1a1753f747
This adds the saving and restore of the current Multi-Processing state of the machine. While the KVM_GET/SET_MP_STATE API exposes a number of potential states for x86 we only use two for ARM. Either the process is running or not. We then save this state into the cpu_powered TCG state to avoid changing the serialisation format. Signed-off-by: Alex Bennée <alex.bennee@linaro.org> Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
601 lines
15 KiB
C
601 lines
15 KiB
C
/*
|
|
* ARM implementation of KVM hooks
|
|
*
|
|
* Copyright Christoffer Dall 2009-2010
|
|
*
|
|
* This work is licensed under the terms of the GNU GPL, version 2 or later.
|
|
* See the COPYING file in the top-level directory.
|
|
*
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include <sys/types.h>
|
|
#include <sys/ioctl.h>
|
|
#include <sys/mman.h>
|
|
|
|
#include <linux/kvm.h>
|
|
|
|
#include "qemu-common.h"
|
|
#include "qemu/timer.h"
|
|
#include "sysemu/sysemu.h"
|
|
#include "sysemu/kvm.h"
|
|
#include "kvm_arm.h"
|
|
#include "cpu.h"
|
|
#include "internals.h"
|
|
#include "hw/arm/arm.h"
|
|
|
|
const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
|
|
KVM_CAP_LAST_INFO
|
|
};
|
|
|
|
static bool cap_has_mp_state;
|
|
|
|
int kvm_arm_vcpu_init(CPUState *cs)
|
|
{
|
|
ARMCPU *cpu = ARM_CPU(cs);
|
|
struct kvm_vcpu_init init;
|
|
|
|
init.target = cpu->kvm_target;
|
|
memcpy(init.features, cpu->kvm_init_features, sizeof(init.features));
|
|
|
|
return kvm_vcpu_ioctl(cs, KVM_ARM_VCPU_INIT, &init);
|
|
}
|
|
|
|
bool kvm_arm_create_scratch_host_vcpu(const uint32_t *cpus_to_try,
|
|
int *fdarray,
|
|
struct kvm_vcpu_init *init)
|
|
{
|
|
int ret, kvmfd = -1, vmfd = -1, cpufd = -1;
|
|
|
|
kvmfd = qemu_open("/dev/kvm", O_RDWR);
|
|
if (kvmfd < 0) {
|
|
goto err;
|
|
}
|
|
vmfd = ioctl(kvmfd, KVM_CREATE_VM, 0);
|
|
if (vmfd < 0) {
|
|
goto err;
|
|
}
|
|
cpufd = ioctl(vmfd, KVM_CREATE_VCPU, 0);
|
|
if (cpufd < 0) {
|
|
goto err;
|
|
}
|
|
|
|
ret = ioctl(vmfd, KVM_ARM_PREFERRED_TARGET, init);
|
|
if (ret >= 0) {
|
|
ret = ioctl(cpufd, KVM_ARM_VCPU_INIT, init);
|
|
if (ret < 0) {
|
|
goto err;
|
|
}
|
|
} else {
|
|
/* Old kernel which doesn't know about the
|
|
* PREFERRED_TARGET ioctl: we know it will only support
|
|
* creating one kind of guest CPU which is its preferred
|
|
* CPU type.
|
|
*/
|
|
while (*cpus_to_try != QEMU_KVM_ARM_TARGET_NONE) {
|
|
init->target = *cpus_to_try++;
|
|
memset(init->features, 0, sizeof(init->features));
|
|
ret = ioctl(cpufd, KVM_ARM_VCPU_INIT, init);
|
|
if (ret >= 0) {
|
|
break;
|
|
}
|
|
}
|
|
if (ret < 0) {
|
|
goto err;
|
|
}
|
|
}
|
|
|
|
fdarray[0] = kvmfd;
|
|
fdarray[1] = vmfd;
|
|
fdarray[2] = cpufd;
|
|
|
|
return true;
|
|
|
|
err:
|
|
if (cpufd >= 0) {
|
|
close(cpufd);
|
|
}
|
|
if (vmfd >= 0) {
|
|
close(vmfd);
|
|
}
|
|
if (kvmfd >= 0) {
|
|
close(kvmfd);
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
void kvm_arm_destroy_scratch_host_vcpu(int *fdarray)
|
|
{
|
|
int i;
|
|
|
|
for (i = 2; i >= 0; i--) {
|
|
close(fdarray[i]);
|
|
}
|
|
}
|
|
|
|
static void kvm_arm_host_cpu_class_init(ObjectClass *oc, void *data)
|
|
{
|
|
ARMHostCPUClass *ahcc = ARM_HOST_CPU_CLASS(oc);
|
|
|
|
/* All we really need to set up for the 'host' CPU
|
|
* is the feature bits -- we rely on the fact that the
|
|
* various ID register values in ARMCPU are only used for
|
|
* TCG CPUs.
