK | XSTATE_ZMM_Hi256_MASK | XSTATE_Hi16_ZMM_MASK |
XSTATE_PKRU_MASK,
},
[FEAT_XSAVE_COMP_HI] = {
.cpuid_eax = 0xD,
.cpuid_needs_ecx = true, .cpuid_ecx = 0,
.cpuid_reg = R_EDX,
.tcg_features = ~0U,
},
};
typedef struct X86RegisterInfo32 {
/* Name of register */
const char *name;
/* QAPI enum value register */
X86CPURegister32 qapi_enum;
} X86RegisterInfo32;
#define REGISTER(reg) \
[R_##reg] = { .name = #reg, .qapi_enum = X86_CPU_REGISTER32_##reg }
static const X86RegisterInfo32 x86_reg_info_32[CPU_NB_REGS32] = {
REGISTER(EAX),
REGISTER(ECX),
REGISTER(EDX),
REGISTER(EBX),
REGISTER(ESP),
REGISTER(EBP),
REGISTER(ESI),
REGISTER(EDI),
};
#undef REGISTER
typedef struct ExtSaveArea {
uint32_t feature, bits;
uint32_t offset, size;
} ExtSaveArea;
static const ExtSaveArea x86_ext_save_areas[] = {
[XSTATE_YMM_BIT] =
{ .feature = FEAT_1_ECX, .bits = CPUID_EXT_AVX,
.offset = offsetof(X86XSaveArea, avx_state),
.size = sizeof(XSaveAVX) },
[XSTATE_BNDREGS_BIT] =
{ .feature = FEAT_7_0_EBX, .bits = CPUID_7_0_EBX_MPX,
.offset = offsetof(X86XSaveArea, bndreg_state),
.size = sizeof(XSaveBNDREG) },
[XSTATE_BNDCSR_BIT] =
{ .feature = FEAT_7_0_EBX, .bits = CPUID_7_0_EBX_MPX,
.offset = offsetof(X86XSaveArea, bndcsr_state),
.size = sizeof(XSaveBNDCSR) },
[XSTATE_OPMASK_BIT] =
{ .feature = FEAT_7_0_EBX, .bits = CPUID_7_0_EBX_AVX512F,
.offset = offsetof(X86XSaveArea, opmask_state),
.size = sizeof(XSaveOpmask) },
[XSTATE_ZMM_Hi256_BIT] =
{ .feature = FEAT_7_0_EBX, .bits = CPUID_7_0_EBX_AVX512F,
.offset = offsetof(X86XSaveArea, zmm_hi256_state),
.size = sizeof(XSaveZMM_Hi256) },
[XSTATE_Hi16_ZMM_BIT] =
{ .feature = FEAT_7_0_EBX, .bits = CPUID_7_0_EBX_AVX512F,
.offset = offsetof(X86XSaveArea, hi16_zmm_state),
.size = sizeof(XSaveHi16_ZMM) },
[XSTATE_PKRU_BIT] =
{ .feature = FEAT_7_0_ECX, .bits = CPUID_7_0_ECX_PKU,
.offset = offsetof(X86XSaveArea, pkru_state),
.size = sizeof(XSavePKRU) },
};
static uint32_t xsave_area_size(uint64_t mask)
{
int i;
uint64_t ret = sizeof(X86LegacyXSaveArea) + sizeof(X86XSaveHeader);
for (i = 2; i < ARRAY_SIZE(x86_ext_save_areas); i++) {
const ExtSaveArea *esa = &x86_ext_save_areas[i];
if ((mask >> i) & 1) {
ret = MAX(ret, esa->offset + esa->size);
}
}
return ret;
}
static inline uint64_t x86_cpu_xsave_components(X86CPU *cpu)
{
return ((uint64_t)cpu->env.features[FEAT_XSAVE_COMP_HI]) << 32 |
cpu->env.features[FEAT_XSAVE_COMP_LO];
}
const char *get_register_name_32(unsigned int reg)
{
if (reg >= CPU_NB_REGS32) {
return NULL;
}
return x86_reg_info_32[reg].name;
}
/*
* Returns the set of feature flags that are supported and migratable by
* QEMU, for a given FeatureWord.
*/
static uint32_t x86_cpu_get_migratable_flags(FeatureWord w)
{
FeatureWordInfo *wi = &feature_word_info[w];
uint32_t r = 0;
int i;
for (i = 0; i < 32; i++) {
uint32_t f = 1U << i;
/* If the feature name is known, it is implicitly considered migratable,
* unless it is explicitly set in unmigratable_flags */
if ((wi->migratable_flags & f) ||
(wi->feat_names[i] && !(wi->unmigratable_flags & f))) {
r |= f;
}
}
return r;
}
void host_cpuid(uint32_t function, uint32_t count,
uint32_t *eax, uint32_t *ebx, uint32_t *ecx, uint32_t *edx)
{
uint32_t vec[4];
#ifdef __x86_64__
asm volatile("cpuid"
: "=a"(vec[0]), "=b"(vec[1]),
"=c"(vec[2]), "=d"(vec[3])
: "0"(function), "c"(count) : "cc");
#elif defined(__i386__)
asm volatile("pusha \n\t"
"cpuid \n\t"
"mov %%eax, 0(%2) \n\t"
"mov %%ebx, 4(%2) \n\t"
"mov %%ecx, 8(%2) \n\t"
"mov %%edx, 12(%2) \n\t"
"popa"
: : "a"(function), "c"(count), "S"(vec)
: "memory", "cc");
#else
abort();
#endif
if (eax)
*eax = vec[0];
if (ebx)
*ebx = vec[1];
if (ecx)
*ecx = vec[2];
if (edx)
*edx = vec[3];
}
#define iswhite(c) ((c) && ((c) <= ' ' || '~' < (c)))
/* general substring compare of *[s1..e1) and *[s2..e2). sx is start of
* a substring. ex if !NULL points to the first char after a substring,
* otherwise the string is assumed to sized by a terminating nul.
* Return lexical ordering of *s1:*s2.
*/
static int sstrcmp(const char *s1, const char *e1,
const char *s2, const char *e2)
{
for (;;) {
if (!*s1 || !*s2 || *s1 != *s2)
return (*s1 - *s2);
++s1, ++s2;
if (s1 == e1 && s2 == e2)
return (0);
else if (s1 == e1)
return (*s2);
else if (s2 == e2)
return (*s1);
}
}
/* compare *[s..e) to *altstr. *altstr may be a simple string or multiple
* '|' delimited (possibly empty) strings in which case search for a match
* within the alternatives proceeds left to right. Return 0 for success,
* non-zero otherwise.
*/
static int altcmp(const char *s, const char *e, const char *altstr)
{
const char *p, *q;
for (q = p = altstr; ; ) {
while (*p && *p != '|')
++p;
if ((q == p && !*s) || (q != p && !sstrcmp(s, e, q, p)))
return (0);
if (!*p)
return (1);
else
q = ++p;
}
}
/* search featureset for flag *[s..e), if found set corresponding bit in
* *pval and return true, otherwise return false
*/
static bool lookup_feature(uint32_t *pval, const char *s, const char *e,
const char **featureset)
{
uint32_t mask;
const char **ppc;
bool found = false;
for (mask = 1, ppc = featureset; mask; mask <<= 1, ++ppc) {
if (*ppc && !altcmp(s, e, *ppc)) {
*pval |= mask;
found = true;
}
}
return found;
}
static void add_flagname_to_bitmaps(const char *flagname,
FeatureWordArray words,
Error **errp)
{
FeatureWord w;
for (w = 0; w < FEATURE_WORDS; w++) {
FeatureWordInfo *wi = &feature_word_info[w];
if (lookup_feature(&words[w], flagname, NULL, wi->feat_names)) {
break;
}
}
if (w == FEATURE_WORDS) {
error_setg(errp, "CPU feature %s not found", flagname);
}
}
/* CPU class name definitions: */
#define X86_CPU_TYPE_SUFFIX "-" TYPE_X86_CPU
#define X86_CPU_TYPE_NAME(name) (name X86_CPU_TYPE_SUFFIX)
/* Return type name for a given CPU model name
* Caller is responsible for freeing the returned string.
*/
static char *x86_cpu_type_name(const char *model_name)
{
return g_strdup_printf(X86_CPU_TYPE_NAME("%s"), model_name);
}
static ObjectClass *x86_cpu_class_by_name(const char *cpu_model)
{
ObjectClass *oc;
char *typename;
if (cpu_model == NULL) {
return NULL;
}
typename = x86_cpu_type_name(cpu_model);
oc = object_class_by_name(typename);
g_free(typename);
return oc;
}
static char *x86_cpu_class_get_model_name(X86CPUClass *cc)
{
const char *class_name = object_class_get_name(OBJECT_CLASS(cc));
assert(g_str_has_suffix(class_name, X86_CPU_TYPE_SUFFIX));
return g_strndup(class_name,
strlen(class_name) - strlen(X86_CPU_TYPE_SUFFIX));
}
struct X86CPUDefinition {
const char *name;
uint32_t level;
uint32_t xlevel;
/* vendor is zero-terminated, 12 character ASCII string */
char vendor[CPUID_VENDOR_SZ + 1];
int family;
int model;
int stepping;
FeatureWordArray features;
char model_id[48];
};
static X86CPUDefinition builtin_x86_defs[] = {
{
.name = "qemu64",
.level = 0xd,
.vendor = CPUID_VENDOR_AMD,
.family = 6,
.model = 6,
.stepping = 3,
.features[FEAT_1_EDX] =
PPRO_FEATURES |
CPUID_MTRR | CPUID_CLFLUSH | CPUID_MCA |
CPUID_PSE36,
.features[FEAT_1_ECX] =
CPUID_EXT_SSE3 | CPUID_EXT_CX16,
.features[FEAT_8000_0001_EDX] =
CPUID_EXT2_LM | CPUID_EXT2_SYSCALL | CPUID_EXT2_NX,
.features[FEAT_8000_0001_ECX] =
CPUID_EXT3_LAHF_LM | CPUID_EXT3_SVM,
.xlevel = 0x8000000A,
.model_id = "QEMU Virtual CPU version " QEMU_HW_VERSION,
},
{
.name = "phenom",
.level = 5,
.vendor = CPUID_VENDOR_AMD,
.family = 16,
.model = 2,
.stepping = 3,
/* Missing: CPUID_HT */
.features[FEAT_1_EDX] =
PPRO_FEATURES |
CPUID_MTRR | CPUID_CLFLUSH | CPUID_MCA |
CPUID_PSE36 | CPUID_VME,
.features[FEAT_1_ECX] =
CPUID_EXT_SSE3 | CPUID_EXT_MONITOR | CPUID_EXT_CX16 |
CPUID_EXT_POPCNT,
.features[FEAT_8000_0001_EDX] =
CPUID_EXT2_LM | CPUID_EXT2_SYSCALL | CPUID_EXT2_NX |
CPUID_EXT2_3DNOW | CPUID_EXT2_3DNOWEXT | CPUID_EXT2_MMXEXT |
CPUID_EXT2_FFXSR | CPUID_EXT2_PDPE1GB | CPUID_EXT2_RDTSCP,
/* Missing: CPUID_EXT3_CMP_LEG, CPUID_EXT3_EXTAPIC,
CPUID_EXT3_CR8LEG,
CPUID_EXT3_MISALIGNSSE, CPUID_EXT3_3DNOWPREFETCH,
CPUID_EXT3_OSVW, CPUID_EXT3_IBS */
.features[FEAT_8000_0001_ECX] =
CPUID_EXT3_LAHF_LM | CPUID_EXT3_SVM |
CPUID_EXT3_ABM | CPUID_EXT3_SSE4A,
/* Missing: CPUID_SVM_LBRV */
.features[FEAT_SVM] =
CPUID_SVM_NPT,
.xlevel = 0x8000001A,
.model_id = "AMD Phenom(tm) 9550 Quad-Core Processor"
},
{
.name = "core2duo",
.level = 10,
.vendor = CPUID_VENDOR_INTEL,
.family = 6,
.model = 15,
.stepping = 11,
/* Missing: CPUID_DTS, CPUID_HT, CPUID_TM, CPUID_PBE */
.features[FEAT_1_EDX] =
PPRO_FEATURES |
CPUID_MTRR | CPUID_CLFLUSH | CPUID_MCA |
CPUID_PSE36 | CPUID_VME | CPUID_ACPI | CPUID_SS,
/* Missing: CPUID_EXT_DTES64, CPUID_EXT_DSCPL, CPUID_EXT_EST,
* CPUID_EXT_TM2, CPUID_EXT_XTPR, CPUID_EXT_PDCM, CPUID_EXT_VMX */
.features[FEAT_1_ECX] =
CPUID_EXT_SSE3 | CPUID_EXT_MONITOR | CPUID_EXT_SSSE3 |
CPUID_EXT_CX16,
.features[FEAT_8000_0001_EDX] =
CPUID_EXT2_LM | CPUID_EXT2_SYSCALL | CPUID_EXT2_NX,
.features[FEAT_8000_0001_ECX] =
CPUID_EXT3_LAHF_LM,
.xlevel = 0x80000008,
.model_id = "Intel(R) Core(TM)2 Duo CPU T7700 @ 2.40GHz",
},
{
.name = "kvm64",
.level = 0xd,
.vendor = CPUID_VENDOR_INTEL,
.family = 15,
.model = 6,
.stepping = 1,
/* Missing: CPUID_HT */
.features[FEAT_1_EDX] =
PPRO_FEATURES | CPUID_VME |
CPUID_MTRR | CPUID_CLFLUSH | CPUID_MCA |
CPUID_PSE36,
/* Missing: CPUID_EXT_POPCNT, CPUID_EXT_MONITOR */
.features[FEAT_1_ECX] =
CPUID_EXT_SSE3 | CPUID_EXT_CX16,
/* Missing: CPUID_EXT2_PDPE1GB, CPUID_EXT2_RDTSCP */
.features[FEAT_8000_0001_EDX] =
CPUID_EXT2_LM | CPUID_EXT2_SYSCALL | CPUID_EXT2_NX,
/* Missing: CPUID_EXT3_LAHF_LM, CPUID_EXT3_CMP_LEG, CPUID_EXT3_EXTAPIC,
CPUID_EXT3_CR8LEG, CPUID_EXT3_ABM, CPUID_EXT3_SSE4A,
CPUID_EXT3_MISALIGNSSE, CPUID_EXT3_3DNOWPREFETCH,
CPUID_EXT3_OSVW, CPUID_EXT3_IBS, CPUID_EXT3_SVM */
.features[FEAT_8000_0001_ECX] =
0,
.xlevel = 0x80000008,
.model_id = "Common KVM processor"
},
{
.name = "qemu32",
.level = 4,
.vendor = CPUID_VENDOR_INTEL,
.family = 6,
.model = 6,
.stepping = 3,
.features[FEAT_1_EDX] =
PPRO_FEATURES,
.features[FEAT_1_ECX] =
CPUID_EXT_SSE3,
.xlevel = 0x80000004,
.model_id = "QEMU Virtual CPU version " QEMU_HW_VERSION,
},
{
.name = "kvm32",
.level = 5,
.vendor = CPUID_VENDOR_INTEL,
.family = 15,
.model = 6,
.stepping = 1,
.features[FEAT_1_EDX] =
