2c9b15cab1
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
895 lines
28 KiB
C
895 lines
28 KiB
C
/*
|
|
* TI OMAP general purpose memory controller emulation.
|
|
*
|
|
* Copyright (C) 2007-2009 Nokia Corporation
|
|
* Original code written by Andrzej Zaborowski <andrew@openedhand.com>
|
|
* Enhancements for OMAP3 and NAND support written by Juha Riihimäki
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License as
|
|
* published by the Free Software Foundation; either version 2 or
|
|
* (at your option) any later version of the License.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along
|
|
* with this program; if not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
#include "hw/hw.h"
|
|
#include "hw/block/flash.h"
|
|
#include "hw/arm/omap.h"
|
|
#include "exec/memory.h"
|
|
#include "exec/address-spaces.h"
|
|
|
|
/* General-Purpose Memory Controller */
|
|
struct omap_gpmc_s {
|
|
qemu_irq irq;
|
|
qemu_irq drq;
|
|
MemoryRegion iomem;
|
|
int accept_256;
|
|
|
|
uint8_t revision;
|
|
uint8_t sysconfig;
|
|
uint16_t irqst;
|
|
uint16_t irqen;
|
|
uint16_t lastirq;
|
|
uint16_t timeout;
|
|
uint16_t config;
|
|
struct omap_gpmc_cs_file_s {
|
|
uint32_t config[7];
|
|
MemoryRegion *iomem;
|
|
MemoryRegion container;
|
|
MemoryRegion nandiomem;
|
|
DeviceState *dev;
|
|
} cs_file[8];
|
|
int ecc_cs;
|
|
int ecc_ptr;
|
|
uint32_t ecc_cfg;
|
|
ECCState ecc[9];
|
|
struct prefetch {
|
|
uint32_t config1; /* GPMC_PREFETCH_CONFIG1 */
|
|
uint32_t transfercount; /* GPMC_PREFETCH_CONFIG2:TRANSFERCOUNT */
|
|
int startengine; /* GPMC_PREFETCH_CONTROL:STARTENGINE */
|
|
int fifopointer; /* GPMC_PREFETCH_STATUS:FIFOPOINTER */
|
|
int count; /* GPMC_PREFETCH_STATUS:COUNTVALUE */
|
|
MemoryRegion iomem;
|
|
uint8_t fifo[64];
|
|
} prefetch;
|
|
};
|
|
|
|
#define OMAP_GPMC_8BIT 0
|
|
#define OMAP_GPMC_16BIT 1
|
|
#define OMAP_GPMC_NOR 0
|
|
#define OMAP_GPMC_NAND 2
|
|
|
|
static int omap_gpmc_devtype(struct omap_gpmc_cs_file_s *f)
|
|
{
|
|
return (f->config[0] >> 10) & 3;
|
|
}
|
|
|
|
static int omap_gpmc_devsize(struct omap_gpmc_cs_file_s *f)
|
|
{
|
|
/* devsize field is really 2 bits but we ignore the high
|
|
* bit to ensure consistent behaviour if the guest sets
|
|
* it (values 2 and 3 are reserved in the TRM)
|
|
*/
|
|
return (f->config[0] >> 12) & 1;
|
|
}
|
|
|
|
/* Extract the chip-select value from the prefetch config1 register */
|
|
static int prefetch_cs(uint32_t config1)
|
|
{
|
|
return (config1 >> 24) & 7;
|
|
}
|
|
|
|
static int prefetch_threshold(uint32_t config1)
|
|
{
|
|
return (config1 >> 8) & 0x7f;
|
|
}
|
|
|
|
static void omap_gpmc_int_update(struct omap_gpmc_s *s)
|
|
{
|
|
/* The TRM is a bit unclear, but it seems to say that
|
|
* the TERMINALCOUNTSTATUS bit is set only on the
|
|
* transition when the prefetch engine goes from
|
|
* active to inactive, whereas the FIFOEVENTSTATUS
|
|
* bit is held high as long as the fifo has at
|
|
* least THRESHOLD bytes available.
|
|
* So we do the latter here, but TERMINALCOUNTSTATUS
|
|
* is set elsewhere.