|
|
*/
|
|
if (!kvm_arm_get_host_cpu_features(ahcc)) {
|
|
fprintf(stderr, "Failed to retrieve host CPU features!\n");
|
|
abort();
|
|
}
|
|
}
|
|
|
|
static void kvm_arm_host_cpu_initfn(Object *obj)
|
|
{
|
|
ARMHostCPUClass *ahcc = ARM_HOST_CPU_GET_CLASS(obj);
|
|
ARMCPU *cpu = ARM_CPU(obj);
|
|
CPUARMState *env = &cpu->env;
|
|
|
|
cpu->kvm_target = ahcc->target;
|
|
cpu->dtb_compatible = ahcc->dtb_compatible;
|
|
env->features = ahcc->features;
|
|
}
|
|
|
|
static const TypeInfo host_arm_cpu_type_info = {
|
|
.name = TYPE_ARM_HOST_CPU,
|
|
#ifdef TARGET_AARCH64
|
|
.parent = TYPE_AARCH64_CPU,
|
|
#else
|
|
.parent = TYPE_ARM_CPU,
|
|
#endif
|
|
.instance_init = kvm_arm_host_cpu_initfn,
|
|
.class_init = kvm_arm_host_cpu_class_init,
|
|
.class_size = sizeof(ARMHostCPUClass),
|
|
};
|
|
|
|
int kvm_arch_init(MachineState *ms, KVMState *s)
|
|
{
|
|
/* For ARM interrupt delivery is always asynchronous,
|
|
* whether we are using an in-kernel VGIC or not.
|
|
*/
|
|
kvm_async_interrupts_allowed = true;
|
|
|
|
cap_has_mp_state = kvm_check_extension(s, KVM_CAP_MP_STATE);
|
|
|
|
type_register_static(&host_arm_cpu_type_info);
|
|
|
|
return 0;
|
|
}
|
|
|
|
unsigned long kvm_arch_vcpu_id(CPUState *cpu)
|
|
{
|
|
return cpu->cpu_index;
|
|
}
|
|
|
|
/* We track all the KVM devices which need their memory addresses
|
|
* passing to the kernel in a list of these structures.
|
|
* When board init is complete we run through the list and
|
|
* tell the kernel the base addresses of the memory regions.
|
|
* We use a MemoryListener to track mapping and unmapping of
|
|
* the regions during board creation, so the board models don't
|
|
* need to do anything special for the KVM case.
|
|
*/
|
|
typedef struct KVMDevice {
|
|
struct kvm_arm_device_addr kda;
|
|
struct kvm_device_attr kdattr;
|
|
MemoryRegion *mr;
|
|
QSLIST_ENTRY(KVMDevice) entries;
|
|
int dev_fd;
|
|
} KVMDevice;
|
|
|
|
static QSLIST_HEAD(kvm_devices_head, KVMDevice) kvm_devices_head;
|
|
|
|
static void kvm_arm_devlistener_add(MemoryListener *listener,
|
|
MemoryRegionSection *section)
|
|
{
|
|
KVMDevice *kd;
|
|
|
|
QSLIST_FOREACH(kd, &kvm_devices_head, entries) {
|
|
if (section->mr == kd->mr) {
|
|
kd->kda.addr = section->offset_within_address_space;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void kvm_arm_devlistener_del(MemoryListener *listener,
|
|
MemoryRegionSection *section)
|
|
{
|
|
KVMDevice *kd;
|
|
|
|
QSLIST_FOREACH(kd, &kvm_devices_head, entries) {
|
|
if (section->mr == kd->mr) {
|
|
kd->kda.addr = -1;
|
|
}
|
|
}
|
|
}
|
|
|
|
static MemoryListener devlistener = {
|
|
.region_add = kvm_arm_devlistener_add,
|
|
.region_del = kvm_arm_devlistener_del,
|
|
};
|
|
|
|
