qemu-e2k/hw/pci-host/pnv_phb3_msi.c
Peter Maydell a0c2e80afc hw/pci-host/pnv_phb3_msi: Convert TYPE_PHB3_MSI to 3-phase reset
Convert the TYPE_PHB3_MSI class to 3-phase reset, so we can
avoid using the device_class_set_parent_reset() function.

Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Tested-by: Daniel Henrique Barboza <danielhb413@gmail.com>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Message-id: 20221125115240.3005559-8-peter.maydell@linaro.org
2022-12-16 15:59:07 +00:00

347 lines
8.9 KiB
C

/*
* QEMU PowerPC PowerNV (POWER8) PHB3 model
*
* Copyright (c) 2014-2020, IBM Corporation.
*
* This code is licensed under the GPL version 2 or later. See the
* COPYING file in the top-level directory.
*/
#include "qemu/osdep.h"
#include "qemu/log.h"
#include "qapi/error.h"
#include "hw/pci-host/pnv_phb3_regs.h"
#include "hw/pci-host/pnv_phb3.h"
#include "hw/ppc/pnv.h"
#include "hw/pci/msi.h"
#include "monitor/monitor.h"
#include "hw/irq.h"
#include "hw/qdev-properties.h"
#include "sysemu/reset.h"
static uint64_t phb3_msi_ive_addr(PnvPHB3 *phb, int srcno)
{
uint64_t ivtbar = phb->regs[PHB_IVT_BAR >> 3];
uint64_t phbctl = phb->regs[PHB_CONTROL >> 3];
if (!(ivtbar & PHB_IVT_BAR_ENABLE)) {
qemu_log_mask(LOG_GUEST_ERROR, "Failed access to disable IVT BAR !");
return 0;
}
if (srcno >= (ivtbar & PHB_IVT_LENGTH_MASK)) {
qemu_log_mask(LOG_GUEST_ERROR, "MSI out of bounds (%d vs 0x%"PRIx64")",
srcno, (uint64_t) (ivtbar & PHB_IVT_LENGTH_MASK));
return 0;
}
ivtbar &= PHB_IVT_BASE_ADDRESS_MASK;
if (phbctl & PHB_CTRL_IVE_128_BYTES) {
return ivtbar + 128 * srcno;
} else {
return ivtbar + 16 * srcno;
}
}
static bool phb3_msi_read_ive(PnvPHB3 *phb, int srcno, uint64_t *out_ive)
{
uint64_t ive_addr, ive;
ive_addr = phb3_msi_ive_addr(phb, srcno);
if (!ive_addr) {
return false;
}
if (dma_memory_read(&address_space_memory, ive_addr,
&ive, sizeof(ive), MEMTXATTRS_UNSPECIFIED)) {
qemu_log_mask(LOG_GUEST_ERROR, "Failed to read IVE at 0x%" PRIx64,
ive_addr);
return false;
}
*out_ive = be64_to_cpu(ive);
return true;
}
static void phb3_msi_set_p(Phb3MsiState *msi, int srcno, uint8_t gen)
{
uint64_t ive_addr;
uint8_t p = 0x01 | (gen << 1);
ive_addr = phb3_msi_ive_addr(msi->phb, srcno);
if (!ive_addr) {
return;
}
if (dma_memory_write(&address_space_memory, ive_addr + 4,
&p, 1, MEMTXATTRS_UNSPECIFIED)) {
qemu_log_mask(LOG_GUEST_ERROR,
"Failed to write IVE (set P) at 0x%" PRIx64, ive_addr);
}
}
static void phb3_msi_set_q(Phb3MsiState *msi, int srcno)
{
uint64_t ive_addr;
uint8_t q = 0x01;
ive_addr = phb3_msi_ive_addr(msi->phb, srcno);
if (!ive_addr) {
return;
}
if (dma_memory_write(&address_space_memory, ive_addr + 5,
&q, 1, MEMTXATTRS_UNSPECIFIED)) {
qemu_log_mask(LOG_GUEST_ERROR,
"Failed to write IVE (set Q) at 0x%" PRIx64, ive_addr);
}
}
static void phb3_msi_try_send(Phb3MsiState *msi, int srcno, bool force)
{
ICSState *ics = ICS(msi);
uint64_t ive;
uint64_t server, prio, pq, gen;
if (!phb3_msi_read_ive(msi->phb, srcno, &ive)) {
return;
}
server = GETFIELD(IODA2_IVT_SERVER, ive);
prio = GETFIELD(IODA2_IVT_PRIORITY, ive);
if (!force) {
pq = GETFIELD(IODA2_IVT_Q, ive) | (GETFIELD(IODA2_IVT_P, ive) << 1);
} else {
pq = 0;
}
gen = GETFIELD(IODA2_IVT_GEN, ive);
/*
* The low order 2 bits are the link pointer (Type II interrupts).