|
|
*/
|
|
if (s->prefetch.fifopointer >= prefetch_threshold(s->prefetch.config1)) {
|
|
s->irqst |= 1;
|
|
}
|
|
if ((s->irqen & s->irqst) != s->lastirq) {
|
|
s->lastirq = s->irqen & s->irqst;
|
|
qemu_set_irq(s->irq, s->lastirq);
|
|
}
|
|
}
|
|
|
|
static void omap_gpmc_dma_update(struct omap_gpmc_s *s, int value)
|
|
{
|
|
if (s->prefetch.config1 & 4) {
|
|
qemu_set_irq(s->drq, value);
|
|
}
|
|
}
|
|
|
|
/* Access functions for when a NAND-like device is mapped into memory:
|
|
* all addresses in the region behave like accesses to the relevant
|
|
* GPMC_NAND_DATA_i register (which is actually implemented to call these)
|
|
*/
|
|
static uint64_t omap_nand_read(void *opaque, hwaddr addr,
|
|
unsigned size)
|
|
{
|
|
struct omap_gpmc_cs_file_s *f = (struct omap_gpmc_cs_file_s *)opaque;
|
|
uint64_t v;
|
|
nand_setpins(f->dev, 0, 0, 0, 1, 0);
|
|
switch (omap_gpmc_devsize(f)) {
|
|
case OMAP_GPMC_8BIT:
|
|
v = nand_getio(f->dev);
|
|
if (size == 1) {
|
|
return v;
|
|
}
|
|
v |= (nand_getio(f->dev) << 8);
|
|
if (size == 2) {
|
|
return v;
|
|
}
|
|
v |= (nand_getio(f->dev) << 16);
|
|
v |= (nand_getio(f->dev) << 24);
|
|
return v;
|
|
case OMAP_GPMC_16BIT:
|
|
v = nand_getio(f->dev);
|
|
if (size == 1) {
|
|
/* 8 bit read from 16 bit device : probably a guest bug */
|
|
return v & 0xff;
|
|
}
|
|
if (size == 2) {
|
|
return v;
|
|
}
|
|
v |= (nand_getio(f->dev) << 16);
|
|
return v;
|
|
default:
|
|
abort();
|
|
}
|
|
}
|
|
|
|
static void omap_nand_setio(DeviceState *dev, uint64_t value,
|
|
int nandsize, int size)
|
|
{
|
|
/* Write the specified value to the NAND device, respecting
|
|
* both size of the NAND device and size of the write access.
|
|
*/
|
|
switch (nandsize) {
|
|
case OMAP_GPMC_8BIT:
|
|
switch (size) {
|
|
case 1:
|
|
nand_setio(dev, value & 0xff);
|
|
break;
|
|
case 2:
|
|
nand_setio(dev, value & 0xff);
|
|
nand_setio(dev, (value >> 8) & 0xff);
|
|
break;
|
|
case 4:
|
|
default:
|
|
nand_setio(dev, value & 0xff);
|
|
nand_setio(dev, (value >> 8) & 0xff);
|
|
nand_setio(dev, (value >> 16) & 0xff);
|
|
nand_setio(dev, (value >> 24) & 0xff);
|
|
break;
|
|
}
|
|
break;
|
|
case OMAP_GPMC_16BIT:
|
|
switch (size) {
|
|
case 1:
|
|
/* writing to a 16bit device with 8bit access is probably a guest
|
|
* bug; pass the value through anyway.
|
|
*/
|
|
case 2:
|
|
nand_setio(dev, value & 0xffff);
|
|
break;
|
|
case 4:
|
|
default:
|
|
nand_setio(dev, value & 0xffff);
|
|
nand_setio(dev, (value >> 16) & 0xffff);
|
|
break;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void omap_nand_write(void *opaque, hwaddr addr,
|
|
uint64_t value, unsigned size)
|
|
{
|
|
struct omap_gpmc_cs_file_s *f = (struct omap_gpmc_cs_file_s *)opaque;
|
|
nand_setpins(f->dev, 0, 0, 0, 1, 0);
|
|
omap_nand_setio(f->dev, value, omap_gpmc_devsize(f), size);
|
|
}
|
|
|
|
static const MemoryRegionOps omap_nand_ops = {
|
|
.read = omap_nand_read,
|
|
.write = omap_nand_write,
|
|
.endianness = DEVICE_NATIVE_ENDIAN,
|
|
};
|
|
|
|
static void fill_prefetch_fifo(struct omap_gpmc_s *s)
|
|
{
|
|
/* Fill the prefetch FIFO by reading data from NAND.
|
|
* We do this synchronously, unlike the hardware which
|
|
* will do this asynchronously. We refill when the
|
|
* FIFO has THRESHOLD bytes free, and we always refill
|
|
* as much data as possible starting at the top end
|
|
* of the FIFO.
|
|
* (We have to refill at THRESHOLD rather than waiting
|
|
* for the FIFO to empty to allow for the case where
|
|
* the FIFO size isn't an exact multiple of THRESHOLD
|
|
* and we're doing DMA transfers.)
|
|
* This means we never need to handle wrap-around in
|
|
* the fifo-reading code, and the next byte of data
|
|
* to read is always fifo[63 - fifopointer].
|
|
*/
|
|
int fptr;
|
|
int cs = prefetch_cs(s->prefetch.config1);
|
|
int is16bit = (((s->cs_file[cs].config[0] >> 12) & 3) != 0);
|
|
int bytes;
|
|
/* Don't believe the bit of the OMAP TRM that says that COUNTVALUE
|
|
* and TRANSFERCOUNT are in units of 16 bit words for 16 bit NAND.
|
|
* Instead believe the bit that says it is always a byte count.