static void kvm_arm_set_device_addr(KVMDevice *kd)
|
|
{
|
|
struct kvm_device_attr *attr = &kd->kdattr;
|
|
int ret;
|
|
|
|
/* If the device control API is available and we have a device fd on the
|
|
* KVMDevice struct, let's use the newer API
|
|
*/
|
|
if (kd->dev_fd >= 0) {
|
|
uint64_t addr = kd->kda.addr;
|
|
attr->addr = (uintptr_t)&addr;
|
|
ret = kvm_device_ioctl(kd->dev_fd, KVM_SET_DEVICE_ATTR, attr);
|
|
} else {
|
|
ret = kvm_vm_ioctl(kvm_state, KVM_ARM_SET_DEVICE_ADDR, &kd->kda);
|
|
}
|
|
|
|
if (ret < 0) {
|
|
fprintf(stderr, "Failed to set device address: %s\n",
|
|
strerror(-ret));
|
|
abort();
|
|
}
|
|
}
|
|
|
|
static void kvm_arm_machine_init_done(Notifier *notifier, void *data)
|
|
{
|
|
KVMDevice *kd, *tkd;
|
|
|
|
memory_listener_unregister(&devlistener);
|
|
QSLIST_FOREACH_SAFE(kd, &kvm_devices_head, entries, tkd) {
|
|
if (kd->kda.addr != -1) {
|
|
kvm_arm_set_device_addr(kd);
|
|
}
|
|
memory_region_unref(kd->mr);
|
|
g_free(kd);
|
|
}
|
|
}
|
|
|
|
static Notifier notify = {
|
|
.notify = kvm_arm_machine_init_done,
|
|
};
|
|
|
|
void kvm_arm_register_device(MemoryRegion *mr, uint64_t devid, uint64_t group,
|
|
uint64_t attr, int dev_fd)
|
|
{
|
|
KVMDevice *kd;
|
|
|
|
if (!kvm_irqchip_in_kernel()) {
|
|
return;
|
|
}
|
|
|
|
if (QSLIST_EMPTY(&kvm_devices_head)) {
|
|
memory_listener_register(&devlistener, NULL);
|
|
qemu_add_machine_init_done_notifier(¬ify);
|
|
}
|
|
kd = g_new0(KVMDevice, 1);
|
|
kd->mr = mr;
|
|
kd->kda.id = devid;
|
|
kd->kda.addr = -1;
|
|
kd->kdattr.flags = 0;
|
|
kd->kdattr.group = group;
|
|
kd->kdattr.attr = attr;
|
|
kd->dev_fd = dev_fd;
|
|
QSLIST_INSERT_HEAD(&kvm_devices_head, kd, entries);
|
|
memory_region_ref(kd->mr);
|
|
}
|
|
|
|
static int compare_u64(const void *a, const void *b)
|
|
{
|
|
if (*(uint64_t *)a > *(uint64_t *)b) {
|
|
return 1;
|
|
}
|
|
if (*(uint64_t *)a < *(uint64_t *)b) {
|
|
return -1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* Initialize the CPUState's cpreg list according to the kernel's
|
|
* definition of what CPU registers it knows about (and throw away
|
|
* the previous TCG-created cpreg list).
|
|
*/
|
|
int kvm_arm_init_cpreg_list(ARMCPU *cpu)
|
|
{
|
|
struct kvm_reg_list rl;
|
|
struct kvm_reg_list *rlp;
|
|
int i, ret, arraylen;
|
|
CPUState *cs = CPU(cpu);
|
|
|
|
rl.n = 0;
|
|
ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, &rl);
|
|
if (ret != -E2BIG) {
|
|
return ret;
|
|
}
|
|
rlp = g_malloc(sizeof(struct kvm_reg_list) + rl.n * sizeof(uint64_t));
|
|
rlp->n = rl.n;
|
|
ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, rlp);
|
|
if (ret) {
|
|
goto out;
|
|
}
|
|
/* Sort the list we get back from the kernel, since cpreg_tuples
|
|
* must be in strictly ascending order.