PPRO_FEATURES | CPUID_VME |
CPUID_MTRR | CPUID_CLFLUSH | CPUID_MCA | CPUID_PSE36,
.features[FEAT_1_ECX] =
CPUID_EXT_SSE3,
.features[FEAT_8000_0001_ECX] =
0,
.xlevel = 0x80000008,
.model_id = "Common 32-bit KVM processor"
},
{
.name = "coreduo",
.level = 10,
.vendor = CPUID_VENDOR_INTEL,
.family = 6,
.model = 14,
.stepping = 8,
/* Missing: CPUID_DTS, CPUID_HT, CPUID_TM, CPUID_PBE */
.features[FEAT_1_EDX] =
PPRO_FEATURES | CPUID_VME |
CPUID_MTRR | CPUID_CLFLUSH | CPUID_MCA | CPUID_ACPI |
CPUID_SS,
/* Missing: CPUID_EXT_EST, CPUID_EXT_TM2 , CPUID_EXT_XTPR,
* CPUID_EXT_PDCM, CPUID_EXT_VMX */
.features[FEAT_1_ECX] =
CPUID_EXT_SSE3 | CPUID_EXT_MONITOR,
.features[FEAT_8000_0001_EDX] =
CPUID_EXT2_NX,
.xlevel = 0x80000008,
.model_id = "Genuine Intel(R) CPU T2600 @ 2.16GHz",
},
{
.name = "486",
.level = 1,
.vendor = CPUID_VENDOR_INTEL,
.family = 4,
.model = 8,
.stepping = 0,
.features[FEAT_1_EDX] =
I486_FEATURES,
.xlevel = 0,
},
{
.name = "pentium",
.level = 1,
.vendor = CPUID_VENDOR_INTEL,
.family = 5,
.model = 4,
.stepping = 3,
.features[FEAT_1_EDX] =
PENTIUM_FEATURES,
.xlevel = 0,
},
{
.name = "pentium2",
.level = 2,
.vendor = CPUID_VENDOR_INTEL,
.family = 6,
.model = 5,
.stepping = 2,
.features[FEAT_1_EDX] =
PENTIUM2_FEATURES,
.xlevel = 0,
},
{
.name = "pentium3",
.level = 3,
.vendor = CPUID_VENDOR_INTEL,
.family = 6,
.model = 7,
.stepping = 3,
.features[FEAT_1_EDX] =
PENTIUM3_FEATURES,
.xlevel = 0,
},
{
.name = "athlon",
.level = 2,
.vendor = CPUID_VENDOR_AMD,
.family = 6,
.model = 2,
.stepping = 3,
.features[FEAT_1_EDX] =
PPRO_FEATURES | CPUID_PSE36 | CPUID_VME | CPUID_MTRR |
CPUID_MCA,
.features[FEAT_8000_0001_EDX] =
CPUID_EXT2_MMXEXT | CPUID_EXT2_3DNOW | CPUID_EXT2_3DNOWEXT,
.xlevel = 0x80000008,
.model_id = "QEMU Virtual CPU version " QEMU_HW_VERSION,
},
{
.name = "n270",
.level = 10,
.vendor = CPUID_VENDOR_INTEL,
.family = 6,
.model = 28,
.stepping = 2,
/* Missing: CPUID_DTS, CPUID_HT, CPUID_TM, CPUID_PBE */
.features[FEAT_1_EDX] =
PPRO_FEATURES |
CPUID_MTRR | CPUID_CLFLUSH | CPUID_MCA | CPUID_VME |
CPUID_ACPI | CPUID_SS,
/* Some CPUs got no CPUID_SEP */
/* Missing: CPUID_EXT_DSCPL, CPUID_EXT_EST, CPUID_EXT_TM2,
* CPUID_EXT_XTPR */
.features[FEAT_1_ECX] =
CPUID_EXT_SSE3 | CPUID_EXT_MONITOR | CPUID_EXT_SSSE3 |
CPUID_EXT_MOVBE,
.features[FEAT_8000_0001_EDX] =
CPUID_EXT2_NX,
.features[FEAT_8000_0001_ECX] =
CPUID_EXT3_LAHF_LM,
.xlevel = 0x80000008,
.model_id = "Intel(R) Atom(TM) CPU N270 @ 1.60GHz",
},
{
.name = "Conroe",
.level = 10,
.vendor = CPUID_VENDOR_INTEL,
.family = 6,
.model = 15,
.stepping = 3,
.features[FEAT_1_EDX] =
CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX |
CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA |
CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 |
CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE |
CPUID_DE | CPUID_FP87,
.features[FEAT_1_ECX] =
CPUID_EXT_SSSE3 | CPUID_EXT_SSE3,
.features[FEAT_8000_0001_EDX] =
CPUID_EXT2_LM | CPUID_EXT2_NX | CPUID_EXT2_SYSCALL,
.features[FEAT_8000_0001_ECX] =
CPUID_EXT3_LAHF_LM,
.xlevel = 0x80000008,
.model_id = "Intel Celeron_4x0 (Conroe/Merom Class Core 2)",
},
{
.name = "Penryn",
.level = 10,
.vendor = CPUID_VENDOR_INTEL,
.family = 6,
.model = 23,
.stepping = 3,
.features[FEAT_1_EDX] =
CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX |
CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA |
CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 |
CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE |
CPUID_DE | CPUID_FP87,
.features[FEAT_1_ECX] =
CPUID_EXT_SSE41 | CPUID_EXT_CX16 | CPUID_EXT_SSSE3 |
CPUID_EXT_SSE3,
.features[FEAT_8000_0001_EDX] =
CPUID_EXT2_LM | CPUID_EXT2_NX | CPUID_EXT2_SYSCALL,
.features[FEAT_8000_0001_ECX] =
CPUID_EXT3_LAHF_LM,
.xlevel = 0x80000008,
.model_id = "Intel Core 2 Duo P9xxx (Penryn Class Core 2)",
},
{
.name = "Nehalem",
.level = 11,
.vendor = CPUID_VENDOR_INTEL,
.family = 6,
.model = 26,
.stepping = 3,
.features[FEAT_1_EDX] =
CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX |
CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA |
CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 |
CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE |
CPUID_DE | CPUID_FP87,
.features[FEAT_1_ECX] =
CPUID_EXT_POPCNT | CPUID_EXT_SSE42 | CPUID_EXT_SSE41 |
CPUID_EXT_CX16 | CPUID_EXT_SSSE3 | CPUID_EXT_SSE3,
.features[FEAT_8000_0001_EDX] =
CPUID_EXT2_LM | CPUID_EXT2_SYSCALL | CPUID_EXT2_NX,
.features[FEAT_8000_0001_ECX] =
CPUID_EXT3_LAHF_LM,
.xlevel = 0x80000008,
.model_id = "Intel Core i7 9xx (Nehalem Class Core i7)",
},
{
.name = "Westmere",
.level = 11,
.vendor = CPUID_VENDOR_INTEL,
.family = 6,
.model = 44,
.stepping = 1,
.features[FEAT_1_EDX] =
CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX |
CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA |
CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 |
CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE |
CPUID_DE | CPUID_FP87,
.features[FEAT_1_ECX] =
CPUID_EXT_AES | CPUID_EXT_POPCNT | CPUID_EXT_SSE42 |
CPUID_EXT_SSE41 | CPUID_EXT_CX16 | CPUID_EXT_SSSE3 |
CPUID_EXT_PCLMULQDQ | CPUID_EXT_SSE3,
.features[FEAT_8000_0001_EDX] =
CPUID_EXT2_LM | CPUID_EXT2_SYSCALL | CPUID_EXT2_NX,
.features[FEAT_8000_0001_ECX] =
CPUID_EXT3_LAHF_LM,
.features[FEAT_6_EAX] =
CPUID_6_EAX_ARAT,
.xlevel = 0x80000008,
.model_id = "Westmere E56xx/L56xx/X56xx (Nehalem-C)",
},
{
.name = "SandyBridge",
.level = 0xd,
.vendor = CPUID_VENDOR_INTEL,
.family = 6,
.model = 42,
.stepping = 1,
.features[FEAT_1_EDX] =
CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX |
CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA |
CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 |
CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE |
CPUID_DE | CPUID_FP87,
.features[FEAT_1_ECX] =
CPUID_EXT_AVX | CPUID_EXT_XSAVE | CPUID_EXT_AES |
CPUID_EXT_TSC_DEADLINE_TIMER | CPUID_EXT_POPCNT |
CPUID_EXT_X2APIC | CPUID_EXT_SSE42 | CPUID_EXT_SSE41 |
CPUID_EXT_CX16 | CPUID_EXT_SSSE3 | CPUID_EXT_PCLMULQDQ |
CPUID_EXT_SSE3,
.features[FEAT_8000_0001_EDX] =
CPUID_EXT2_LM | CPUID_EXT2_RDTSCP | CPUID_EXT2_NX |
CPUID_EXT2_SYSCALL,
.features[FEAT_8000_0001_ECX] =
CPUID_EXT3_LAHF_LM,
.features[FEAT_XSAVE] =
CPUID_XSAVE_XSAVEOPT,
.features[FEAT_6_EAX] =
CPUID_6_EAX_ARAT,
.xlevel = 0x80000008,
.model_id = "Intel Xeon E312xx (Sandy Bridge)",
},
{
.name = "IvyBridge",
.level = 0xd,
.vendor = CPUID_VENDOR_INTEL,
.family = 6,
.model = 58,
.stepping = 9,
.features[FEAT_1_EDX] =
CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX |
CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA |
CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 |
CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE |
CPUID_DE | CPUID_FP87,
.features[FEAT_1_ECX] =
CPUID_EXT_AVX | CPUID_EXT_XSAVE | CPUID_EXT_AES |
CPUID_EXT_TSC_DEADLINE_TIMER | CPUID_EXT_POPCNT |
CPUID_EXT_X2APIC | CPUID_EXT_SSE42 | CPUID_EXT_SSE41 |
CPUID_EXT_CX16 | CPUID_EXT_SSSE3 | CPUID_EXT_PCLMULQDQ |
CPUID_EXT_SSE3 | CPUID_EXT_F16C | CPUID_EXT_RDRAND,
.features[FEAT_7_0_EBX] =
CPUID_7_0_EBX_FSGSBASE | CPUID_7_0_EBX_SMEP |
CPUID_7_0_EBX_ERMS,
.features[FEAT_8000_0001_EDX] =
CPUID_EXT2_LM | CPUID_EXT2_RDTSCP | CPUID_EXT2_NX |
CPUID_EXT2_SYSCALL,
.features[FEAT_8000_0001_ECX] =
CPUID_EXT3_LAHF_LM,
.features[FEAT_XSAVE] =
CPUID_XSAVE_XSAVEOPT,
.features[FEAT_6_EAX] =
CPUID_6_EAX_ARAT,
.xlevel = 0x80000008,
.model_id = "Intel Xeon E3-12xx v2 (Ivy Bridge)",
},
{
.name = "Haswell-noTSX",
.level = 0xd,
.vendor = CPUID_VENDOR_INTEL,
.family = 6,
.model = 60,
.stepping = 1,
.features[FEAT_1_EDX] =
CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX |
CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA |
CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 |
CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE |
CPUID_DE | CPUID_FP87,
.features[FEAT_1_ECX] =
CPUID_EXT_AVX | CPUID_EXT_XSAVE | CPUID_EXT_AES |
CPUID_EXT_POPCNT | CPUID_EXT_X2APIC | CPUID_EXT_SSE42 |
CPUID_EXT_SSE41 | CPUID_EXT_CX16 | CPUID_EXT_SSSE3 |
CPUID_EXT_PCLMULQDQ | CPUID_EXT_SSE3 |
CPUID_EXT_TSC_DEADLINE_TIMER | CPUID_EXT_FMA | CPUID_EXT_MOVBE |
CPUID_EXT_PCID | CPUID_EXT_F16C | CPUID_EXT_RDRAND,
.features[FEAT_8000_0001_EDX] =
CPUID_EXT2_LM | CPUID_EXT2_RDTSCP | CPUID_EXT2_NX |
CPUID_EXT2_SYSCALL,
.features[FEAT_8000_0001_ECX] =
CPUID_EXT3_ABM | CPUID_EXT3_LAHF_LM,
.features[FEAT_7_0_EBX] =
CPUID_7_0_EBX_FSGSBASE | CPUID_7_0_EBX_BMI1 |
CPUID_7_0_EBX_AVX2 | CPUID_7_0_EBX_SMEP |
CPUID_7_0_EBX_BMI2 | CPUID_7_0_EBX_ERMS | CPUID_7_0_EBX_INVPCID,
.features[FEAT_XSAVE] =
CPUID_XSAVE_XSAVEOPT,
.features[FEAT_6_EAX] =
CPUID_6_EAX_ARAT,
.xlevel = 0x80000008,
.model_id = "Intel Core Processor (Haswell, no TSX)",
}, {
.name = "Haswell",
.level = 0xd,
.vendor = CPUID_VENDOR_INTEL,
.family = 6,
.model = 60,
.stepping = 1,
.features[FEAT_1_EDX] =
CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX |
CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA |
CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 |
CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE |
CPUID_DE | CPUID_FP87,
.features[FEAT_1_ECX] =
CPUID_EXT_AVX | CPUID_EXT_XSAVE | CPUID_EXT_AES |
CPUID_EXT_POPCNT | CPUID_EXT_X2APIC | CPUID_EXT_SSE42 |
CPUID_EXT_SSE41 | CPUID_EXT_CX16 | CPUID_EXT_SSSE3 |
CPUID_EXT_PCLMULQDQ | CPUID_EXT_SSE3 |
CPUID_EXT_TSC_DEADLINE_TIMER | CPUID_EXT_FMA | CPUID_EXT_MOVBE |
CPUID_EXT_PCID | CPUID_EXT_F16C | CPUID_EXT_RDRAND,
.features[FEAT_8000_0001_EDX] =
CPUID_EXT2_LM | CPUID_EXT2_RDTSCP | CPUID_EXT2_NX |
CPUID_EXT2_SYSCALL,
.features[FEAT_8000_0001_ECX] =
CPUID_EXT3_ABM | CPUID_EXT3_LAHF_LM,
.features[FEAT_7_0_EBX] =
CPUID_7_0_EBX_FSGSBASE | CPUID_7_0_EBX_BMI1 |
CPUID_7_0_EBX_HLE | CPUID_7_0_EBX_AVX2 | CPUID_7_0_EBX_SMEP |
CPUID_7_0_EBX_BMI2 | CPUID_7_0_EBX_ERMS | CPUID_7_0_EBX_INVPCID |
CPUID_7_0_EBX_RTM,
.features[FEAT_XSAVE] =
CPUID_XSAVE_XSAVEOPT,
.features[FEAT_6_EAX] =
CPUID_6_EAX_ARAT,
.xlevel = 0x80000008,
.model_id = "Intel Core Processor (Haswell)",
},
{
.name = "Broadwell-noTSX",
.level = 0xd,
.vendor = CPUID_VENDOR_INTEL,
.family = 6,
.model = 61,
.stepping = 2,
.features[FEAT_1_EDX] =
CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX |
CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA |
CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 |
CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE |
CPUID_DE | CPUID_FP87,
.features[FEAT_1_ECX] =
CPUID_EXT_AVX | CPUID_EXT_XSAVE | CPUID_EXT_AES |
CPUID_EXT_POPCNT | CPUID_EXT_X2APIC | CPUID_EXT_SSE42 |
CPUID_EXT_SSE41 | CPUID_EXT_CX16 | CPUID_EXT_SSSE3 |
CPUID_EXT_PCLMULQDQ | CPUID_EXT_SSE3 |
CPUID_EXT_TSC_DEADLINE_TIMER | CPUID_EXT_FMA | CPUID_EXT_MOVBE |
CPUID_EXT_PCID | CPUID_EXT_F16C | CPUID_EXT_RDRAND,
.features[FEAT_8000_0001_EDX] =
CPUID_EXT2_LM | CPUID_EXT2_RDTSCP | CPUID_EXT2_NX |
CPUID_EXT2_SYSCALL,
.features[FEAT_8000_0001_ECX] =
CPUID_EXT3_ABM | CPUID_EXT3_LAHF_LM | CPUID_EXT3_3DNOWPREFETCH,
.features[FEAT_7_0_EBX] =
CPUID_7_0_EBX_FSGSBASE | CPUID_7_0_EBX_BMI1 |
CPUID_7_0_EBX_AVX2 | CPUID_7_0_EBX_SMEP |
CPUID_7_0_EBX_BMI2 | CPUID_7_0_EBX_ERMS | CPUID_7_0_EBX_INVPCID |
CPUID_7_0_EBX_RDSEED | CPUID_7_0_EBX_ADX |
CPUID_7_0_EBX_SMAP,
.features[FEAT_XSAVE] =
CPUID_XSAVE_XSAVEOPT,
.features[FEAT_6_EAX] =
CPUID_6_EAX_ARAT,
.xlevel = 0x80000008,
.model_id = "Intel Core Processor (Broadwell, no TSX)",
},
{
.name = "Broadwell",
.level = 0xd,
.vendor = CPUID_VENDOR_INTEL,
.family = 6,
.model = 61,
.stepping = 2,
.features[FEAT_1_EDX] =
CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX |
CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA |
CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 |
CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE |
CPUID_DE | CPUID_FP87,
.features[FEAT_1_ECX] =
CPUID_EXT_AVX | CPUID_EXT_XSAVE | CPUID_EXT_AES |
CPUID_EXT_POPCNT | CPUID_EXT_X2APIC | CPUID_EXT_SSE42 |
CPUID_EXT_SSE41 | CPUID_EXT_CX16 | CPUID_EXT_SSSE3 |
CPUID_EXT_PCLMULQDQ | CPUID_EXT_SSE3 |
CPUID_EXT_TSC_DEADLINE_TIMER | CPUID_EXT_FMA | CPUID_EXT_MOVBE |
CPUID_EXT_PCID | CPUID_EXT_F16C | CPUID_EXT_RDRAND,
.features[FEAT_8000_0001_EDX] =
CPUID_EXT2_LM | CPUID_EXT2_RDTSCP | CPUID_EXT2_NX |
CPUID_EXT2_SYSCALL,
.features[FEAT_8000_0001_ECX] =
CPUID_EXT3_ABM | CPUID_EXT3_LAHF_LM | CPUID_EXT3_3DNOWPREFETCH,
.features[FEAT_7_0_EBX] =
CPUID_7_0_EBX_FSGSBASE | CPUID_7_0_EBX_BMI1 |
CPUID_7_0_EBX_HLE | CPUID_7_0_EBX_AVX2 | CPUID_7_0_EBX_SMEP |
CPUID_7_0_EBX_BMI2 | CPUID_7_0_EBX_ERMS | CPUID_7_0_EBX_INVPCID |
CPUID_7_0_EBX_RTM | CPUID_7_0_EBX_RDSEED | CPUID_7_0_EBX_ADX |
CPUID_7_0_EBX_SMAP,
.features[FEAT_XSAVE] =
CPUID_XSAVE_XSAVEOPT,
.features[FEAT_6_EAX] =
CPUID_6_EAX_ARAT,
.xlevel = 0x80000008,
.model_id = "Intel Core Processor (Broadwell)",
},
{
.name = "Skylake-Client",
.level = 0xd,
.vendor = CPUID_VENDOR_INTEL,
.family = 6,
.model = 94,
.stepping = 3,
.features[FEAT_1_EDX] =
CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX |
CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA |
CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 |
CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE |
CPUID_DE | CPUID_FP87,
.features[FEAT_1_ECX] =
CPUID_EXT_AVX | CPUID_EXT_XSAVE | CPUID_EXT_AES |
CPUID_EXT_POPCNT | CPUID_EXT_X2APIC | CPUID_EXT_SSE42 |
CPUID_EXT_SSE41 | CPUID_EXT_CX16 | CPUID_EXT_SSSE3 |
CPUID_EXT_PCLMULQDQ | CPUID_EXT_SSE3 |
CPUID_EXT_TSC_DEADLINE_TIMER | CPUID_EXT_FMA | CPUID_EXT_MOVBE |
CPUID_EXT_PCID | CPUID_EXT_F16C | CPUID_EXT_RDRAND,
.features[FEAT_8000_0001_EDX] =
CPUID_EXT2_LM | CPUID_EXT2_RDTSCP | CPUID_EXT2_NX |
CPUID_EXT2_SYSCALL,
.features[FEAT_8000_0001_ECX] =
CPUID_EXT3_ABM | CPUID_EXT3_LAHF_LM | CPUID_EXT3_3DNOWPREFETCH,
.features[FEAT_7_0_EBX] =
CPUID_7_0_EBX_FSGSBASE | CPUID_7_0_EBX_BMI1 |
CPUID_7_0_EBX_HLE | CPUID_7_0_EBX_AVX2 | CPUID_7_0_EBX_SMEP |
CPUID_7_0_EBX_BMI2 | CPUID_7_0_EBX_ERMS | CPUID_7_0_EBX_INVPCID |
CPUID_7_0_EBX_RTM | CPUID_7_0_EBX_RDSEED | CPUID_7_0_EBX_ADX |
CPUID_7_0_EBX_SMAP | CPUID_7_0_EBX_MPX,
/* Missing: XSAVES (not supported by some Linux versions,
* including v4.1 to v4.6).
* KVM doesn't yet expose any XSAVES state save component,
* and the only one defined in Skylake (processor tracing)
* probably will block migration anyway.
*/
.features[FEAT_XSAVE] =
CPUID_XSAVE_XSAVEOPT | CPUID_XSAVE_XSAVEC |
CPUID_XSAVE_XGETBV1,
.features[FEAT_6_EAX] =
CPUID_6_EAX_ARAT,
.xlevel = 0x80000008,
.model_id = "Intel Core Processor (Skylake)",
},
{
.name = "Opteron_G1",
.level = 5,
.vendor = CPUID_VENDOR_AMD,
.family = 15,
.model = 6,
.stepping = 1,
.features[FEAT_1_EDX] =
CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX |
CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA |
CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 |
CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE |
CPUID_DE | CPUID_FP87,
.features[FEAT_1_ECX] =
CPUID_EXT_SSE3,
.features[FEAT_8000_0001_EDX] =
CPUID_EXT2_LM | CPUID_EXT2_FXSR | CPUID_EXT2_MMX |
CPUID_EXT2_NX | CPUID_EXT2_PSE36 | CPUID_EXT2_PAT |
CPUID_EXT2_CMOV | CPUID_EXT2_MCA | CPUID_EXT2_PGE |
CPUID_EXT2_MTRR | CPUID_EXT2_SYSCALL | CPUID_EXT2_APIC |
CPUID_EXT2_CX8 | CPUID_EXT2_MCE | CPUID_EXT2_PAE | CPUID_EXT2_MSR |
CPUID_EXT2_TSC | CPUID_EXT2_PSE | CPUID_EXT2_DE | CPUID_EXT2_FPU,
.xlevel = 0x80000008,
.model_id = "AMD Opteron 240 (Gen 1 Class Opteron)",
},
{
.name = "Opteron_G2",
.level = 5,
.vendor = CPUID_VENDOR_AMD,
.family = 15,
.model = 6,
.stepping = 1,
.features[FEAT_1_EDX] =
CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX |
CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA |
CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 |
CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE |
CPUID_DE | CPUID_FP87,
.features[FEAT_1_ECX] =
CPUID_EXT_CX16 | CPUID_EXT_SSE3,
/* Missing: CPUID_EXT2_RDTSCP */
.features[FEAT_8000_0001_EDX] =
CPUID_EXT2_LM | CPUID_EXT2_FXSR |
CPUID_EXT2_MMX | CPUID_EXT2_NX | CPUID_EXT2_PSE36 |
CPUID_EXT2_PAT | CPUID_EXT2_CMOV | CPUID_EXT2_MCA |
CPUID_EXT2_PGE | CPUID_EXT2_MTRR | CPUID_EXT2_SYSCALL |
CPUID_EXT2_APIC | CPUID_EXT2_CX8 | CPUID_EXT2_MCE |
CPUID_EXT2_PAE | CPUID_EXT2_MSR | CPUID_EXT2_TSC | CPUID_EXT2_PSE |
CPUID_EXT2_DE | CPUID_EXT2_FPU,
.features[FEAT_8000_0001_ECX] =
CPUID_EXT3_SVM | CPUID_EXT3_LAHF_LM,
.xlevel = 0x80000008,
.model_id = "AMD Opteron 22xx (Gen 2 Class Opteron)",
},
{
.name = "Opteron_G3",
.level = 5,
.vendor = CPUID_VENDOR_AMD,
.family = 16,
.model = 2,
.stepping = 3,
.features[FEAT_1_EDX] =
CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX |
CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA |
CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 |
CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE |
CPUID_DE | CPUID_FP87,
.features[FEAT_1_ECX] =
CPUID_EXT_POPCNT | CPUID_EXT_CX16 | CPUID_EXT_MONITOR |
CPUID_EXT_SSE3,
/* Missing: CPUID_EXT2_RDTSCP */
.features[FEAT_8000_0001_EDX] =
CPUID_EXT2_LM | CPUID_EXT2_FXSR |
CPUID_EXT2_MMX | CPUID_EXT2_NX | CPUID_EXT2_PSE36 |
CPUID_EXT2_PAT | CPUID_EXT2_CMOV | CPUID_EXT2_MCA |
CPUID_EXT2_PGE | CPUID_EXT2_MTRR | CPUID_EXT2_SYSCALL |
CPUID_EXT2_APIC | CPUID_EXT2_CX8 | CPUID_EXT2_MCE |
CPUID_EXT2_PAE | CPUID_EXT2_MSR | CPUID_EXT2_TSC | CPUID_EXT2_PSE |
CPUID_EXT2_DE | CPUID_EXT2_FPU,
.features[FEAT_8000_0001_ECX] =
CPUID_EXT3_MISALIGNSSE | CPUID_EXT3_SSE4A |
CPUID_EXT3_ABM | CPUID_EXT3_SVM | CPUID_EXT3_LAHF_LM,
.xlevel = 0x80000008,
.model_id = "AMD Opteron 23xx (Gen 3 Class Opteron)",
},
{
.name = "Opteron_G4",
.level = 0xd,
.vendor = CPUID_VENDOR_AMD,
.family = 21,
.model = 1,
.stepping = 2,
.features[FEAT_1_EDX] =
CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX |
CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA |
CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 |
CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE |
CPUID_DE | CPUID_FP87,
.features[FEAT_1_ECX] =
CPUID_EXT_AVX | CPUID_EXT_XSAVE | CPUID_EXT_AES |
CPUID_EXT_POPCNT | CPUID_EXT_SSE42 | CPUID_EXT_SSE41 |
CPUID_EXT_CX16 | CPUID_EXT_SSSE3 | CPUID_EXT_PCLMULQDQ |
CPUID_EXT_SSE3,
/* Missing: CPUID_EXT2_RDTSCP */
.features[FEAT_8000_0001_EDX] =
CPUID_EXT2_LM |
CPUID_EXT2_PDPE1GB | CPUID_EXT2_FXSR | CPUID_EXT2_MMX |
CPUID_EXT2_NX | CPUID_EXT2_PSE36 | CPUID_EXT2_PAT |
CPUID_EXT2_CMOV | CPUID_EXT2_MCA | CPUID_EXT2_PGE |
CPUID_EXT2_MTRR | CPUID_EXT2_SYSCALL | CPUID_EXT2_APIC |
CPUID_EXT2_CX8 | CPUID_EXT2_MCE | CPUID_EXT2_PAE | CPUID_EXT2_MSR |
CPUID_EXT2_TSC | CPUID_EXT2_PSE | CPUID_EXT2_DE | CPUID_EXT2_FPU,
.features[FEAT_8000_0001_ECX] =
CPUID_EXT3_FMA4 | CPUID_EXT3_XOP |
CPUID_EXT3_3DNOWPREFETCH | CPUID_EXT3_MISALIGNSSE |
CPUID_EXT3_SSE4A | CPUID_EXT3_ABM | CPUID_EXT3_SVM |
CPUID_EXT3_LAHF_LM,
/* no xsaveopt! */
.xlevel = 0x8000001A,
.model_id = "AMD Opteron 62xx class CPU",
},
{
.name = "Opteron_G5",
.level = 0xd,
.vendor = CPUID_VENDOR_AMD,
.family = 21,
.model = 2,
.stepping = 0,
.features[FEAT_1_EDX] =
CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX |
CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA |
CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 |
CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE |
CPUID_DE | CPUID_FP87,
.features[FEAT_1_ECX] =
CPUID_EXT_F16C | CPUID_EXT_AVX | CPUID_EXT_XSAVE |
CPUID_EXT_AES | CPUID_EXT_POPCNT | CPUID_EXT_SSE42 |
CPUID_EXT_SSE41 | CPUID_EXT_CX16 | CPUID_EXT_FMA |
CPUID_EXT_SSSE3 | CPUID_EXT_PCLMULQDQ | CPUID_EXT_SSE3,
/* Missing: CPUID_EXT2_RDTSCP */
.features[FEAT_8000_0001_EDX] =
CPUID_EXT2_LM |
CPUID_EXT2_PDPE1GB | CPUID_EXT2_FXSR | CPUID_EXT2_MMX |
CPUID_EXT2_NX | CPUID_EXT2_PSE36 | CPUID_EXT2_PAT |
CPUID_EXT2_CMOV | CPUID_EXT2_MCA | CPUID_EXT2_PGE |
CPUID_EXT2_MTRR | CPUID_EXT2_SYSCALL | CPUID_EXT2_APIC |
CPUID_EXT2_CX8 | CPUID_EXT2_MCE | CPUID_EXT2_PAE | CPUID_EXT2_MSR |
CPUID_EXT2_TSC | CPUID_EXT2_PSE | CPUID_EXT2_DE | CPUID_EXT2_FPU,
.features[FEAT_8000_0001_ECX] =
CPUID_EXT3_TBM | CPUID_EXT3_FMA4 | CPUID_EXT3_XOP |
CPUID_EXT3_3DNOWPREFETCH | CPUID_EXT3_MISALIGNSSE |
CPUID_EXT3_SSE4A | CPUID_EXT3_ABM | CPUID_EXT3_SVM |
CPUID_EXT3_LAHF_LM,
/* no xsaveopt! */
.xlevel = 0x8000001A,
.model_id = "AMD Opteron 63xx class CPU",
},
};
typedef struct PropValue {
const char *prop, *value;
} PropValue;
/* KVM-specific features that are automatically added/removed
* from all CPU models when KVM is enabled.