* Shift back to get a valid IRQ server.
*/
server >>= 2;
switch (pq) {
case 0: /* 00 */
if (prio == 0xff) {
/* Masked, set Q */
phb3_msi_set_q(msi, srcno);
} else {
/* Enabled, set P and send */
phb3_msi_set_p(msi, srcno, gen);
icp_irq(ics, server, srcno + ics->offset, prio);
}
break;
case 2: /* 10 */
/* Already pending, set Q */
phb3_msi_set_q(msi, srcno);
break;
case 1: /* 01 */
case 3: /* 11 */
default:
/* Just drop stuff if Q already set */
break;
}
}
static void phb3_msi_set_irq(void *opaque, int srcno, int val)
{
Phb3MsiState *msi = PHB3_MSI(opaque);
if (val) {
phb3_msi_try_send(msi, srcno, false);
}
}
void pnv_phb3_msi_send(Phb3MsiState *msi, uint64_t addr, uint16_t data,
int32_t dev_pe)
{
ICSState *ics = ICS(msi);
uint64_t ive;
uint16_t pe;
uint32_t src = ((addr >> 4) & 0xffff) | (data & 0x1f);
if (src >= ics->nr_irqs) {
qemu_log_mask(LOG_GUEST_ERROR, "MSI %d out of bounds", src);
return;
}
if (dev_pe >= 0) {
if (!phb3_msi_read_ive(msi->phb, src, &ive)) {
return;
}
pe = GETFIELD(IODA2_IVT_PE, ive);
if (pe != dev_pe) {
qemu_log_mask(LOG_GUEST_ERROR,
"MSI %d send by PE#%d but assigned to PE#%d",
src, dev_pe, pe);
return;
}
}
qemu_irq_pulse(msi->qirqs[src]);
}
void pnv_phb3_msi_ffi(Phb3MsiState *msi, uint64_t val)
{
/* Emit interrupt */
pnv_phb3_msi_send(msi, val, 0, -1);
/* Clear FFI lock */
msi->phb->regs[PHB_FFI_LOCK >> 3] = 0;
}
static void phb3_msi_reject(ICSState *ics, uint32_t nr)
{
Phb3MsiState *msi = PHB3_MSI(ics);
unsigned int srcno = nr - ics->offset;
unsigned int idx = srcno >> 6;
unsigned int bit = 1ull << (srcno & 0x3f);
assert(srcno < PHB3_MAX_MSI);
msi->rba[idx] |= bit;
msi->rba_sum |= (1u << idx);
}
static void phb3_msi_resend(ICSState *ics)
{
Phb3MsiState *msi = PHB3_MSI(ics);
unsigned int i, j;
if (msi->rba_sum == 0) {
return;
}
for (i = 0; i < 32; i++) {
if ((msi->rba_sum & (1u << i)) == 0) {
continue;
}
msi->rba_sum &= ~(1u << i);
for (j = 0; j < 64; j++) {
if ((msi->rba[i] & (1ull << j)) == 0) {
continue;
}
msi->rba[i] &= ~(1ull << j);
phb3_msi_try_send(msi, i * 64 + j, true);
}
}
}
static void phb3_msi_reset_hold(Object *obj)
{
Phb3MsiState *msi = PHB3_MSI(obj);
ICSStateClass *icsc = ICS_GET_CLASS(obj);
if (icsc->parent_phases.hold) {
icsc->parent_phases.hold(obj);
}
memset(msi->rba, 0, sizeof(msi->rba));
msi->rba_sum = 0;
}