|
|
*/
|
|
qsort(&rlp->reg, rlp->n, sizeof(rlp->reg[0]), compare_u64);
|
|
|
|
for (i = 0, arraylen = 0; i < rlp->n; i++) {
|
|
if (!kvm_arm_reg_syncs_via_cpreg_list(rlp->reg[i])) {
|
|
continue;
|
|
}
|
|
switch (rlp->reg[i] & KVM_REG_SIZE_MASK) {
|
|
case KVM_REG_SIZE_U32:
|
|
case KVM_REG_SIZE_U64:
|
|
break;
|
|
default:
|
|
fprintf(stderr, "Can't handle size of register in kernel list\n");
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
arraylen++;
|
|
}
|
|
|
|
cpu->cpreg_indexes = g_renew(uint64_t, cpu->cpreg_indexes, arraylen);
|
|
cpu->cpreg_values = g_renew(uint64_t, cpu->cpreg_values, arraylen);
|
|
cpu->cpreg_vmstate_indexes = g_renew(uint64_t, cpu->cpreg_vmstate_indexes,
|
|
arraylen);
|
|
cpu->cpreg_vmstate_values = g_renew(uint64_t, cpu->cpreg_vmstate_values,
|
|
arraylen);
|
|
cpu->cpreg_array_len = arraylen;
|
|
cpu->cpreg_vmstate_array_len = arraylen;
|
|
|
|
for (i = 0, arraylen = 0; i < rlp->n; i++) {
|
|
uint64_t regidx = rlp->reg[i];
|
|
if (!kvm_arm_reg_syncs_via_cpreg_list(regidx)) {
|
|
continue;
|
|
}
|
|
cpu->cpreg_indexes[arraylen] = regidx;
|
|
arraylen++;
|
|
}
|
|
assert(cpu->cpreg_array_len == arraylen);
|
|
|
|
if (!write_kvmstate_to_list(cpu)) {
|
|
/* Shouldn't happen unless kernel is inconsistent about
|
|
* what registers exist.
|
|
*/
|
|
fprintf(stderr, "Initial read of kernel register state failed\n");
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
out:
|
|
g_free(rlp);
|
|
return ret;
|
|
}
|
|
|
|
bool write_kvmstate_to_list(ARMCPU *cpu)
|
|
{
|
|
CPUState *cs = CPU(cpu);
|
|
int i;
|
|
bool ok = true;
|
|
|
|
for (i = 0; i < cpu->cpreg_array_len; i++) {
|
|
struct kvm_one_reg r;
|
|
uint64_t regidx = cpu->cpreg_indexes[i];
|
|
uint32_t v32;
|
|
int ret;
|
|
|
|
r.id = regidx;
|
|
|
|
switch (regidx & KVM_REG_SIZE_MASK) {
|
|
case KVM_REG_SIZE_U32:
|
|
r.addr = (uintptr_t)&v32;
|
|
ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
|
|
if (!ret) {
|
|
cpu->cpreg_values[i] = v32;
|
|
}
|
|
break;
|
|
case KVM_REG_SIZE_U64:
|
|
r.addr = (uintptr_t)(cpu->cpreg_values + i);
|
|
ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
|
|
break;
|
|
default:
|
|
abort();
|
|
}
|
|
if (ret) {
|
|
ok = false;
|
|
}
|
|
}
|
|
return ok;
|
|
}
|
|
|
|
bool write_list_to_kvmstate(ARMCPU *cpu)
|
|
{
|
|
CPUState *cs = CPU(cpu);
|
|
int i;
|
|
bool ok = true;
|
|
|
|
for (i = 0; i < cpu->cpreg_array_len; i++) {
|
|
struct kvm_one_reg r;
|
|
uint64_t regidx = cpu->cpreg_indexes[i];
|
|
uint32_t v32;
|
|
int ret;
|
|
|
|
r.id = regidx;
|
|
switch (regidx & KVM_REG_SIZE_MASK) {
|
|
case KVM_REG_SIZE_U32:
|
|
v32 = cpu->cpreg_values[i];
|
|
r.addr = (uintptr_t)&v32;
|
|
break;
|
|
case KVM_REG_SIZE_U64:
|
|
r.addr = (uintptr_t)(cpu->cpreg_values + i);
|
|
break;
|
|
default:
|
|
abort();
|
|
}
|
|
ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r);
|
|
if (ret) {
|
|
/* We might fail for "unknown register" and also for
|
|
* "you tried to set a register which is constant with
|
|
* a different value from what it actually contains".
|
|
*/
|
|
ok = false;
|
|
}
|
|
}
|
|
return ok;
|
|
}
|
|
|
|
void kvm_arm_reset_vcpu(ARMCPU *cpu)
|
|
{
|
|
int ret;
|
|
|
|
/* Re-init VCPU so that all registers are set to
|
|
* their respective reset values.