*/
static PropValue kvm_default_props[] = {
{ "kvmclock", "on" },
{ "kvm-nopiodelay", "on" },
{ "kvm-asyncpf", "on" },
{ "kvm-steal-time", "on" },
{ "kvm-pv-eoi", "on" },
{ "kvmclock-stable-bit", "on" },
{ "x2apic", "on" },
{ "acpi", "off" },
{ "monitor", "off" },
{ "svm", "off" },
{ NULL, NULL },
};
void x86_cpu_change_kvm_default(const char *prop, const char *value)
{
PropValue *pv;
for (pv = kvm_default_props; pv->prop; pv++) {
if (!strcmp(pv->prop, prop)) {
pv->value = value;
break;
}
}
/* It is valid to call this function only for properties that
* are already present in the kvm_default_props table.
*/
assert(pv->prop);
}
static uint32_t x86_cpu_get_supported_feature_word(FeatureWord w,
bool migratable_only);
#ifdef CONFIG_KVM
static bool lmce_supported(void)
{
uint64_t mce_cap;
if (kvm_ioctl(kvm_state, KVM_X86_GET_MCE_CAP_SUPPORTED, &mce_cap) < 0) {
return false;
}
return !!(mce_cap & MCG_LMCE_P);
}
static int cpu_x86_fill_model_id(char *str)
{
uint32_t eax = 0, ebx = 0, ecx = 0, edx = 0;
int i;
for (i = 0; i < 3; i++) {
host_cpuid(0x80000002 + i, 0, &eax, &ebx, &ecx, &edx);
memcpy(str + i * 16 + 0, &eax, 4);
memcpy(str + i * 16 + 4, &ebx, 4);
memcpy(str + i * 16 + 8, &ecx, 4);
memcpy(str + i * 16 + 12, &edx, 4);
}
return 0;
}
static X86CPUDefinition host_cpudef;
static Property host_x86_cpu_properties[] = {
DEFINE_PROP_BOOL("migratable", X86CPU, migratable, true),
DEFINE_PROP_BOOL("host-cache-info", X86CPU, cache_info_passthrough, false),
DEFINE_PROP_END_OF_LIST()
};
/* class_init for the "host" CPU model
*
* This function may be called before KVM is initialized.
*/
static void host_x86_cpu_class_init(ObjectClass *oc, void *data)
{
DeviceClass *dc = DEVICE_CLASS(oc);
X86CPUClass *xcc = X86_CPU_CLASS(oc);
uint32_t eax = 0, ebx = 0, ecx = 0, edx = 0;
xcc->kvm_required = true;
host_cpuid(0x0, 0, &eax, &ebx, &ecx, &edx);
x86_cpu_vendor_words2str(host_cpudef.vendor, ebx, edx, ecx);
host_cpuid(0x1, 0, &eax, &ebx, &ecx, &edx);
host_cpudef.family = ((eax >> 8) & 0x0F) + ((eax >> 20) & 0xFF);
host_cpudef.model = ((eax >> 4) & 0x0F) | ((eax & 0xF0000) >> 12);
host_cpudef.stepping = eax & 0x0F;
cpu_x86_fill_model_id(host_cpudef.model_id);
xcc->cpu_def = &host_cpudef;
/* level, xlevel, xlevel2, and the feature words are initialized on
* instance_init, because they require KVM to be initialized.
*/
dc->props = host_x86_cpu_properties;
/* Reason: host_x86_cpu_initfn() dies when !kvm_enabled() */
dc->cannot_destroy_with_object_finalize_yet = true;
}
static void host_x86_cpu_initfn(Object *obj)
{
X86CPU *cpu = X86_CPU(obj);
CPUX86State *env = &cpu->env;
KVMState *s = kvm_state;
/* We can't fill the features array here because we don't know yet if
* "migratable" is true or false.
*/
cpu->host_features = true;
/* If KVM is disabled, x86_cpu_realizefn() will report an error later */
if (kvm_enabled()) {
env->cpuid_min_level =
kvm_arch_get_supported_cpuid(s, 0x0, 0, R_EAX);
env->cpuid_min_xlevel =
kvm_arch_get_supported_cpuid(s, 0x80000000, 0, R_EAX);
env->cpuid_min_xlevel2 =
kvm_arch_get_supported_cpuid(s, 0xC0000000, 0, R_EAX);
if (lmce_supported()) {
object_property_set_bool(OBJECT(cpu), true, "lmce", &error_abort);
}
}
object_property_set_bool(OBJECT(cpu), true, "pmu", &error_abort);
}
static const TypeInfo host_x86_cpu_type_info = {
.name = X86_CPU_TYPE_NAME("host"),
.parent = TYPE_X86_CPU,
.instance_init = host_x86_cpu_initfn,
.class_init = host_x86_cpu_class_init,
};
#endif
static void report_unavailable_features(FeatureWord w, uint32_t mask)
{
FeatureWordInfo *f = &feature_word_info[w];
int i;
for (i = 0; i < 32; ++i) {
if ((1UL << i) & mask) {
const char *reg = get_register_name_32(f->cpuid_reg);
assert(reg);
fprintf(stderr, "warning: %s doesn't support requested feature: "
"CPUID.%02XH:%s%s%s [bit %d]\n",
kvm_enabled() ? "host" : "TCG",
f->cpuid_eax, reg,
f->feat_names[i] ? "." : "",
f->feat_names[i] ? f->feat_names[i] : "", i);
}
}
}
static void x86_cpuid_version_get_family(Object *obj, Visitor *v,
const char *name, void *opaque,
Error **errp)
{
X86CPU *cpu = X86_CPU(obj);
CPUX86State *env = &cpu->env;
int64_t value;
value = (env->cpuid_version >> 8) & 0xf;
if (value == 0xf) {
value += (env->cpuid_version >> 20) & 0xff;
}
visit_type_int(v, name, &value, errp);
}
static void x86_cpuid_version_set_family(Object *obj, Visitor *v,
const char *name, void *opaque,
Error **errp)
{
X86CPU *cpu = X86_CPU(obj);
CPUX86State *env = &cpu->env;
const int64_t min = 0;
const int64_t max = 0xff + 0xf;
Error *local_err = NULL;
int64_t value;
visit_type_int(v, name, &value, &local_err);
if (local_err) {
error_propagate(errp, local_err);
return;
}
if (value < min || value > max) {
error_setg(errp, QERR_PROPERTY_VALUE_OUT_OF_RANGE, "",
name ? name : "null", value, min, max);
return;
}
env->cpuid_version &= ~0xff00f00;
if (value > 0x0f) {
env->cpuid_version |= 0xf00 | ((value - 0x0f) << 20);
} else {
env->cpuid_version |= value << 8;
}
}
static void x86_cpuid_version_get_model(Object *obj, Visitor *v,
const char *name, void *opaque,
Error **errp)
{
X86CPU *cpu = X86_CPU(obj);
CPUX86State *env = &cpu->env;
int64_t value;
value = (env->cpuid_version >> 4) & 0xf;
value |= ((env->cpuid_version >> 16) & 0xf) << 4;
visit_type_int(v, name, &value, errp);
}
static void x86_cpuid_version_set_model(Object *obj, Visitor *v,
const char *name, void *opaque,
Error **errp)
{
X86CPU *cpu = X86_CPU(obj);
CPUX86State *env = &cpu->env;
const int64_t min = 0;
const int64_t max = 0xff;
Error *local_err = NULL;
int64_t value;
visit_type_int(v, name, &value, &local_err);
if (local_err) {
error_propagate(errp, local_err);
return;
}
if (value < min || value > max) {
error_setg(errp, QERR_PROPERTY_VALUE_OUT_OF_RANGE, "",
name ? name : "null", value, min, max);
return;
}
env->cpuid_version &= ~0xf00f0;
env->cpuid_version |= ((value & 0xf) << 4) | ((value >> 4) << 16);
}
static void x86_cpuid_version_get_stepping(Object *obj, Visitor *v,
const char *name, void *opaque,
Error **errp)
{
X86CPU *cpu = X86_CPU(obj);
CPUX86State *env = &cpu->env;
int64_t value;
value = env->cpuid_version & 0xf;
visit_type_int(v, name, &value, errp);
}
static void x86_cpuid_version_set_stepping(Object *obj, Visitor *v,
const char *name, void *opaque,
Error **errp)
{
X86CPU *cpu = X86_CPU(obj);
CPUX86State *env = &cpu->env;
const int64_t min = 0;
const int64_t max = 0xf;
Error *local_err = NULL;
int64_t value;
visit_type_int(v, name, &value, &local_err);
if (local_err) {
error_propagate(errp, local_err);
return;
}
if (value < min || value > max) {
error_setg(errp, QERR_PROPERTY_VALUE_OUT_OF_RANGE, "",
name ? name : "null", value, min, max);
return;
}
env->cpuid_version &= ~0xf;
env->cpuid_version |= value & 0xf;
}
static char *x86_cpuid_get_vendor(Object *obj, Error **errp)
{
X86CPU *cpu = X86_CPU(obj);
CPUX86State *env = &cpu->env;
char *value;
value = g_malloc(CPUID_VENDOR_SZ + 1);
x86_cpu_vendor_words2str(value, env->cpuid_vendor1, env->cpuid_vendor2,
env->cpuid_vendor3);
return value;
}
static void x86_cpuid_set_vendor(Object *obj, const char *value,
Error **errp)
{
X86CPU *cpu = X86_CPU(obj);
CPUX86State *env = &cpu->env;
int i;
if (strlen(value) != CPUID_VENDOR_SZ) {
error_setg(errp, QERR_PROPERTY_VALUE_BAD, "", "vendor", value);
return;
}
env->cpuid_vendor1 = 0;
env->cpuid_vendor2 = 0;
env->cpuid_vendor3 = 0;
for (i = 0; i < 4; i++) {
env->cpuid_vendor1 |= ((uint8_t)value[i ]) << (8 * i);
env->cpuid_vendor2 |= ((uint8_t)value[i + 4]) << (8 * i);
env->cpuid_vendor3 |= ((uint8_t)value[i + 8]) << (8 * i);
}
}
static char *x86_cpuid_get_model_id(Object *obj, Error **errp)
{
X86CPU *cpu = X86_CPU(obj);
CPUX86State *env = &cpu->env;
char *value;
int i;
value = g_malloc(48 + 1);
for (i = 0; i < 48; i++) {
value[i] = env->cpuid_model[i >> 2] >> (8 * (i & 3));
}
value[48] = '\0';
return value;
}
static void x86_cpuid_set_model_id(Object *obj, const char *model_id,
Error **errp)
{
X86CPU *cpu = X86_CPU(obj);
CPUX86State *env = &cpu->env;
int c, len, i;
if (model_id == NULL) {
model_id = "";
}
len = strlen(model_id);
memset(env->cpuid_model, 0, 48);
for (i = 0; i < 48; i++) {
if (i >= len) {
c = '\0';
} else {
c = (uint8_t)model_id[i];
}
env->cpuid_model[i >> 2] |= c << (8 * (i & 3));
}
}
static void x86_cpuid_get_tsc_freq(Object *obj, Visitor *v, const char *name,
void *opaque, Error **errp)
{
X86CPU *cpu = X86_CPU(obj);
int64_t value;
value = cpu->env.tsc_khz * 1000;
visit_type_int(v, name, &value, errp);
}
static void x86_cpuid_set_tsc_freq(Object *obj, Visitor *v, const char *name,
void *opaque, Error **errp)
{
X86CPU *cpu = X86_CPU(obj);
const int64_t min = 0;
const int64_t max = INT64_MAX;
Error *local_err = NULL;
int64_t value;
visit_type_int(v, name, &value, &local_err);
if (local_err) {
error_propagate(errp, local_err);
return;
}
if (value < min || value > max) {
error_setg(errp, QERR_PROPERTY_VALUE_OUT_OF_RANGE, "",
name ? name : "null", value, min, max);
return;
}
cpu->env.tsc_khz = cpu->env.user_tsc_khz = value / 1000;
}
/* Generic getter for "feature-words" and "filtered-features" properties */
static void x86_cpu_get_feature_words(Object *obj, Visitor *v,
const char *name, void *opaque,
Error **errp)
{
uint32_t *array = (uint32_t *)opaque;
FeatureWord w;
X86CPUFeatureWordInfo word_infos[FEATURE_WORDS] = { };
X86CPUFeatureWordInfoList list_entries[FEATURE_WORDS] = { };
X86CPUFeatureWordInfoList *list = NULL;
for (w = 0; w < FEATURE_WORDS; w++) {
FeatureWordInfo *wi = &feature_word_info[w];
X86CPUFeatureWordInfo *qwi = &word_infos[w];
qwi->cpuid_input_eax = wi->cpuid_eax;
qwi->has_cpuid_input_ecx = wi->cpuid_needs_ecx;
qwi->cpuid_input_ecx = wi->cpuid_ecx;
qwi->cpuid_register = x86_reg_info_32[wi->cpuid_reg].qapi_enum;
qwi->features = array[w];
/* List will be in reverse order, but order shouldn't matter */
list_entries[w].next = list;
list_entries[w].value = &word_infos[w];
list = &list_entries[w];
}
visit_type_X86CPUFeatureWordInfoList(v, "feature-words", &list, errp);
}
static void x86_get_hv_spinlocks(Object *obj, Visitor *v, const char *name,
void *opaque, Error **errp)
{
X86CPU *cpu = X86_CPU(obj);
int64_t value = cpu->hyperv_spinlock_attempts;
visit_type_int(v, name, &value, errp);
}
static void x86_set_hv_spinlocks(Object *obj, Visitor *v, const char *name,
void *opaque, Error **errp)
{
const int64_t min = 0xFFF;
const int64_t max = UINT_MAX;
X86CPU *cpu = X86_CPU(obj);
Error *err = NULL;
int64_t value;
visit_type_int(v, name, &value, &err);
if (err) {
error_propagate(errp, err);
return;
}
if (value < min || value > max) {
error_setg(errp, "Property %s.%s doesn't take value %" PRId64
" (minimum: %" PRId64 ", maximum: %" PRId64 ")",
object_get_typename(obj), name ? name : "null",
value, min, max);
return;
}
cpu->hyperv_spinlock_attempts = value;
}
static PropertyInfo qdev_prop_spinlocks = {
.name = "int",
.get = x86_get_hv_spinlocks,
.set = x86_set_hv_spinlocks,
};
/* Convert all '_' in a feature string option name to '-', to make feature
* name conform to QOM property naming rule, which uses '-' instead of '_'.