|
|
*/
|
|
bytes = 64 - s->prefetch.fifopointer;
|
|
if (bytes > s->prefetch.count) {
|
|
bytes = s->prefetch.count;
|
|
}
|
|
s->prefetch.count -= bytes;
|
|
s->prefetch.fifopointer += bytes;
|
|
fptr = 64 - s->prefetch.fifopointer;
|
|
/* Move the existing data in the FIFO so it sits just
|
|
* before what we're about to read in
|
|
*/
|
|
while (fptr < (64 - bytes)) {
|
|
s->prefetch.fifo[fptr] = s->prefetch.fifo[fptr + bytes];
|
|
fptr++;
|
|
}
|
|
while (fptr < 64) {
|
|
if (is16bit) {
|
|
uint32_t v = omap_nand_read(&s->cs_file[cs], 0, 2);
|
|
s->prefetch.fifo[fptr++] = v & 0xff;
|
|
s->prefetch.fifo[fptr++] = (v >> 8) & 0xff;
|
|
} else {
|
|
s->prefetch.fifo[fptr++] = omap_nand_read(&s->cs_file[cs], 0, 1);
|
|
}
|
|
}
|
|
if (s->prefetch.startengine && (s->prefetch.count == 0)) {
|
|
/* This was the final transfer: raise TERMINALCOUNTSTATUS */
|
|
s->irqst |= 2;
|
|
s->prefetch.startengine = 0;
|
|
}
|
|
/* If there are any bytes in the FIFO at this point then
|
|
* we must raise a DMA request (either this is a final part
|
|
* transfer, or we filled the FIFO in which case we certainly
|
|
* have THRESHOLD bytes available)
|
|
*/
|
|
if (s->prefetch.fifopointer != 0) {
|
|
omap_gpmc_dma_update(s, 1);
|
|
}
|
|
omap_gpmc_int_update(s);
|
|
}
|
|
|
|
/* Access functions for a NAND-like device when the prefetch/postwrite
|
|
* engine is enabled -- all addresses in the region behave alike:
|
|
* data is read or written to the FIFO.
|
|
*/
|
|
static uint64_t omap_gpmc_prefetch_read(void *opaque, hwaddr addr,
|
|
unsigned size)
|
|
{
|
|
struct omap_gpmc_s *s = (struct omap_gpmc_s *) opaque;
|
|
uint32_t data;
|
|
if (s->prefetch.config1 & 1) {
|
|
/* The TRM doesn't define the behaviour if you read from the
|
|
* FIFO when the prefetch engine is in write mode. We choose
|
|
* to always return zero.
|
|
*/
|
|
return 0;
|
|
}
|
|
/* Note that trying to read an empty fifo repeats the last byte */
|
|
if (s->prefetch.fifopointer) {
|
|
s->prefetch.fifopointer--;
|
|
}
|
|
data = s->prefetch.fifo[63 - s->prefetch.fifopointer];
|
|
if (s->prefetch.fifopointer ==
|
|
(64 - prefetch_threshold(s->prefetch.config1))) {
|
|
/* We've drained THRESHOLD bytes now. So deassert the
|
|
* DMA request, then refill the FIFO (which will probably
|
|
* assert it again.)
|
|
*/
|
|
omap_gpmc_dma_update(s, 0);
|
|
fill_prefetch_fifo(s);
|
|
}
|
|
omap_gpmc_int_update(s);
|
|
return data;
|
|
}
|
|
|
|
static void omap_gpmc_prefetch_write(void *opaque, hwaddr addr,
|
|
uint64_t value, unsigned size)
|
|
{
|
|
struct omap_gpmc_s *s = (struct omap_gpmc_s *) opaque;
|
|
int cs = prefetch_cs(s->prefetch.config1);
|
|
if ((s->prefetch.config1 & 1) == 0) {
|
|
/* The TRM doesn't define the behaviour of writing to the
|
|
* FIFO when the prefetch engine is in read mode. We
|
|
* choose to ignore the write.
|
|
*/
|
|
return;
|
|
}
|
|
if (s->prefetch.count == 0) {
|
|
/* The TRM doesn't define the behaviour of writing to the
|
|
* FIFO if the transfer is complete. We choose to ignore.
|
|
*/
|
|
return;
|
|
}
|
|
/* The only reason we do any data buffering in postwrite
|
|
* mode is if we are talking to a 16 bit NAND device, in
|
|
* which case we need to buffer the first byte of the
|
|
* 16 bit word until the other byte arrives.