|
|
*/
|
|
ret = kvm_arm_vcpu_init(CPU(cpu));
|
|
if (ret < 0) {
|
|
fprintf(stderr, "kvm_arm_vcpu_init failed: %s\n", strerror(-ret));
|
|
abort();
|
|
}
|
|
if (!write_kvmstate_to_list(cpu)) {
|
|
fprintf(stderr, "write_kvmstate_to_list failed\n");
|
|
abort();
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Update KVM's MP_STATE based on what QEMU thinks it is
|
|
*/
|
|
int kvm_arm_sync_mpstate_to_kvm(ARMCPU *cpu)
|
|
{
|
|
if (cap_has_mp_state) {
|
|
struct kvm_mp_state mp_state = {
|
|
.mp_state =
|
|
cpu->powered_off ? KVM_MP_STATE_STOPPED : KVM_MP_STATE_RUNNABLE
|
|
};
|
|
int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
|
|
if (ret) {
|
|
fprintf(stderr, "%s: failed to set MP_STATE %d/%s\n",
|
|
__func__, ret, strerror(-ret));
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Sync the KVM MP_STATE into QEMU
|
|
*/
|
|
int kvm_arm_sync_mpstate_to_qemu(ARMCPU *cpu)
|
|
{
|
|
if (cap_has_mp_state) {
|
|
struct kvm_mp_state mp_state;
|
|
int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MP_STATE, &mp_state);
|
|
if (ret) {
|
|
fprintf(stderr, "%s: failed to get MP_STATE %d/%s\n",
|
|
__func__, ret, strerror(-ret));
|
|
abort();
|
|
}
|
|
cpu->powered_off = (mp_state.mp_state == KVM_MP_STATE_STOPPED);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
void kvm_arch_pre_run(CPUState *cs, struct kvm_run *run)
|
|
{
|
|
}
|
|
|
|
void kvm_arch_post_run(CPUState *cs, struct kvm_run *run)
|
|
{
|
|
}
|
|
|
|
int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
bool kvm_arch_stop_on_emulation_error(CPUState *cs)
|
|
{
|
|
return true;
|
|
}
|
|
|
|
int kvm_arch_process_async_events(CPUState *cs)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
int kvm_arch_on_sigbus_vcpu(CPUState *cs, int code, void *addr)
|
|
{
|
|
return 1;
|
|
}
|
|
|
|
int kvm_arch_on_sigbus(int code, void *addr)
|
|
{
|
|
return 1;
|
|
}
|
|
|
|
void kvm_arch_update_guest_debug(CPUState *cs, struct kvm_guest_debug *dbg)
|
|
{
|
|
qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__);
|
|
}
|
|
|
|
int kvm_arch_insert_sw_breakpoint(CPUState *cs,
|
|
struct kvm_sw_breakpoint *bp)
|
|
{
|
|
qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__);
|
|
return -EINVAL;
|
|
}
|
|
|
|
int kvm_arch_insert_hw_breakpoint(target_ulong addr,
|
|
target_ulong len, int type)
|
|
{
|
|
qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__);
|
|
return -EINVAL;
|
|
}
|
|
|
|
int kvm_arch_remove_hw_breakpoint(target_ulong addr,
|
|
target_ulong len, int type)
|
|
{
|
|
qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__);
|
|
return -EINVAL;
|
|
}
|
|
|
|
int kvm_arch_remove_sw_breakpoint(CPUState *cs,
|
|
struct kvm_sw_breakpoint *bp)
|
|
{
|
|
qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__);
|
|
return -EINVAL;
|
|
}
|
|
|
|
void kvm_arch_remove_all_hw_breakpoints(void)
|
|
{
|
|
qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__);
|
|
}
|
|
|
|
void kvm_arch_init_irq_routing(KVMState *s)
|
|
{
|
|
}
|
|
|
|
int kvm_arch_irqchip_create(KVMState *s)
|
|
{
|
|
int ret;
|
|
|
|
/* If we can create the VGIC using the newer device control API, we
|
|
* let the device do this when it initializes itself, otherwise we
|
|
* fall back to the old API */
|
|
|
|
ret = kvm_create_device(s, KVM_DEV_TYPE_ARM_VGIC_V2, true);
|
|
if (ret == 0) {
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
|
|
uint64_t address, uint32_t data)
|
|
{
|
|
return 0;
|
|
}
|