*/
static inline void feat2prop(char *s)
{
while ((s = strchr(s, '_'))) {
*s = '-';
}
}
/* Compatibily hack to maintain legacy +-feat semantic,
* where +-feat overwrites any feature set by
* feat=on|feat even if the later is parsed after +-feat
* (i.e. "-x2apic,x2apic=on" will result in x2apic disabled)
*/
static FeatureWordArray plus_features = { 0 };
static FeatureWordArray minus_features = { 0 };
/* Parse "+feature,-feature,feature=foo" CPU feature string
*/
static void x86_cpu_parse_featurestr(const char *typename, char *features,
Error **errp)
{
char *featurestr; /* Single 'key=value" string being parsed */
Error *local_err = NULL;
static bool cpu_globals_initialized;
if (cpu_globals_initialized) {
return;
}
cpu_globals_initialized = true;
if (!features) {
return;
}
for (featurestr = strtok(features, ",");
featurestr && !local_err;
featurestr = strtok(NULL, ",")) {
const char *name;
const char *val = NULL;
char *eq = NULL;
char num[32];
GlobalProperty *prop;
/* Compatibility syntax: */
if (featurestr[0] == '+') {
add_flagname_to_bitmaps(featurestr + 1, plus_features, &local_err);
continue;
} else if (featurestr[0] == '-') {
add_flagname_to_bitmaps(featurestr + 1, minus_features, &local_err);
continue;
}
eq = strchr(featurestr, '=');
if (eq) {
*eq++ = 0;
val = eq;
} else {
val = "on";
}
feat2prop(featurestr);
name = featurestr;
/* Special case: */
if (!strcmp(name, "tsc-freq")) {
int64_t tsc_freq;
char *err;
tsc_freq = qemu_strtosz_suffix_unit(val, &err,
QEMU_STRTOSZ_DEFSUFFIX_B, 1000);
if (tsc_freq < 0 || *err) {
error_setg(errp, "bad numerical value %s", val);
return;
}
snprintf(num, sizeof(num), "%" PRId64, tsc_freq);
val = num;
name = "tsc-frequency";
}
prop = g_new0(typeof(*prop), 1);
prop->driver = typename;
prop->property = g_strdup(name);
prop->value = g_strdup(val);
prop->errp = &error_fatal;
qdev_prop_register_global(prop);
}
if (local_err) {
error_propagate(errp, local_err);
}
}
/* Print all cpuid feature names in featureset
*/
static void listflags(FILE *f, fprintf_function print, const char **featureset)
{
int bit;
bool first = true;
for (bit = 0; bit < 32; bit++) {
if (featureset[bit]) {
print(f, "%s%s", first ? "" : " ", featureset[bit]);
first = false;
}
}
}
/* generate CPU information. */
void x86_cpu_list(FILE *f, fprintf_function cpu_fprintf)
{
X86CPUDefinition *def;
char buf[256];
int i;
for (i = 0; i < ARRAY_SIZE(builtin_x86_defs); i++) {
def = &builtin_x86_defs[i];
snprintf(buf, sizeof(buf), "%s", def->name);
(*cpu_fprintf)(f, "x86 %16s %-48s\n", buf, def->model_id);
}
#ifdef CONFIG_KVM
(*cpu_fprintf)(f, "x86 %16s %-48s\n", "host",
"KVM processor with all supported host features "
"(only available in KVM mode)");
#endif
(*cpu_fprintf)(f, "\nRecognized CPUID flags:\n");
for (i = 0; i < ARRAY_SIZE(feature_word_info); i++) {
FeatureWordInfo *fw = &feature_word_info[i];
(*cpu_fprintf)(f, " ");
listflags(f, cpu_fprintf, fw->feat_names);
(*cpu_fprintf)(f, "\n");
}
}
CpuDefinitionInfoList *arch_query_cpu_definitions(Error **errp)
{
CpuDefinitionInfoList *cpu_list = NULL;
X86CPUDefinition *def;
int i;
for (i = 0; i < ARRAY_SIZE(builtin_x86_defs); i++) {
CpuDefinitionInfoList *entry;
CpuDefinitionInfo *info;
def = &builtin_x86_defs[i];
info = g_malloc0(sizeof(*info));
info->name = g_strdup(def->name);
entry = g_malloc0(sizeof(*entry));
entry->value = info;
entry->next = cpu_list;
cpu_list = entry;
}
return cpu_list;
}
static uint32_t x86_cpu_get_supported_feature_word(FeatureWord w,
bool migratable_only)
{
FeatureWordInfo *wi = &feature_word_info[w];
uint32_t r;
if (kvm_enabled()) {
r = kvm_arch_get_supported_cpuid(kvm_state, wi->cpuid_eax,
wi->cpuid_ecx,
wi->cpuid_reg);
} else if (tcg_enabled()) {
r = wi->tcg_features;
} else {
return ~0;
}
if (migratable_only) {
r &= x86_cpu_get_migratable_flags(w);
}
return r;
}
/*
* Filters CPU feature words based on host availability of each feature.
*
* Returns: 0 if all flags are supported by the host, non-zero otherwise.
*/
static int x86_cpu_filter_features(X86CPU *cpu)
{
CPUX86State *env = &cpu->env;
FeatureWord w;
int rv = 0;
for (w = 0; w < FEATURE_WORDS; w++) {
uint32_t host_feat =
x86_cpu_get_supported_feature_word(w, cpu->migratable);
uint32_t requested_features = env->features[w];
env->features[w] &= host_feat;
cpu->filtered_features[w] = requested_features & ~env->features[w];
if (cpu->filtered_features[w]) {
if (cpu->check_cpuid || cpu->enforce_cpuid) {
report_unavailable_features(w, cpu->filtered_features[w]);
}
rv = 1;
}
}
return rv;
}
static void x86_cpu_apply_props(X86CPU *cpu, PropValue *props)
{
PropValue *pv;
for (pv = props; pv->prop; pv++) {
if (!pv->value) {
continue;
}
object_property_parse(OBJECT(cpu), pv->value, pv->prop,
&error_abort);
}
}
/* Load data from X86CPUDefinition
*/
static void x86_cpu_load_def(X86CPU *cpu, X86CPUDefinition *def, Error **errp)
{
CPUX86State *env = &cpu->env;
const char *vendor;
char host_vendor[CPUID_VENDOR_SZ + 1];
FeatureWord w;
/* CPU models only set _minimum_ values for level/xlevel: */
object_property_set_int(OBJECT(cpu), def->level, "min-level", errp);
object_property_set_int(OBJECT(cpu), def->xlevel, "min-xlevel", errp);
object_property_set_int(OBJECT(cpu), def->family, "family", errp);
object_property_set_int(OBJECT(cpu), def->model, "model", errp);
object_property_set_int(OBJECT(cpu), def->stepping, "stepping", errp);
object_property_set_str(OBJECT(cpu), def->model_id, "model-id", errp);
for (w = 0; w < FEATURE_WORDS; w++) {
env->features[w] = def->features[w];
}
/* Special cases not set in the X86CPUDefinition structs: */
if (kvm_enabled()) {
if (!kvm_irqchip_in_kernel()) {
x86_cpu_change_kvm_default("x2apic", "off");
}
x86_cpu_apply_props(cpu, kvm_default_props);
}
env->features[FEAT_1_ECX] |= CPUID_EXT_HYPERVISOR;
/* sysenter isn't supported in compatibility mode on AMD,
* syscall isn't supported in compatibility mode on Intel.
* Normally we advertise the actual CPU vendor, but you can
* override this using the 'vendor' property if you want to use
* KVM's sysenter/syscall emulation in compatibility mode and
* when doing cross vendor migration
*/
vendor = def->vendor;
if (kvm_enabled()) {
uint32_t ebx = 0, ecx = 0, edx = 0;
host_cpuid(0, 0, NULL, &ebx, &ecx, &edx);
x86_cpu_vendor_words2str(host_vendor, ebx, edx, ecx);
vendor = host_vendor;
}
object_property_set_str(OBJECT(cpu), vendor, "vendor", errp);
}
X86CPU *cpu_x86_init(const char *cpu_model)
{
return X86_CPU(cpu_generic_init(TYPE_X86_CPU, cpu_model));
}
static void x86_cpu_cpudef_class_init(ObjectClass *oc, void *data)
{
X86CPUDefinition *cpudef = data;
X86CPUClass *xcc = X86_CPU_CLASS(oc);
xcc->cpu_def = cpudef;
}
static void x86_register_cpudef_type(X86CPUDefinition *def)
{
char *typename = x86_cpu_type_name(def->name);
TypeInfo ti = {
.name = typename,
.parent = TYPE_X86_CPU,
.class_init = x86_cpu_cpudef_class_init,
.class_data = def,
};
type_register(&ti);
g_free(typename);
}
#if !defined(CONFIG_USER_ONLY)
void cpu_clear_apic_feature(CPUX86State *env)
{
env->features[FEAT_1_EDX] &= ~CPUID_APIC;
}
#endif /* !CONFIG_USER_ONLY */
void cpu_x86_cpuid(CPUX86State *env, uint32_t index, uint32_t count,
uint32_t *eax, uint32_t *ebx,
uint32_t *ecx, uint32_t *edx)
{
X86CPU *cpu = x86_env_get_cpu(env);
CPUState *cs = CPU(cpu);
uint32_t pkg_offset;
/* test if maximum index reached */
if (index & 0x80000000) {
if (index > env->cpuid_xlevel) {
if (env->cpuid_xlevel2 > 0) {
/* Handle the Centaur's CPUID instruction. */
if (index > env->cpuid_xlevel2) {
index = env->cpuid_xlevel2;
} else if (index < 0xC0000000) {
index = env->cpuid_xlevel;
}
} else {
/* Intel documentation states that invalid EAX input will
* return the same information as EAX=cpuid_level
* (Intel SDM Vol. 2A - Instruction Set Reference - CPUID)
*/
index = env->cpuid_level;
}
}
} else {
if (index > env->cpuid_level)
index = env->cpuid_level;
}
switch(index) {
case 0:
*eax = env->cpuid_level;
*ebx = env->cpuid_vendor1;
*edx = env->cpuid_vendor2;
*ecx = env->cpuid_vendor3;
break;
case 1:
*eax = env->cpuid_version;
*ebx = (cpu->apic_id << 24) |
8 << 8; /* CLFLUSH size in quad words, Linux wants it. */
*ecx = env->features[FEAT_1_ECX];
if ((*ecx & CPUID_EXT_XSAVE) && (env->cr[4] & CR4_OSXSAVE_MASK)) {
*ecx |= CPUID_EXT_OSXSAVE;
}
*edx = env->features[FEAT_1_EDX];
if (cs->nr_cores * cs->nr_threads > 1) {
*ebx |= (cs->nr_cores * cs->nr_threads) << 16;
*edx |= CPUID_HT;
}
break;
case 2:
/* cache info: needed for Pentium Pro compatibility */
if (cpu->cache_info_passthrough) {
host_cpuid(index, 0, eax, ebx, ecx, edx);
break;
}
*eax = 1; /* Number of CPUID[EAX=2] calls required */
*ebx = 0;
if (!cpu->enable_l3_cache) {
*ecx = 0;
} else {
*ecx = L3_N_DESCRIPTOR;
}
*edx = (L1D_DESCRIPTOR << 16) | \
(L1I_DESCRIPTOR << 8) | \
(L2_DESCRIPTOR);
break;
case 4:
/* cache info: needed for Core compatibility */
if (cpu->cache_info_passthrough) {
host_cpuid(index, count, eax, ebx, ecx, edx);
*eax &= ~0xFC000000;
} else {
*eax = 0;
switch (count) {
case 0: /* L1 dcache info */
*eax |= CPUID_4_TYPE_DCACHE | \
CPUID_4_LEVEL(1) | \
CPUID_4_SELF_INIT_LEVEL;
*ebx = (L1D_LINE_SIZE - 1) | \
((L1D_PARTITIONS - 1) << 12) | \
((L1D_ASSOCIATIVITY - 1) << 22);
*ecx = L1D_SETS - 1;
*edx = CPUID_4_NO_INVD_SHARING;
break;
case 1: /* L1 icache info */
*eax |= CPUID_4_TYPE_ICACHE | \
CPUID_4_LEVEL(1) | \
CPUID_4_SELF_INIT_LEVEL;
*ebx = (L1I_LINE_SIZE - 1) | \
((L1I_PARTITIONS - 1) << 12) | \
((L1I_ASSOCIATIVITY - 1) << 22);
*ecx = L1I_SETS - 1;
*edx = CPUID_4_NO_INVD_SHARING;
break;
case 2: /* L2 cache info */
*eax |= CPUID_4_TYPE_UNIFIED | \
CPUID_4_LEVEL(2) | \
CPUID_4_SELF_INIT_LEVEL;
if (cs->nr_threads > 1) {