|
|
*/
|
|
int is16bit = (((s->cs_file[cs].config[0] >> 12) & 3) != 0);
|
|
if (is16bit) {
|
|
/* fifopointer alternates between 64 (waiting for first
|
|
* byte of word) and 63 (waiting for second byte)
|
|
*/
|
|
if (s->prefetch.fifopointer == 64) {
|
|
s->prefetch.fifo[0] = value;
|
|
s->prefetch.fifopointer--;
|
|
} else {
|
|
value = (value << 8) | s->prefetch.fifo[0];
|
|
omap_nand_write(&s->cs_file[cs], 0, value, 2);
|
|
s->prefetch.count--;
|
|
s->prefetch.fifopointer = 64;
|
|
}
|
|
} else {
|
|
/* Just write the byte : fifopointer remains 64 at all times */
|
|
omap_nand_write(&s->cs_file[cs], 0, value, 1);
|
|
s->prefetch.count--;
|
|
}
|
|
if (s->prefetch.count == 0) {
|
|
/* Final transfer: raise TERMINALCOUNTSTATUS */
|
|
s->irqst |= 2;
|
|
s->prefetch.startengine = 0;
|
|
}
|
|
omap_gpmc_int_update(s);
|
|
}
|
|
|
|
static const MemoryRegionOps omap_prefetch_ops = {
|
|
.read = omap_gpmc_prefetch_read,
|
|
.write = omap_gpmc_prefetch_write,
|
|
.endianness = DEVICE_NATIVE_ENDIAN,
|
|
.impl.min_access_size = 1,
|
|
.impl.max_access_size = 1,
|
|
};
|
|
|
|
static MemoryRegion *omap_gpmc_cs_memregion(struct omap_gpmc_s *s, int cs)
|
|
{
|
|
/* Return the MemoryRegion* to map/unmap for this chipselect */
|
|
struct omap_gpmc_cs_file_s *f = &s->cs_file[cs];
|
|
if (omap_gpmc_devtype(f) == OMAP_GPMC_NOR) {
|
|
return f->iomem;
|
|
}
|
|
if ((s->prefetch.config1 & 0x80) &&
|
|
(prefetch_cs(s->prefetch.config1) == cs)) {
|
|
/* The prefetch engine is enabled for this CS: map the FIFO */
|
|
return &s->prefetch.iomem;
|
|
}
|
|
return &f->nandiomem;
|
|
}
|
|
|
|
static void omap_gpmc_cs_map(struct omap_gpmc_s *s, int cs)
|
|
{
|
|
struct omap_gpmc_cs_file_s *f = &s->cs_file[cs];
|
|
uint32_t mask = (f->config[6] >> 8) & 0xf;
|
|
uint32_t base = f->config[6] & 0x3f;
|
|
uint32_t size;
|
|
|
|
if (!f->iomem && !f->dev) {
|
|
return;
|
|
}
|
|
|
|
if (!(f->config[6] & (1 << 6))) {
|
|
/* Do nothing unless CSVALID */
|
|
return;
|
|
}
|
|
|
|
/* TODO: check for overlapping regions and report access errors */
|
|
if (mask != 0x8 && mask != 0xc && mask != 0xe && mask != 0xf
|
|
&& !(s->accept_256 && !mask)) {
|
|
fprintf(stderr, "%s: invalid chip-select mask address (0x%x)\n",
|
|
__func__, mask);
|
|
}
|
|
|
|
base <<= 24;
|
|
size = (0x0fffffff & ~(mask << 24)) + 1;
|
|
/* TODO: rather than setting the size of the mapping (which should be
|
|
* constant), the mask should cause wrapping of the address space, so
|
|
* that the same memory becomes accessible at every <i>size</i> bytes
|
|
* starting from <i>base</i>. */
|
|
memory_region_init(&f->container, NULL, "omap-gpmc-file", size);
|
|
memory_region_add_subregion(&f->container, 0,
|
|
omap_gpmc_cs_memregion(s, cs));
|
|
memory_region_add_subregion(get_system_memory(), base,
|
|
&f->container);
|
|
}
|
|
|
|
static void omap_gpmc_cs_unmap(struct omap_gpmc_s *s, int cs)
|
|
{
|
|
struct omap_gpmc_cs_file_s *f = &s->cs_file[cs];
|
|
if (!(f->config[6] & (1 << 6))) {
|
|
/* Do nothing unless CSVALID */
|
|
return;
|
|
}
|
|
if (!f->iomem && !f->dev) {
|
|
return;
|
|
}
|
|
memory_region_del_subregion(get_system_memory(), &f->container);
|
|
memory_region_del_subregion(&f->container, omap_gpmc_cs_memregion(s, cs));
|
|
memory_region_destroy(&f->container);
|
|
}
|
|
|
|
void omap_gpmc_reset(struct omap_gpmc_s *s)
|
|
{
|
|
int i;
|
|
|
|
s->sysconfig = 0;
|
|
s->irqst = 0;
|
|
s->irqen = 0;
|
|
omap_gpmc_int_update(s);
|
|
for (i = 0; i < 8; i++) {
|
|
/* This has to happen before we change any of the config
|
|
* used to determine which memory regions are mapped or unmapped.