void pnv_phb3_msi_update_config(Phb3MsiState *msi, uint32_t base,
uint32_t count)
{
ICSState *ics = ICS(msi);
if (count > PHB3_MAX_MSI) {
count = PHB3_MAX_MSI;
}
ics->nr_irqs = count;
ics->offset = base;
}
static void phb3_msi_realize(DeviceState *dev, Error **errp)
{
Phb3MsiState *msi = PHB3_MSI(dev);
ICSState *ics = ICS(msi);
ICSStateClass *icsc = ICS_GET_CLASS(ics);
Error *local_err = NULL;
assert(msi->phb);
icsc->parent_realize(dev, &local_err);
if (local_err) {
error_propagate(errp, local_err);
return;
}
msi->qirqs = qemu_allocate_irqs(phb3_msi_set_irq, msi, ics->nr_irqs);
}
static void phb3_msi_instance_init(Object *obj)
{
Phb3MsiState *msi = PHB3_MSI(obj);
ICSState *ics = ICS(obj);
object_property_add_link(obj, "phb", TYPE_PNV_PHB3,
(Object **)&msi->phb,
object_property_allow_set_link,
OBJ_PROP_LINK_STRONG);
/* Will be overriden later */
ics->offset = 0;
}
static void phb3_msi_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
ICSStateClass *isc = ICS_CLASS(klass);
ResettableClass *rc = RESETTABLE_CLASS(klass);
device_class_set_parent_realize(dc, phb3_msi_realize,
&isc->parent_realize);
resettable_class_set_parent_phases(rc, NULL, phb3_msi_reset_hold, NULL,
&isc->parent_phases);
isc->reject = phb3_msi_reject;
isc->resend = phb3_msi_resend;
}
static const TypeInfo phb3_msi_info = {
.name = TYPE_PHB3_MSI,
.parent = TYPE_ICS,
.instance_size = sizeof(Phb3MsiState),
.class_init = phb3_msi_class_init,
.class_size = sizeof(ICSStateClass),
.instance_init = phb3_msi_instance_init,
};
static void pnv_phb3_msi_register_types(void)
{
type_register_static(&phb3_msi_info);
}
type_init(pnv_phb3_msi_register_types);
void pnv_phb3_msi_pic_print_info(Phb3MsiState *msi, Monitor *mon)
{
ICSState *ics = ICS(msi);
int i;
monitor_printf(mon, "ICS %4x..%4x %p\n",
ics->offset, ics->offset + ics->nr_irqs - 1, ics);
for (i = 0; i < ics->nr_irqs; i++) {
uint64_t ive;
if (!phb3_msi_read_ive(msi->phb, i, &ive)) {
return;
}
if (GETFIELD(IODA2_IVT_PRIORITY, ive) == 0xff) {
continue;
}
monitor_printf(mon, " %4x %c%c server=%04x prio=%02x gen=%d\n",
ics->offset + i,
GETFIELD(IODA2_IVT_P, ive) ? 'P' : '-',
GETFIELD(IODA2_IVT_Q, ive) ? 'Q' : '-',
(uint32_t) GETFIELD(IODA2_IVT_SERVER, ive) >> 2,
(uint32_t) GETFIELD(IODA2_IVT_PRIORITY, ive),
(uint32_t) GETFIELD(IODA2_IVT_GEN, ive));
}
}