*eax |= (cs->nr_threads - 1) << 14;
}
*ebx = (L2_LINE_SIZE - 1) | \
((L2_PARTITIONS - 1) << 12) | \
((L2_ASSOCIATIVITY - 1) << 22);
*ecx = L2_SETS - 1;
*edx = CPUID_4_NO_INVD_SHARING;
break;
case 3: /* L3 cache info */
if (!cpu->enable_l3_cache) {
*eax = 0;
*ebx = 0;
*ecx = 0;
*edx = 0;
break;
}
*eax |= CPUID_4_TYPE_UNIFIED | \
CPUID_4_LEVEL(3) | \
CPUID_4_SELF_INIT_LEVEL;
pkg_offset = apicid_pkg_offset(cs->nr_cores, cs->nr_threads);
*eax |= ((1 << pkg_offset) - 1) << 14;
*ebx = (L3_N_LINE_SIZE - 1) | \
((L3_N_PARTITIONS - 1) << 12) | \
((L3_N_ASSOCIATIVITY - 1) << 22);
*ecx = L3_N_SETS - 1;
*edx = CPUID_4_INCLUSIVE | CPUID_4_COMPLEX_IDX;
break;
default: /* end of info */
*eax = 0;
*ebx = 0;
*ecx = 0;
*edx = 0;
break;
}
}
/* QEMU gives out its own APIC IDs, never pass down bits 31..26. */
if ((*eax & 31) && cs->nr_cores > 1) {
*eax |= (cs->nr_cores - 1) << 26;
}
break;
case 5:
/* mwait info: needed for Core compatibility */
*eax = 0; /* Smallest monitor-line size in bytes */
*ebx = 0; /* Largest monitor-line size in bytes */
*ecx = CPUID_MWAIT_EMX | CPUID_MWAIT_IBE;
*edx = 0;
break;
case 6:
/* Thermal and Power Leaf */
*eax = env->features[FEAT_6_EAX];
*ebx = 0;
*ecx = 0;
*edx = 0;
break;
case 7:
/* Structured Extended Feature Flags Enumeration Leaf */
if (count == 0) {
*eax = 0; /* Maximum ECX value for sub-leaves */
*ebx = env->features[FEAT_7_0_EBX]; /* Feature flags */
*ecx = env->features[FEAT_7_0_ECX]; /* Feature flags */
if ((*ecx & CPUID_7_0_ECX_PKU) && env->cr[4] & CR4_PKE_MASK) {
*ecx |= CPUID_7_0_ECX_OSPKE;
}
*edx = 0; /* Reserved */
} else {
*eax = 0;
*ebx = 0;
*ecx = 0;
*edx = 0;
}
break;
case 9:
/* Direct Cache Access Information Leaf */
*eax = 0; /* Bits 0-31 in DCA_CAP MSR */
*ebx = 0;
*ecx = 0;
*edx = 0;
break;
case 0xA:
/* Architectural Performance Monitoring Leaf */
if (kvm_enabled() && cpu->enable_pmu) {
KVMState *s = cs->kvm_state;
*eax = kvm_arch_get_supported_cpuid(s, 0xA, count, R_EAX);
*ebx = kvm_arch_get_supported_cpuid(s, 0xA, count, R_EBX);
*ecx = kvm_arch_get_supported_cpuid(s, 0xA, count, R_ECX);
*edx = kvm_arch_get_supported_cpuid(s, 0xA, count, R_EDX);
} else {
*eax = 0;
*ebx = 0;
*ecx = 0;
*edx = 0;
}
break;
case 0xB:
/* Extended Topology Enumeration Leaf */
if (!cpu->enable_cpuid_0xb) {
*eax = *ebx = *ecx = *edx = 0;
break;
}
*ecx = count & 0xff;
*edx = cpu->apic_id;
switch (count) {
case 0:
*eax = apicid_core_offset(cs->nr_cores, cs->nr_threads);
*ebx = cs->nr_threads;
*ecx |= CPUID_TOPOLOGY_LEVEL_SMT;
break;
case 1:
*eax = apicid_pkg_offset(cs->nr_cores, cs->nr_threads);
*ebx = cs->nr_cores * cs->nr_threads;
*ecx |= CPUID_TOPOLOGY_LEVEL_CORE;
break;
default:
*eax = 0;
*ebx = 0;
*ecx |= CPUID_TOPOLOGY_LEVEL_INVALID;
}
assert(!(*eax & ~0x1f));
*ebx &= 0xffff; /* The count doesn't need to be reliable. */
break;
case 0xD: {
/* Processor Extended State */
*eax = 0;
*ebx = 0;
*ecx = 0;
*edx = 0;
if (!(env->features[FEAT_1_ECX] & CPUID_EXT_XSAVE)) {
break;
}
if (count == 0) {
*ecx = xsave_area_size(x86_cpu_xsave_components(cpu));
*eax = env->features[FEAT_XSAVE_COMP_LO];
*edx = env->features[FEAT_XSAVE_COMP_HI];
*ebx = *ecx;
} else if (count == 1) {
*eax = env->features[FEAT_XSAVE];
} else if (count < ARRAY_SIZE(x86_ext_save_areas)) {
if ((x86_cpu_xsave_components(cpu) >> count) & 1) {
const ExtSaveArea *esa = &x86_ext_save_areas[count];
*eax = esa->size;
*ebx = esa->offset;
}
}
break;
}
case 0x80000000:
*eax = env->cpuid_xlevel;
*ebx = env->cpuid_vendor1;
*edx = env->cpuid_vendor2;
*ecx = env->cpuid_vendor3;
break;
case 0x80000001:
*eax = env->cpuid_version;
*ebx = 0;
*ecx = env->features[FEAT_8000_0001_ECX];
*edx = env->features[FEAT_8000_0001_EDX];
/* The Linux kernel checks for the CMPLegacy bit and
* discards multiple thread information if it is set.
* So don't set it here for Intel to make Linux guests happy.
*/
if (cs->nr_cores * cs->nr_threads > 1) {
if (env->cpuid_vendor1 != CPUID_VENDOR_INTEL_1 ||
env->cpuid_vendor2 != CPUID_VENDOR_INTEL_2 ||
env->cpuid_vendor3 != CPUID_VENDOR_INTEL_3) {
*ecx |= 1 << 1; /* CmpLegacy bit */
}
}
break;
case 0x80000002:
case 0x80000003:
case 0x80000004:
*eax = env->cpuid_model[(index - 0x80000002) * 4 + 0];
*ebx = env->cpuid_model[(index - 0x80000002) * 4 + 1];
*ecx = env->cpuid_model[(index - 0x80000002) * 4 + 2];
*edx = env->cpuid_model[(index - 0x80000002) * 4 + 3];
break;
case 0x80000005:
/* cache info (L1 cache) */
if (cpu->cache_info_passthrough) {
host_cpuid(index, 0, eax, ebx, ecx, edx);
break;
}
*eax = (L1_DTLB_2M_ASSOC << 24) | (L1_DTLB_2M_ENTRIES << 16) | \
(L1_ITLB_2M_ASSOC << 8) | (L1_ITLB_2M_ENTRIES);
*ebx = (L1_DTLB_4K_ASSOC << 24) | (L1_DTLB_4K_ENTRIES << 16) | \
(L1_ITLB_4K_ASSOC << 8) | (L1_ITLB_4K_ENTRIES);
*ecx = (L1D_SIZE_KB_AMD << 24) | (L1D_ASSOCIATIVITY_AMD << 16) | \
(L1D_LINES_PER_TAG << 8) | (L1D_LINE_SIZE);
*edx = (L1I_SIZE_KB_AMD << 24) | (L1I_ASSOCIATIVITY_AMD << 16) | \
(L1I_LINES_PER_TAG << 8) | (L1I_LINE_SIZE);
break;
case 0x80000006:
/* cache info (L2 cache) */
if (cpu->cache_info_passthrough) {
host_cpuid(index, 0, eax, ebx, ecx, edx);
break;
}
*eax = (AMD_ENC_ASSOC(L2_DTLB_2M_ASSOC) << 28) | \
(L2_DTLB_2M_ENTRIES << 16) | \
(AMD_ENC_ASSOC(L2_ITLB_2M_ASSOC) << 12) | \
(L2_ITLB_2M_ENTRIES);
*ebx = (AMD_ENC_ASSOC(L2_DTLB_4K_ASSOC) << 28) | \
(L2_DTLB_4K_ENTRIES << 16) | \
(AMD_ENC_ASSOC(L2_ITLB_4K_ASSOC) << 12) | \
(L2_ITLB_4K_ENTRIES);
*ecx = (L2_SIZE_KB_AMD << 16) | \
(AMD_ENC_ASSOC(L2_ASSOCIATIVITY) << 12) | \
(L2_LINES_PER_TAG << 8) | (L2_LINE_SIZE);
if (!cpu->enable_l3_cache) {
*edx = ((L3_SIZE_KB / 512) << 18) | \
(AMD_ENC_ASSOC(L3_ASSOCIATIVITY) << 12) | \
(L3_LINES_PER_TAG << 8) | (L3_LINE_SIZE);
} else {
*edx = ((L3_N_SIZE_KB_AMD / 512) << 18) | \
(AMD_ENC_ASSOC(L3_N_ASSOCIATIVITY) << 12) | \
(L3_N_LINES_PER_TAG << 8) | (L3_N_LINE_SIZE);
}
break;
case 0x80000007:
*eax = 0;
*ebx = 0;
*ecx = 0;
*edx = env->features[FEAT_8000_0007_EDX];
break;
case 0x80000008:
/* virtual & phys address size in low 2 bytes. */
if (env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_LM) {
/* 64 bit processor, 48 bits virtual, configurable
* physical bits.
*/
*eax = 0x00003000 + cpu->phys_bits;
} else {
*eax = cpu->phys_bits;
}
*ebx = 0;
*ecx = 0;
*edx = 0;
if (cs->nr_cores * cs->nr_threads > 1) {
*ecx |= (cs->nr_cores * cs->nr_threads) - 1;
}
break;
case 0x8000000A:
if (env->features[FEAT_8000_0001_ECX] & CPUID_EXT3_SVM) {
*eax = 0x00000001; /* SVM Revision */
*ebx = 0x00000010; /* nr of ASIDs */
*ecx = 0;
*edx = env->features[FEAT_SVM]; /* optional features */
} else {
*eax = 0;
*ebx = 0;
*ecx = 0;
*edx = 0;
}
break;
case 0xC0000000:
*eax = env->cpuid_xlevel2;
*ebx = 0;
*ecx = 0;
*edx = 0;
break;
case 0xC0000001:
/* Support for VIA CPU's CPUID instruction */
*eax = env->cpuid_version;
*ebx = 0;
*ecx = 0;
*edx = env->features[FEAT_C000_0001_EDX];
break;
case 0xC0000002:
case 0xC0000003:
case 0xC0000004:
/* Reserved for the future, and now filled with zero */
*eax = 0;
*ebx = 0;
*ecx = 0;
*edx = 0;
break;
default:
/* reserved values: zero */
*eax = 0;
*ebx = 0;
*ecx = 0;
*edx = 0;
break;
}
}
/* CPUClass::reset() */
static void x86_cpu_reset(CPUState *s)
{
X86CPU *cpu = X86_CPU(s);
X86CPUClass *xcc = X86_CPU_GET_CLASS(cpu);
CPUX86State *env = &cpu->env;
target_ulong cr4;
uint64_t xcr0;
int i;
xcc->parent_reset(s);
memset(env, 0, offsetof(CPUX86State, end_reset_fields));
tlb_flush(s, 1);
env->old_exception = -1;
/* init to reset state */
env->hflags2 |= HF2_GIF_MASK;
cpu_x86_update_cr0(env, 0x60000010);
env->a20_mask = ~0x0;
env->smbase = 0x30000;
env->idt.limit = 0xffff;
env->gdt.limit = 0xffff;
env->ldt.limit = 0xffff;
env->ldt.flags = DESC_P_MASK | (2 << DESC_TYPE_SHIFT);
env->tr.limit = 0xffff;
env->tr.flags = DESC_P_MASK | (11 << DESC_TYPE_SHIFT);
cpu_x86_load_seg_cache(env, R_CS, 0xf000, 0xffff0000, 0xffff,
DESC_P_MASK | DESC_S_MASK | DESC_CS_MASK |
DESC_R_MASK | DESC_A_MASK);
cpu_x86_load_seg_cache(env, R_DS, 0, 0, 0xffff,
DESC_P_MASK | DESC_S_MASK | DESC_W_MASK |
DESC_A_MASK);
cpu_x86_load_seg_cache(env, R_ES, 0, 0, 0xffff,
DESC_P_MASK | DESC_S_MASK | DESC_W_MASK |
DESC_A_MASK);
cpu_x86_load_seg_cache(env, R_SS, 0, 0, 0xffff,
DESC_P_MASK | DESC_S_MASK | DESC_W_MASK |
DESC_A_MASK);
cpu_x86_load_seg_cache(env, R_FS, 0, 0, 0xffff,
DESC_P_MASK | DESC_S_MASK | DESC_W_MASK |
DESC_A_MASK);
cpu_x86_load_seg_cache(env, R_GS, 0, 0, 0xffff,
DESC_P_MASK | DESC_S_MASK | DESC_W_MASK |
DESC_A_MASK);
env->eip = 0xfff0;
env->regs[R_EDX] = env->cpuid_version;
env->eflags = 0x2;
/* FPU init */
for (i = 0; i < 8; i++) {
env->fptags[i] = 1;
}
cpu_set_fpuc(env, 0x37f);
env->mxcsr = 0x1f80;
/* All units are in INIT state. */
env->xstate_bv = 0;
env->pat = 0x0007040600070406ULL;
env->msr_ia32_misc_enable = MSR_IA32_MISC_ENABLE_DEFAULT;
memset(env->dr, 0, sizeof(env->dr));
env->dr[6] = DR6_FIXED_1;
env->dr[7] = DR7_FIXED_1;
cpu_breakpoint_remove_all(s, BP_CPU);
cpu_watchpoint_remove_all(s, BP_CPU);
cr4 = 0;
xcr0 = XSTATE_FP_MASK;
#ifdef CONFIG_USER_ONLY
/* Enable all the features for user-mode. */
if (env->features[FEAT_1_EDX] & CPUID_SSE) {
xcr0 |= XSTATE_SSE_MASK;
}
for (i = 2; i < ARRAY_SIZE(x86_ext_save_areas); i++) {
const ExtSaveArea *esa = &x86_ext_save_areas[i];
if (env->features[esa->feature] & esa->bits) {
xcr0 |= 1ull << i;
}
}
if (env->features[FEAT_1_ECX] & CPUID_EXT_XSAVE) {
cr4 |= CR4_OSFXSR_MASK | CR4_OSXSAVE_MASK;
}
if (env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_FSGSBASE) {
cr4 |= CR4_FSGSBASE_MASK;
}
#endif
env->xcr0 = xcr0;
cpu_x86_update_cr4(env, cr4);
/*
* SDM 11.11.5 requires:
* - IA32_MTRR_DEF_TYPE MSR.E = 0
* - IA32_MTRR_PHYSMASKn.V = 0
* All other bits are undefined. For simplification, zero it all.