|
|
*/
|
|
omap_gpmc_cs_unmap(s, i);
|
|
}
|
|
s->timeout = 0;
|
|
s->config = 0xa00;
|
|
s->prefetch.config1 = 0x00004000;
|
|
s->prefetch.transfercount = 0x00000000;
|
|
s->prefetch.startengine = 0;
|
|
s->prefetch.fifopointer = 0;
|
|
s->prefetch.count = 0;
|
|
for (i = 0; i < 8; i ++) {
|
|
s->cs_file[i].config[1] = 0x101001;
|
|
s->cs_file[i].config[2] = 0x020201;
|
|
s->cs_file[i].config[3] = 0x10031003;
|
|
s->cs_file[i].config[4] = 0x10f1111;
|
|
s->cs_file[i].config[5] = 0;
|
|
s->cs_file[i].config[6] = 0xf00 | (i ? 0 : 1 << 6);
|
|
|
|
s->cs_file[i].config[6] = 0xf00;
|
|
/* In theory we could probe attached devices for some CFG1
|
|
* bits here, but we just retain them across resets as they
|
|
* were set initially by omap_gpmc_attach().
|
|
*/
|
|
if (i == 0) {
|
|
s->cs_file[i].config[0] &= 0x00433e00;
|
|
s->cs_file[i].config[6] |= 1 << 6; /* CSVALID */
|
|
omap_gpmc_cs_map(s, i);
|
|
} else {
|
|
s->cs_file[i].config[0] &= 0x00403c00;
|
|
}
|
|
}
|
|
s->ecc_cs = 0;
|
|
s->ecc_ptr = 0;
|
|
s->ecc_cfg = 0x3fcff000;
|
|
for (i = 0; i < 9; i ++)
|
|
ecc_reset(&s->ecc[i]);
|
|
}
|
|
|
|
static int gpmc_wordaccess_only(hwaddr addr)
|
|
{
|
|
/* Return true if the register offset is to a register that
|
|
* only permits word width accesses.
|
|
* Non-word accesses are only OK for GPMC_NAND_DATA/ADDRESS/COMMAND
|
|
* for any chipselect.
|
|
*/
|
|
if (addr >= 0x60 && addr <= 0x1d4) {
|
|
int cs = (addr - 0x60) / 0x30;
|
|
addr -= cs * 0x30;
|
|
if (addr >= 0x7c && addr < 0x88) {
|
|
/* GPMC_NAND_COMMAND, GPMC_NAND_ADDRESS, GPMC_NAND_DATA */
|
|
return 0;
|
|
}
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
static uint64_t omap_gpmc_read(void *opaque, hwaddr addr,
|
|
unsigned size)
|
|
{
|
|
struct omap_gpmc_s *s = (struct omap_gpmc_s *) opaque;
|
|
int cs;
|
|
struct omap_gpmc_cs_file_s *f;
|
|
|
|
if (size != 4 && gpmc_wordaccess_only(addr)) {
|
|
return omap_badwidth_read32(opaque, addr);
|
|
}
|
|
|
|
switch (addr) {
|
|
case 0x000: /* GPMC_REVISION */
|
|
return s->revision;
|
|
|
|
case 0x010: /* GPMC_SYSCONFIG */
|
|
return s->sysconfig;
|
|
|
|
case 0x014: /* GPMC_SYSSTATUS */
|
|
return 1; /* RESETDONE */
|
|
|
|
case 0x018: /* GPMC_IRQSTATUS */
|
|
return s->irqst;
|
|
|
|
case 0x01c: /* GPMC_IRQENABLE */
|
|
return s->irqen;
|
|
|
|
case 0x040: /* GPMC_TIMEOUT_CONTROL */
|
|
return s->timeout;
|
|
|
|
case 0x044: /* GPMC_ERR_ADDRESS */
|
|
case 0x048: /* GPMC_ERR_TYPE */
|
|
return 0;
|
|
|
|
case 0x050: /* GPMC_CONFIG */
|
|
return s->config;
|
|
|
|
case 0x054: /* GPMC_STATUS */
|
|
return 0x001;
|
|
|
|
case 0x060 ... 0x1d4:
|
|
cs = (addr - 0x060) / 0x30;
|
|
addr -= cs * 0x30;
|
|
f = s->cs_file + cs;
|
|
switch (addr) {
|
|
case 0x60: /* GPMC_CONFIG1 */
|
|
return f->config[0];
|
|
case 0x64: /* GPMC_CONFIG2 */
|
|
return f->config[1];
|
|
case 0x68: /* GPMC_CONFIG3 */
|
|
return f->config[2];
|
|
case 0x6c: /* GPMC_CONFIG4 */
|
|
return f->config[3];
|
|
case 0x70: /* GPMC_CONFIG5 */
|
|
return f->config[4];
|
|
case 0x74: /* GPMC_CONFIG6 */
|
|
return f->config[5];
|
|
case 0x78: /* GPMC_CONFIG7 */
|
|
return f->config[6];
|
|
case 0x84 ... 0x87: /* GPMC_NAND_DATA */
|
|
if (omap_gpmc_devtype(f) == OMAP_GPMC_NAND) {
|
|
return omap_nand_read(f, 0, size);
|
|
}
|
|
return 0;
|
|
}
|
|
break;
|
|
|
|
case 0x1e0: /* GPMC_PREFETCH_CONFIG1 */
|
|
return s->prefetch.config1;
|
|
case 0x1e4: /* GPMC_PREFETCH_CONFIG2 */
|
|
return s->prefetch.transfercount;
|
|
case 0x1ec: /* GPMC_PREFETCH_CONTROL */
|
|
return s->prefetch.startengine;
|
|
case 0x1f0: /* GPMC_PREFETCH_STATUS */
|
|
/* NB: The OMAP3 TRM is inconsistent about whether the GPMC
|
|
* FIFOTHRESHOLDSTATUS bit should be set when
|
|
* FIFOPOINTER > FIFOTHRESHOLD or when it is >= FIFOTHRESHOLD.
|
|
* Apparently the underlying functional spec from which the TRM was
|
|
* created states that the behaviour is ">=", and this also
|
|
* makes more conceptual sense.
|
|
*/
|
|
return (s->prefetch.fifopointer << 24) |
|
|
((s->prefetch.fifopointer >=
|
|
((s->prefetch.config1 >> 8) & 0x7f) ? 1 : 0) << 16) |
|
|
s->prefetch.count;
|
|
|
|
case 0x1f4: /* GPMC_ECC_CONFIG */
|
|
return s->ecc_cs;
|
|
case 0x1f8: /* GPMC_ECC_CONTROL */
|
|
return s->ecc_ptr;
|
|
case 0x1fc: /* GPMC_ECC_SIZE_CONFIG */
|
|
return s->ecc_cfg;
|
|
case 0x200 ... 0x220: /* GPMC_ECC_RESULT */
|
|
cs = (addr & 0x1f) >> 2;
|
|
/* TODO: check correctness */
|
|
return
|
|
((s->ecc[cs].cp & 0x07) << 0) |
|
|
((s->ecc[cs].cp & 0x38) << 13) |
|
|
((s->ecc[cs].lp[0] & 0x1ff) << 3) |
|
|
((s->ecc[cs].lp[1] & 0x1ff) << 19);
|
|
|
|
case 0x230: /* GPMC_TESTMODE_CTRL */
|
|
return 0;
|
|
case 0x234: /* GPMC_PSA_LSB */
|
|
case 0x238: /* GPMC_PSA_MSB */
|
|
return 0x00000000;
|
|
}
|
|
|
|
OMAP_BAD_REG(addr);
|
|
return 0;
|
|
}
|
|
|
|
static void omap_gpmc_write(void *opaque, hwaddr addr,
|
|
uint64_t value, unsigned size)
|
|
{
|
|
struct omap_gpmc_s *s = (struct omap_gpmc_s *) opaque;
|
|
int cs;
|
|
struct omap_gpmc_cs_file_s *f;
|
|
|
|
if (size != 4 && gpmc_wordaccess_only(addr)) {
|
|
return omap_badwidth_write32(opaque, addr, value);
|
|
}
|
|
|
|
switch (addr) {
|
|
case 0x000: /* GPMC_REVISION */
|
|
case 0x014: /* GPMC_SYSSTATUS */
|
|
case 0x054: /* GPMC_STATUS */
|
|
case 0x1f0: /* GPMC_PREFETCH_STATUS */
|
|
case 0x200 ... 0x220: /* GPMC_ECC_RESULT */
|
|
case 0x234: /* GPMC_PSA_LSB */
|
|
case 0x238: /* GPMC_PSA_MSB */
|
|
OMAP_RO_REG(addr);
|
|
break;
|
|
|
|
case 0x010: /* GPMC_SYSCONFIG */
|
|
if ((value >> 3) == 0x3)
|
|
fprintf(stderr, "%s: bad SDRAM idle mode %"PRIi64"\n",
|
|
__FUNCTION__, value >> 3);
|
|
if (value & 2)
|
|
omap_gpmc_reset(s);
|
|
s->sysconfig = value & 0x19;
|
|
break;
|
|
|
|
case 0x018: /* GPMC_IRQSTATUS */
|
|
s->irqst &= ~value;
|
|
omap_gpmc_int_update(s);
|
|
break;
|
|
|
|
case 0x01c: /* GPMC_IRQENABLE */
|
|
s->irqen = value & 0xf03;
|
|
omap_gpmc_int_update(s);
|
|
break;
|
|
|
|
case 0x040: /* GPMC_TIMEOUT_CONTROL */
|
|
s->timeout = value & 0x1ff1;
|
|
break;
|
|
|
|
case 0x044: /* GPMC_ERR_ADDRESS */
|
|
case 0x048: /* GPMC_ERR_TYPE */
|
|
break;
|
|
|
|
case 0x050: /* GPMC_CONFIG */
|
|
s->config = value & 0xf13;
|
|
break;
|
|
|
|
case 0x060 ... 0x1d4:
|
|
cs = (addr - 0x060) / 0x30;
|
|
addr -= cs * 0x30;
|
|
f = s->cs_file + cs;
|
|
switch (addr) {
|
|
case 0x60: /* GPMC_CONFIG1 */
|
|
f->config[0] = value & 0xffef3e13;
|
|
break;
|
|
case 0x64: /* GPMC_CONFIG2 */
|
|
f->config[1] = value & 0x001f1f8f;
|
|
break;
|
|
case 0x68: /* GPMC_CONFIG3 */
|
|
f->config[2] = value & 0x001f1f8f;
|
|
break;
|
|
case 0x6c: /* GPMC_CONFIG4 */
|
|
f->config[3] = value & 0x1f8f1f8f;
|
|
break;
|
|
case 0x70: /* GPMC_CONFIG5 */
|
|