*/
env->mtrr_deftype = 0;
memset(env->mtrr_var, 0, sizeof(env->mtrr_var));
memset(env->mtrr_fixed, 0, sizeof(env->mtrr_fixed));
#if !defined(CONFIG_USER_ONLY)
/* We hard-wire the BSP to the first CPU. */
apic_designate_bsp(cpu->apic_state, s->cpu_index == 0);
s->halted = !cpu_is_bsp(cpu);
if (kvm_enabled()) {
kvm_arch_reset_vcpu(cpu);
}
#endif
}
#ifndef CONFIG_USER_ONLY
bool cpu_is_bsp(X86CPU *cpu)
{
return cpu_get_apic_base(cpu->apic_state) & MSR_IA32_APICBASE_BSP;
}
/* TODO: remove me, when reset over QOM tree is implemented */
static void x86_cpu_machine_reset_cb(void *opaque)
{
X86CPU *cpu = opaque;
cpu_reset(CPU(cpu));
}
#endif
static void mce_init(X86CPU *cpu)
{
CPUX86State *cenv = &cpu->env;
unsigned int bank;
if (((cenv->cpuid_version >> 8) & 0xf) >= 6
&& (cenv->features[FEAT_1_EDX] & (CPUID_MCE | CPUID_MCA)) ==
(CPUID_MCE | CPUID_MCA)) {
cenv->mcg_cap = MCE_CAP_DEF | MCE_BANKS_DEF |
(cpu->enable_lmce ? MCG_LMCE_P : 0);
cenv->mcg_ctl = ~(uint64_t)0;
for (bank = 0; bank < MCE_BANKS_DEF; bank++) {
cenv->mce_banks[bank * 4] = ~(uint64_t)0;
}
}
}
#ifndef CONFIG_USER_ONLY
static void x86_cpu_apic_create(X86CPU *cpu, Error **errp)
{
APICCommonState *apic;
const char *apic_type = "apic";
if (kvm_apic_in_kernel()) {
apic_type = "kvm-apic";
} else if (xen_enabled()) {
apic_type = "xen-apic";
}
cpu->apic_state = DEVICE(object_new(apic_type));
object_property_add_child(OBJECT(cpu), "lapic",
OBJECT(cpu->apic_state), &error_abort);
object_unref(OBJECT(cpu->apic_state));
qdev_prop_set_uint8(cpu->apic_state, "id", cpu->apic_id);
/* TODO: convert to link<> */
apic = APIC_COMMON(cpu->apic_state);
apic->cpu = cpu;
apic->apicbase = APIC_DEFAULT_ADDRESS | MSR_IA32_APICBASE_ENABLE;
}
static void x86_cpu_apic_realize(X86CPU *cpu, Error **errp)
{
APICCommonState *apic;
static bool apic_mmio_map_once;
if (cpu->apic_state == NULL) {
return;
}
object_property_set_bool(OBJECT(cpu->apic_state), true, "realized",
errp);
/* Map APIC MMIO area */
apic = APIC_COMMON(cpu->apic_state);
if (!apic_mmio_map_once) {
memory_region_add_subregion_overlap(get_system_memory(),
apic->apicbase &
MSR_IA32_APICBASE_BASE,
&apic->io_memory,
0x1000);
apic_mmio_map_once = true;
}
}
static void x86_cpu_machine_done(Notifier *n, void *unused)
{
X86CPU *cpu = container_of(n, X86CPU, machine_done);
MemoryRegion *smram =
(MemoryRegion *) object_resolve_path("/machine/smram", NULL);
if (smram) {
cpu->smram = g_new(MemoryRegion, 1);
memory_region_init_alias(cpu->smram, OBJECT(cpu), "smram",
smram, 0, 1ull << 32);
memory_region_set_enabled(cpu->smram, false);
memory_region_add_subregion_overlap(cpu->cpu_as_root, 0, cpu->smram, 1);
}
}
#else
static void x86_cpu_apic_realize(X86CPU *cpu, Error **errp)
{
}
#endif
/* Note: Only safe for use on x86(-64) hosts */
static uint32_t x86_host_phys_bits(void)
{
uint32_t eax;
uint32_t host_phys_bits;
host_cpuid(0x80000000, 0, &eax, NULL, NULL, NULL);
if (eax >= 0x80000008) {
host_cpuid(0x80000008, 0, &eax, NULL, NULL, NULL);
/* Note: According to AMD doc 25481 rev 2.34 they have a field
* at 23:16 that can specify a maximum physical address bits for
* the guest that can override this value; but I've not seen
* anything with that set.
*/
host_phys_bits = eax & 0xff;
} else {
/* It's an odd 64 bit machine that doesn't have the leaf for
* physical address bits; fall back to 36 that's most older
* Intel.
*/
host_phys_bits = 36;
}
return host_phys_bits;
}
static void x86_cpu_adjust_level(X86CPU *cpu, uint32_t *min, uint32_t value)
{
if (*min < value) {
*min = value;
}
}
/* Increase cpuid_min_{level,xlevel,xlevel2} automatically, if appropriate */
static void x86_cpu_adjust_feat_level(X86CPU *cpu, FeatureWord w)
{
CPUX86State *env = &cpu->env;
FeatureWordInfo *fi = &feature_word_info[w];
uint32_t eax = fi->cpuid_eax;
uint32_t region = eax & 0xF0000000;
if (!env->features[w]) {
return;
}
switch (region) {
case 0x00000000:
x86_cpu_adjust_level(cpu, &env->cpuid_min_level, eax);
break;
case 0x80000000:
x86_cpu_adjust_level(cpu, &env->cpuid_min_xlevel, eax);
break;
case 0xC0000000:
x86_cpu_adjust_level(cpu, &env->cpuid_min_xlevel2, eax);
break;
}
}
/* Calculate XSAVE components based on the configured CPU feature flags */
static void x86_cpu_enable_xsave_components(X86CPU *cpu)
{
CPUX86State *env = &cpu->env;
int i;
uint64_t mask;
if (!(env->features[FEAT_1_ECX] & CPUID_EXT_XSAVE)) {
return;
}
mask = (XSTATE_FP_MASK | XSTATE_SSE_MASK);
for (i = 2; i < ARRAY_SIZE(x86_ext_save_areas); i++) {
const ExtSaveArea *esa = &x86_ext_save_areas[i];
if (env->features[esa->feature] & esa->bits) {
mask |= (1ULL << i);
}
}
env->features[FEAT_XSAVE_COMP_LO] = mask;
env->features[FEAT_XSAVE_COMP_HI] = mask >> 32;
}
#define IS_INTEL_CPU(env) ((env)->cpuid_vendor1 == CPUID_VENDOR_INTEL_1 && \
(env)->cpuid_vendor2 == CPUID_VENDOR_INTEL_2 && \
(env)->cpuid_vendor3 == CPUID_VENDOR_INTEL_3)
#define IS_AMD_CPU(env) ((env)->cpuid_vendor1 == CPUID_VENDOR_AMD_1 && \
(env)->cpuid_vendor2 == CPUID_VENDOR_AMD_2 && \
(env)->cpuid_vendor3 == CPUID_VENDOR_AMD_3)
static void x86_cpu_realizefn(DeviceState *dev, Error **errp)
{
CPUState *cs = CPU(dev);
X86CPU *cpu = X86_CPU(dev);
X86CPUClass *xcc = X86_CPU_GET_CLASS(dev);
CPUX86State *env = &cpu->env;
Error *local_err = NULL;
static bool ht_warned;
FeatureWord w;
if (xcc->kvm_required && !kvm_enabled()) {
char *name = x86_cpu_class_get_model_name(xcc);
error_setg(&local_err, "CPU model '%s' requires KVM", name);
g_free(name);
goto out;
}
if (cpu->apic_id == UNASSIGNED_APIC_ID) {
error_setg(errp, "apic-id property was not initialized properly");
return;
}
/*TODO: cpu->host_features incorrectly overwrites features
* set using "feat=on|off". Once we fix this, we can convert
* plus_features & minus_features to global properties
* inside x86_cpu_parse_featurestr() too.
*/
if (cpu->host_features) {
for (w = 0; w < FEATURE_WORDS; w++) {
env->features[w] =
x86_cpu_get_supported_feature_word(w, cpu->migratable);
}
}
for (w = 0; w < FEATURE_WORDS; w++) {
cpu->env.features[w] |= plus_features[w];
cpu->env.features[w] &= ~minus_features[w];
}
if (!kvm_enabled() || !cpu->expose_kvm) {
env->features[FEAT_KVM] = 0;
}
x86_cpu_enable_xsave_components(cpu);
/* CPUID[EAX=7,ECX=0].EBX always increased level automatically: */
x86_cpu_adjust_feat_level(cpu, FEAT_7_0_EBX);
if (cpu->full_cpuid_auto_level) {
x86_cpu_adjust_feat_level(cpu, FEAT_1_EDX);
x86_cpu_adjust_feat_level(cpu, FEAT_1_ECX);
x86_cpu_adjust_feat_level(cpu, FEAT_6_EAX);
x86_cpu_adjust_feat_level(cpu, FEAT_7_0_ECX);
x86_cpu_adjust_feat_level(cpu, FEAT_8000_0001_EDX);
x86_cpu_adjust_feat_level(cpu, FEAT_8000_0001_ECX);
x86_cpu_adjust_feat_level(cpu, FEAT_8000_0007_EDX);
x86_cpu_adjust_feat_level(cpu, FEAT_C000_0001_EDX);
x86_cpu_adjust_feat_level(cpu, FEAT_SVM);
x86_cpu_adjust_feat_level(cpu, FEAT_XSAVE);
/* SVM requires CPUID[0x8000000A] */
if (env->features[FEAT_8000_0001_ECX] & CPUID_EXT3_SVM) {
x86_cpu_adjust_level(cpu, &env->cpuid_min_xlevel, 0x8000000A);
}
}
/* Set cpuid_*level* based on cpuid_min_*level, if not explicitly set */
if (env->cpuid_level == UINT32_MAX) {
env->cpuid_level = env->cpuid_min_level;
}
if (env->cpuid_xlevel == UINT32_MAX) {
env->cpuid_xlevel = env->cpuid_min_xlevel;
}
if (env->cpuid_xlevel2 == UINT32_MAX) {
env->cpuid_xlevel2 = env->cpuid_min_xlevel2;
}
if (x86_cpu_filter_features(cpu) && cpu->enforce_cpuid) {
error_setg(&local_err,
kvm_enabled() ?
"Host doesn't support requested features" :
"TCG doesn't support requested features");
goto out;
}
/* On AMD CPUs, some CPUID[8000_0001].EDX bits must match the bits on
* CPUID[1].EDX.
*/
if (IS_AMD_CPU(env)) {
env->features[FEAT_8000_0001_EDX] &= ~CPUID_EXT2_AMD_ALIASES;
env->features[FEAT_8000_0001_EDX] |= (env->features[FEAT_1_EDX]
& CPUID_EXT2_AMD_ALIASES);
}
/* For 64bit systems think about the number of physical bits to present.
* ideally this should be the same as the host; anything other than matching
* the host can cause incorrect guest behaviour.
* QEMU used to pick the magic value of 40 bits that corresponds to
* consumer AMD devices but nothing else.
*/
if (env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_LM) {
if (kvm_enabled()) {
uint32_t host_phys_bits = x86_host_phys_bits();
static bool warned;
if (cpu->host_phys_bits) {
/* The user asked for us to use the host physical bits */
cpu->phys_bits = host_phys_bits;
}
/* Print a warning if the user set it to a value that's not the
* host value.
*/
if (cpu->phys_bits != host_phys_bits && cpu->phys_bits != 0 &&
!warned) {
error_report("Warning: Host physical bits (%u)"
" does not match phys-bits property (%u)",
host_phys_bits, cpu->phys_bits);
warned = true;
}
if (cpu->phys_bits &&
(cpu->phys_bits > TARGET_PHYS_ADDR_SPACE_BITS ||
cpu->phys_bits < 32)) {
error_setg(errp, "phys-bits should be between 32 and %u "
" (but is %u)",
TARGET_PHYS_ADDR_SPACE_BITS, cpu->phys_bits);
return;
}
} else {
if (cpu->phys_bits && cpu->phys_bits != TCG_PHYS_ADDR_BITS) {
error_setg(errp, "TCG only supports phys-bits=%u",
TCG_PHYS_ADDR_BITS);
return;
}
}
/* 0 means it was not explicitly set by the user (or by machine
* compat_props or by the host code above). In this case, the default
* is the value used by TCG (40).
*/
if (cpu->phys_bits == 0) {
cpu->phys_bits = TCG_PHYS_ADDR_BITS;
}
} else {
/* For 32 bit systems don't use the user set value, but keep
* phys_bits consistent with what we tell the guest.
*/
if (cpu->phys_bits != 0) {
error_setg(errp, "phys-bits is not user-configurable in 32 bit");
return;
}
if (env->features[FEAT_1_EDX] & CPUID_PSE36) {
cpu->phys_bits = 36;
} else {
cpu->phys_bits = 32;
}
}
cpu_exec_init(cs, &error_abort);
if (tcg_enabled()) {
tcg_x86_init();
}
#ifndef CONFIG_USER_ONLY
qemu_register_reset(x86_cpu_machine_reset_cb, cpu);
if (cpu->env.features[FEAT_1_EDX] & CPUID_APIC || smp_cpus > 1) {
x86_cpu_apic_create(cpu, &local_err);
if (local_err != NULL) {
goto out;
}
}
#endif
mce_init(cpu);
#ifndef CONFIG_USER_ONLY
if (tcg_enabled()) {
AddressSpace *newas = g_new(AddressSpace, 1);
cpu->cpu_as_mem = g_new(MemoryRegion, 1);
cpu->cpu_as_root = g_new(MemoryRegion, 1);
/* Outer container... */
memory_region_init(cpu->cpu_as_root, OBJECT(cpu), "memory", ~0ull);
memory_region_set_enabled(cpu->cpu_as_root, true);
/* ... with two regions inside: normal system memory with low
* priority, and...
*/
memory_region_init_alias(cpu->cpu_as_mem, OBJECT(cpu), "memory",
get_system_memory(), 0, ~0ull);
memory_region_add_subregion_overlap(cpu->cpu_as_root, 0, cpu->cpu_as_mem, 0);
memory_region_set_enabled(cpu->cpu_as_mem, true);
address_space_init(newas, cpu->cpu_as_root, "CPU");
cs->num_ases = 1;
cpu_address_space_init(cs, newas, 0);
/* ... SMRAM with higher priority, linked from /machine/smram. */
cpu->machine_done.notify = x86_cpu_machine_done;
qemu_add_machine_init_done_notifier(&cpu->machine_done);
}
#endif
qemu_init_vcpu(cs);
/* Only Intel CPUs support hyperthreading. Even though QEMU fixes this
* issue by adjusting CPUID_0000_0001_EBX and CPUID_8000_0008_ECX
* based on inputs (sockets,cores,threads), it is still better to gives
* users a warning.
*
* NOTE: the following code has to follow qemu_init_vcpu(). Otherwise
* cs->nr_threads hasn't be populated yet and the checking is incorrect.
*/
if (!IS_INTEL_CPU(env) && cs->nr_threads > 1 && !ht_warned) {
error_report("AMD CPU doesn't support hyperthreading. Please configure"
" -smp options properly.");
ht_warned = true;
}
x86_cpu_apic_realize(cpu, &local_err);
if (local_err != NULL) {
goto out;
}
cpu_reset(cs);
xcc->parent_realize(dev, &local_err);
out:
if (local_err != NULL) {
error_propagate(errp, local_err);
return;
}
}
static void x86_cpu_unrealizefn(DeviceState *dev, Error **errp)
{
X86CPU *cpu = X86_CPU(dev);
#ifndef CONFIG_USER_ONLY
cpu_remove_sync(CPU(dev));
qemu_unregister_reset(x86_cpu_machine_reset_cb, dev);
#endif
if (cpu->apic_state) {
object_unparent(OBJECT(cpu->apic_state));
cpu->apic_state = NULL;
}
}
typedef struct BitProperty {
uint32_t *ptr;
uint32_t mask;
} BitProperty;
static void x86_cpu_get_bit_prop(Object *obj, Visitor *v, const char *name,
void *opaque, Error **errp)
{
BitProperty *fp = opaque;
bool value = (*fp->ptr & fp->mask) == fp->mask;
visit_type_bool(v, name, &value, errp);
}
static void x86_cpu_set_bit_prop(Object *obj, Visitor *v, const char *name,
void *opaque, Error **errp)
{
DeviceState *dev = DEVICE(obj);
BitProperty *fp = opaque;
Error *local_err = NULL;
bool value;
if (dev->realized) {
qdev_prop_set_after_realize(dev, name, errp);
return;
}
visit_type_bool(v, name, &value, &local_err);
if (local_err) {
error_propagate(errp, local_err);
return;
}
if (value) {
*fp->ptr |= fp->mask;
} else {
*fp->ptr &= ~fp->mask;
}
}
static void x86_cpu_release_bit_prop(Object *obj, const char *name,
void *opaque)
{
BitProperty *prop = opaque;
g_free(prop);
}
/* Register a boolean property to get/set a single bit in a uint32_t field.
*
* The same property name can be registered multiple times to make it affect
* multiple bits in the same FeatureWord. In that case, the getter will return
* true only if all bits are set.
*/
static void x86_cpu_register_bit_prop(X86CPU *cpu,
const char *prop_name,
uint32_t *field,
int bitnr)
{
BitProperty *fp;
ObjectProperty *op;
uint32_t mask = (1UL << bitnr);
op = object_property_find(OBJECT(cpu), prop_name, NULL);
if (op) {
fp = op->opaque;
assert(fp->ptr == field);
fp->mask |= mask;
} else {
fp = g_new0(BitProperty, 1);
fp->ptr = field;
fp->mask = mask;
object_property_add(OBJECT(cpu), prop_name, "bool",
x86_cpu_get_bit_prop,
x86_cpu_set_bit_prop,
x86_cpu_release_bit_prop, fp, &error_abort);
}
}
static void x86_cpu_register_feature_bit_props(X86CPU *cpu,
FeatureWord w,
int bitnr)
{
Object *obj = OBJECT(cpu);
int i;
char **names;
FeatureWordInfo *fi = &feature_word_info[w];
if (!fi->feat_names[bitnr]) {
return;
}
names = g_strsplit(fi->feat_names[bitnr], "|", 0);
feat2prop(names[0]);
x86_cpu_register_bit_prop(cpu, names[0], &cpu->env.features[w], bitnr);
for (i = 1; names[i]; i++) {
feat2prop(names[i]);
object_property_add_alias(obj, names[i], obj, names[0],
&error_abort);
}
g_strfreev(names);
}
static void x86_cpu_initfn(Object *obj)
{
CPUState *cs = CPU(obj);
X86CPU *cpu = X86_CPU(obj);
X86CPUClass *xcc = X86_CPU_GET_CLASS(obj);
CPUX86State *env = &cpu->env;
FeatureWord w;
cs->env_ptr = env;
object_property_add(obj, "family", "int",
x86_cpuid_version_get_family,
x86_cpuid_version_set_family, NULL, NULL, NULL);
object_property_add(obj, "model", "int",
x86_cpuid_version_get_model,
x86_cpuid_version_set_model, NULL, NULL, NULL);
object_property_add(obj, "stepping", "int",
x86_cpuid_version_get_stepping,
x86_cpuid_version_set_stepping, NULL, NULL, NULL);
object_property_add_str(obj, "vendor",
x86_cpuid_get_vendor,
x86_cpuid_set_vendor, NULL);
object_property_add_str(obj, "model-id",
x86_cpuid_get_model_id,
x86_cpuid_set_model_id, NULL);
object_property_add(obj, "tsc-frequency", "int",
x86_cpuid_get_tsc_freq,
x86_cpuid_set_tsc_freq, NULL, NULL, NULL);
object_property_add(obj, "feature-words", "X86CPUFeatureWordInfo",
x86_cpu_get_feature_words,
NULL, NULL, (void *)env->features, NULL);
object_property_add(obj, "filtered-features", "X86CPUFeatureWordInfo",
x86_cpu_get_feature_words,
NULL, NULL, (void *)cpu->filtered_features, NULL);
cpu->hyperv_spinlock_attempts = HYPERV_SPINLOCK_NEVER_RETRY;
for (w = 0; w < FEATURE_WORDS; w++) {
int bitnr;
for (bitnr = 0; bitnr < 32; bitnr++) {
x86_cpu_register_feature_bit_props(cpu, w, bitnr);
}
}
x86_cpu_load_def(cpu, xcc->cpu_def, &error_abort);
}
static int64_t x86_cpu_get_arch_id(CPUState *cs)
{
X86CPU *cpu = X86_CPU(cs);
return cpu->apic_id;
}
static bool x86_cpu_get_paging_enabled(const CPUState *cs)
{
X86CPU *cpu = X86_CPU(cs);
return cpu->env.cr[0] & CR0_PG_MASK;
}
static void x86_cpu_set_pc(CPUState *cs, vaddr value)
{
X86CPU *cpu = X86_CPU(cs);
cpu->env.eip = value;
}
static void x86_cpu_synchronize_from_tb(CPUState *cs, TranslationBlock *tb)
{
X86CPU *cpu = X86_CPU(cs);
cpu->env.eip = tb->pc - tb->cs_base;
}
static bool x86_cpu_has_work(CPUState *cs)
{
X86CPU *cpu = X86_CPU(cs);
CPUX86State *env = &cpu->env;
return ((cs->interrupt_request & (CPU_INTERRUPT_HARD |
CPU_INTERRUPT_POLL)) &&
(env->eflags & IF_MASK)) ||
(cs->interrupt_request & (CPU_INTERRUPT_NMI |
CPU_INTERRUPT_INIT |
CPU_INTERRUPT_SIPI |
CPU_INTERRUPT_MCE)) ||
((cs->interrupt_request & CPU_INTERRUPT_SMI) &&
!(env->hflags & HF_SMM_MASK));
}
static Property x86_cpu_properties[] = {
#ifdef CONFIG_USER_ONLY
/* apic_id = 0 by default for *-user, see commit 9886e834 */
DEFINE_PROP_UINT32("apic-id", X86CPU, apic_id, 0),
DEFINE_PROP_INT32("thread-id", X86CPU, thread_id, 0),
DEFINE_PROP_INT32("core-id", X86CPU, core_id, 0),
DEFINE_PROP_INT32("socket-id", X86CPU, socket_id, 0),
#else
DEFINE_PROP_UINT32("apic-id", X86CPU, apic_id, UNASSIGNED_APIC_ID),
DEFINE_PROP_INT32("thread-id", X86CPU, thread_id, -1),
DEFINE_PROP_INT32("core-id", X86CPU, core_id, -1),
DEFINE_PROP_INT32("socket-id", X86CPU, socket_id, -1),
#endif
DEFINE_PROP_BOOL("pmu", X86CPU, enable_pmu, false),
{ .name = "hv-spinlocks", .info = &qdev_prop_spinlocks },
DEFINE_PROP_BOOL("hv-relaxed", X86CPU, hyperv_relaxed_timing, false),
DEFINE_PROP_BOOL("hv-vapic", X86CPU, hyperv_vapic, false),
DEFINE_PROP_BOOL("hv-time", X86CPU, hyperv_time, false),
DEFINE_PROP_BOOL("hv-crash", X86CPU, hyperv_crash, false),
DEFINE_PROP_BOOL("hv-reset", X86CPU, hyperv_reset, false),
DEFINE_PROP_BOOL("hv-vpindex", X86CPU, hyperv_vpindex, false),
DEFINE_PROP_BOOL("hv-runtime", X86CPU, hyperv_runtime, false),
DEFINE_PROP_BOOL("hv-synic", X86CPU, hyperv_synic, false),
DEFINE_PROP_BOOL("hv-stimer", X86CPU, hyperv_stimer, false),
DEFINE_PROP_BOOL("check", X86CPU, check_cpuid, true),
DEFINE_PROP_BOOL("enforce", X86CPU, enforce_cpuid, false),
DEFINE_PROP_BOOL("kvm", X86CPU, expose_kvm, true),
DEFINE_PROP_UINT32("phys-bits", X86CPU, phys_bits, 0),
DEFINE_PROP_BOOL("host-phys-bits", X86CPU, host_phys_bits, false),
DEFINE_PROP_BOOL("fill-mtrr-mask", X86CPU, fill_mtrr_mask, true),
DEFINE_PROP_UINT32("level", X86CPU, env.cpuid_level, UINT32_MAX),
DEFINE_PROP_UINT32("xlevel", X86CPU, env.cpuid_xlevel, UINT32_MAX),
DEFINE_PROP_UINT32("xlevel2", X86CPU, env.cpuid_xlevel2, UINT32_MAX),
DEFINE_PROP_UINT32("min-level", X86CPU, env.cpuid_min_level, 0),
DEFINE_PROP_UINT32("min-xlevel", X86CPU, env.cpuid_min_xlevel, 0),
DEFINE_PROP_UINT32("min-xlevel2", X86CPU, env.cpuid_min_xlevel2, 0),
DEFINE_PROP_BOOL("full-cpuid-auto-level", X86CPU, full_cpuid_auto_level, true),
DEFINE_PROP_STRING("hv-vendor-id", X86CPU, hyperv_vendor_id),
DEFINE_PROP_BOOL("cpuid-0xb", X86CPU, enable_cpuid_0xb, true),
DEFINE_PROP_BOOL("lmce", X86CPU, enable_lmce, false),
DEFINE_PROP_BOOL("l3-cache", X86CPU, enable_l3_cache, true),
DEFINE_PROP_END_OF_LIST()
};
static void x86_cpu_common_class_init(ObjectClass *oc, void *data)
{
X86CPUClass *xcc = X86_CPU_CLASS(oc);
CPUClass *cc = CPU_CLASS(oc);
DeviceClass *dc = DEVICE_CLASS(oc);
xcc->parent_realize = dc->realize;
dc->realize = x86_cpu_realizefn;
dc->unrealize = x86_cpu_unrealizefn;
dc->props = x86_cpu_properties;
xcc->parent_reset = cc->reset;
cc->reset = x86_cpu_reset;
cc->reset_dump_flags = CPU_DUMP_FPU | CPU_DUMP_CCOP;
cc->class_by_name = x86_cpu_class_by_name;
cc->parse_features = x86_cpu_parse_featurestr;
cc->has_work = x86_cpu_has_work;
cc->do_interrupt = x86_cpu_do_interrupt;
cc->cpu_exec_interrupt = x86_cpu_exec_interrupt;
cc->dump_state = x86_cpu_dump_state;
cc->set_pc = x86_cpu_set_pc;
cc->synchronize_from_tb = x86_cpu_synchronize_from_tb;
cc->gdb_read_register = x86_cpu_gdb_read_register;
cc->gdb_write_register = x86_cpu_gdb_write_register;
cc->get_arch_id = x86_cpu_get_arch_id;
cc->get_paging_enabled = x86_cpu_get_paging_enabled;
#ifdef CONFIG_USER_ONLY
cc->handle_mmu_fault = x86_cpu_handle_mmu_fault;
#else
cc->get_memory_mapping = x86_cpu_get_memory_mapping;
cc->get_phys_page_debug = x86_cpu_get_phys_page_debug;
cc->write_elf64_note = x86_cpu_write_elf64_note;
cc->write_elf64_qemunote = x86_cpu_write_elf64_qemunote;
cc->write_elf32_note = x86_cpu_write_elf32_note;
cc->write_elf32_qemunote = x86_cpu_write_elf32_qemunote;
cc->vmsd = &vmstate_x86_cpu;
#endif
cc->gdb_num_core_regs = CPU_NB_REGS * 2 + 25;
#ifndef CONFIG_USER_ONLY
cc->debug_excp_handler = breakpoint_handler;
#endif
cc->cpu_exec_enter = x86_cpu_exec_enter;
cc->cpu_exec_exit = x86_cpu_exec_exit;
dc->cannot_instantiate_with_device_add_yet = false;
/*
* Reason: x86_cpu_initfn() calls cpu_exec_init(), which saves the
* object in cpus -> dangling pointer after final object_unref().
*/
dc->cannot_destroy_with_object_finalize_yet = true;
}
static const TypeInfo x86_cpu_type_info = {
.name = TYPE_X86_CPU,
.parent = TYPE_CPU,
.instance_size = sizeof(X86CPU),
.instance_init = x86_cpu_initfn,
.abstract = true,
.class_size = sizeof(X86CPUClass),
.class_init = x86_cpu_common_class_init,
};
static void x86_cpu_register_types(void)
{
int i;
type_register_static(&x86_cpu_type_info);
for (i = 0; i < ARRAY_SIZE(builtin_x86_defs); i++) {
x86_register_cpudef_type(&builtin_x86_defs[i]);
}
#ifdef CONFIG_KVM
type_register_static(&host_x86_cpu_type_info);
#endif
}
type_init(x86_cpu_register_types)