f->config[4] = value & 0x0f1f1f1f;
|
|
break;
|
|
case 0x74: /* GPMC_CONFIG6 */
|
|
f->config[5] = value & 0x00000fcf;
|
|
break;
|
|
case 0x78: /* GPMC_CONFIG7 */
|
|
if ((f->config[6] ^ value) & 0xf7f) {
|
|
omap_gpmc_cs_unmap(s, cs);
|
|
f->config[6] = value & 0x00000f7f;
|
|
omap_gpmc_cs_map(s, cs);
|
|
}
|
|
break;
|
|
case 0x7c ... 0x7f: /* GPMC_NAND_COMMAND */
|
|
if (omap_gpmc_devtype(f) == OMAP_GPMC_NAND) {
|
|
nand_setpins(f->dev, 1, 0, 0, 1, 0); /* CLE */
|
|
omap_nand_setio(f->dev, value, omap_gpmc_devsize(f), size);
|
|
}
|
|
break;
|
|
case 0x80 ... 0x83: /* GPMC_NAND_ADDRESS */
|
|
if (omap_gpmc_devtype(f) == OMAP_GPMC_NAND) {
|
|
nand_setpins(f->dev, 0, 1, 0, 1, 0); /* ALE */
|
|
omap_nand_setio(f->dev, value, omap_gpmc_devsize(f), size);
|
|
}
|
|
break;
|
|
case 0x84 ... 0x87: /* GPMC_NAND_DATA */
|
|
if (omap_gpmc_devtype(f) == OMAP_GPMC_NAND) {
|
|
omap_nand_write(f, 0, value, size);
|
|
}
|
|
break;
|
|
default:
|
|
goto bad_reg;
|
|
}
|
|
break;
|
|
|
|
case 0x1e0: /* GPMC_PREFETCH_CONFIG1 */
|
|
if (!s->prefetch.startengine) {
|
|
uint32_t newconfig1 = value & 0x7f8f7fbf;
|
|
uint32_t changed;
|
|
changed = newconfig1 ^ s->prefetch.config1;
|
|
if (changed & (0x80 | 0x7000000)) {
|
|
/* Turning the engine on or off, or mapping it somewhere else.
|
|
* cs_map() and cs_unmap() check the prefetch config and
|
|
* overall CSVALID bits, so it is sufficient to unmap-and-map
|
|
* both the old cs and the new one. Note that we adhere to
|
|
* the "unmap/change config/map" order (and not unmap twice
|
|
* if newcs == oldcs), otherwise we'll try to delete the wrong
|
|
* memory region.
|
|
*/
|
|
int oldcs = prefetch_cs(s->prefetch.config1);
|
|
int newcs = prefetch_cs(newconfig1);
|
|
omap_gpmc_cs_unmap(s, oldcs);
|
|
if (oldcs != newcs) {
|
|
omap_gpmc_cs_unmap(s, newcs);
|
|
}
|
|
s->prefetch.config1 = newconfig1;
|
|
omap_gpmc_cs_map(s, oldcs);
|
|
if (oldcs != newcs) {
|
|
omap_gpmc_cs_map(s, newcs);
|
|
}
|
|
} else {
|
|
s->prefetch.config1 = newconfig1;
|
|
}
|
|
}
|
|
break;
|
|
|
|
case 0x1e4: /* GPMC_PREFETCH_CONFIG2 */
|
|
if (!s->prefetch.startengine) {
|
|
s->prefetch.transfercount = value & 0x3fff;
|
|
}
|
|
break;
|
|
|
|
case 0x1ec: /* GPMC_PREFETCH_CONTROL */
|
|
if (s->prefetch.startengine != (value & 1)) {
|
|
s->prefetch.startengine = value & 1;
|
|
if (s->prefetch.startengine) {
|
|
/* Prefetch engine start */
|
|
s->prefetch.count = s->prefetch.transfercount;
|
|
if (s->prefetch.config1 & 1) {
|
|
/* Write */
|
|
s->prefetch.fifopointer = 64;
|
|
} else {
|
|
/* Read */
|
|
s->prefetch.fifopointer = 0;
|
|
fill_prefetch_fifo(s);
|
|
}
|
|
} else {
|
|
/* Prefetch engine forcibly stopped. The TRM
|
|
* doesn't define the behaviour if you do this.
|
|
* We clear the prefetch count, which means that
|
|
* we permit no more writes, and don't read any
|
|
* more data from NAND. The CPU can still drain
|
|
* the FIFO of unread data.
|
|
*/
|
|
s->prefetch.count = 0;
|
|
}
|
|
omap_gpmc_int_update(s);
|
|
}
|
|
break;
|
|
|
|
case 0x1f4: /* GPMC_ECC_CONFIG */
|
|
s->ecc_cs = 0x8f;
|
|
break;
|
|
case 0x1f8: /* GPMC_ECC_CONTROL */
|
|
if (value & (1 << 8))
|
|
for (cs = 0; cs < 9; cs ++)
|
|
ecc_reset(&s->ecc[cs]);
|
|
s->ecc_ptr = value & 0xf;
|
|
if (s->ecc_ptr == 0 || s->ecc_ptr > 9) {
|
|
s->ecc_ptr = 0;
|
|
s->ecc_cs &= ~1;
|
|
}
|
|
break;
|
|
case 0x1fc: /* GPMC_ECC_SIZE_CONFIG */
|
|
s->ecc_cfg = value & 0x3fcff1ff;
|
|
break;
|
|
case 0x230: /* GPMC_TESTMODE_CTRL */
|
|
if (value & 7)
|
|
fprintf(stderr, "%s: test mode enable attempt\n", __FUNCTION__);
|
|
break;
|
|
|
|
default:
|
|
bad_reg:
|
|
OMAP_BAD_REG(addr);
|
|
return;
|
|
}
|
|
}
|
|
|
|
static const MemoryRegionOps omap_gpmc_ops = {
|
|
.read = omap_gpmc_read,
|
|
.write = omap_gpmc_write,
|
|
.endianness = DEVICE_NATIVE_ENDIAN,
|
|
};
|
|
|
|
struct omap_gpmc_s *omap_gpmc_init(struct omap_mpu_state_s *mpu,
|
|
hwaddr base,
|
|
qemu_irq irq, qemu_irq drq)
|
|
{
|
|
int cs;
|
|
struct omap_gpmc_s *s = (struct omap_gpmc_s *)
|
|
g_malloc0(sizeof(struct omap_gpmc_s));
|
|
|
|
memory_region_init_io(&s->iomem, NULL, &omap_gpmc_ops, s, "omap-gpmc", 0x1000);
|
|
memory_region_add_subregion(get_system_memory(), base, &s->iomem);
|
|
|
|
s->irq = irq;
|
|
s->drq = drq;
|
|
s->accept_256 = cpu_is_omap3630(mpu);
|
|
s->revision = cpu_class_omap3(mpu) ? 0x50 : 0x20;
|
|
s->lastirq = 0;
|
|
omap_gpmc_reset(s);
|
|
|
|
/* We have to register a different IO memory handler for each
|
|
* chip select region in case a NAND device is mapped there. We
|
|
* make the region the worst-case size of 256MB and rely on the
|
|
* container memory region in cs_map to chop it down to the actual
|
|
* guest-requested size.
|
|
*/
|
|
for (cs = 0; cs < 8; cs++) {
|
|
memory_region_init_io(&s->cs_file[cs].nandiomem, NULL,
|
|
&omap_nand_ops,
|
|
&s->cs_file[cs],
|
|
"omap-nand",
|
|
256 * 1024 * 1024);
|
|
}
|
|
|
|
memory_region_init_io(&s->prefetch.iomem, NULL, &omap_prefetch_ops, s,
|
|
"omap-gpmc-prefetch", 256 * 1024 * 1024);
|
|
return s;
|
|
}
|
|
|
|
void omap_gpmc_attach(struct omap_gpmc_s *s, int cs, MemoryRegion *iomem)
|
|
{
|
|
struct omap_gpmc_cs_file_s *f;
|
|
assert(iomem);
|
|
|
|
if (cs < 0 || cs >= 8) {
|
|
fprintf(stderr, "%s: bad chip-select %i\n", __FUNCTION__, cs);
|
|
exit(-1);
|
|
}
|
|
f = &s->cs_file[cs];
|
|
|
|
omap_gpmc_cs_unmap(s, cs);
|
|
f->config[0] &= ~(0xf << 10);
|
|
f->iomem = iomem;
|
|
omap_gpmc_cs_map(s, cs);
|
|
}
|
|
|
|
void omap_gpmc_attach_nand(struct omap_gpmc_s *s, int cs, DeviceState *nand)
|
|
{
|
|
struct omap_gpmc_cs_file_s *f;
|
|
assert(nand);
|
|
|
|
if (cs < 0 || cs >= 8) {
|
|
fprintf(stderr, "%s: bad chip-select %i\n", __func__, cs);
|
|
exit(-1);
|
|
}
|
|
f = &s->cs_file[cs];
|
|
|
|
omap_gpmc_cs_unmap(s, cs);
|
|
f->config[0] &= ~(0xf << 10);
|
|
f->config[0] |= (OMAP_GPMC_NAND << 10);
|
|
f->dev = nand;
|
|
if (nand_getbuswidth(f->dev) == 16) {
|
|
f->config[0] |= OMAP_GPMC_16BIT << 12;
|
|
}
|
|
omap_gpmc_cs_map(s, cs);
|
|
}
|