qemu-e2k/hw/sd/sdhci.c
Philippe Mathieu-Daudé 02e57e1c14 sdhci: fix a NULL pointer dereference due to uninitialized AddresSpace object
missed in 60765b6cee.

  Thread 1 "qemu-system-aarch64" received signal SIGSEGV, Segmentation fault.
  address_space_init (as=0x0, root=0x55555726e410, name=name@entry=0x555555e3f0a7 "sdhci-dma") at memory.c:3050
  3050	    as->root = root;
  (gdb) bt
  #0  address_space_init (as=0x0, root=0x55555726e410, name=name@entry=0x555555e3f0a7 "sdhci-dma") at memory.c:3050
  #1  0x0000555555af62c3 in sdhci_sysbus_realize (dev=<optimized out>, errp=0x7fff7f931150) at hw/sd/sdhci.c:1564
  #2  0x00005555558b25e5 in zynqmp_sdhci_realize (dev=0x555557051520, errp=0x7fff7f931150) at hw/sd/zynqmp-sdhci.c:151
  #3  0x0000555555a2e7f3 in device_set_realized (obj=0x555557051520, value=<optimized out>, errp=0x7fff7f931270) at hw/core/qdev.c:966
  #4  0x0000555555ba3f74 in property_set_bool (obj=0x555557051520, v=<optimized out>, name=<optimized out>, opaque=0x555556e04a20,
      errp=0x7fff7f931270) at qom/object.c:1906
  #5  0x0000555555ba51f4 in object_property_set (obj=obj@entry=0x555557051520, v=v@entry=0x5555576dbd60,
      name=name@entry=0x555555dd6306 "realized", errp=errp@entry=0x7fff7f931270) at qom/object.c:1102

Suggested-by: Peter Maydell <peter.maydell@linaro.org>
Signed-off-by: Philippe Mathieu-Daudé <f4bug@amsat.org>
Message-id: 20180123132051.24448-1-f4bug@amsat.org
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
2018-01-25 11:45:30 +00:00

1458 lines
47 KiB
C

/*
* SD Association Host Standard Specification v2.0 controller emulation
*
* Copyright (c) 2011 Samsung Electronics Co., Ltd.
* Mitsyanko Igor <i.mitsyanko@samsung.com>
* Peter A.G. Crosthwaite <peter.crosthwaite@petalogix.com>
*
* Based on MMC controller for Samsung S5PC1xx-based board emulation
* by Alexey Merkulov and Vladimir Monakhov.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "qapi/error.h"
#include "hw/hw.h"
#include "sysemu/block-backend.h"
#include "sysemu/blockdev.h"
#include "sysemu/dma.h"
#include "qemu/timer.h"
#include "qemu/bitops.h"
#include "hw/sd/sdhci.h"
#include "sdhci-internal.h"
#include "qapi/error.h"
#include "qemu/log.h"
#include "trace.h"
#define TYPE_SDHCI_BUS "sdhci-bus"
#define SDHCI_BUS(obj) OBJECT_CHECK(SDBus, (obj), TYPE_SDHCI_BUS)
/* Default SD/MMC host controller features information, which will be
* presented in CAPABILITIES register of generic SD host controller at reset.
* If not stated otherwise:
* 0 - not supported, 1 - supported, other - prohibited.
*/
#define SDHC_CAPAB_64BITBUS 0ul /* 64-bit System Bus Support */
#define SDHC_CAPAB_18V 1ul /* Voltage support 1.8v */
#define SDHC_CAPAB_30V 0ul /* Voltage support 3.0v */
#define SDHC_CAPAB_33V 1ul /* Voltage support 3.3v */
#define SDHC_CAPAB_SUSPRESUME 0ul /* Suspend/resume support */
#define SDHC_CAPAB_SDMA 1ul /* SDMA support */
#define SDHC_CAPAB_HIGHSPEED 1ul /* High speed support */
#define SDHC_CAPAB_ADMA1 1ul /* ADMA1 support */
#define SDHC_CAPAB_ADMA2 1ul /* ADMA2 support */
/* Maximum host controller R/W buffers size
* Possible values: 512, 1024, 2048 bytes */
#define SDHC_CAPAB_MAXBLOCKLENGTH 512ul
/* Maximum clock frequency for SDclock in MHz
* value in range 10-63 MHz, 0 - not defined */
#define SDHC_CAPAB_BASECLKFREQ 52ul
#define SDHC_CAPAB_TOUNIT 1ul /* Timeout clock unit 0 - kHz, 1 - MHz */
/* Timeout clock frequency 1-63, 0 - not defined */
#define SDHC_CAPAB_TOCLKFREQ 52ul
/* Now check all parameters and calculate CAPABILITIES REGISTER value */
#if SDHC_CAPAB_64BITBUS > 1 || SDHC_CAPAB_18V > 1 || SDHC_CAPAB_30V > 1 || \
SDHC_CAPAB_33V > 1 || SDHC_CAPAB_SUSPRESUME > 1 || SDHC_CAPAB_SDMA > 1 || \
SDHC_CAPAB_HIGHSPEED > 1 || SDHC_CAPAB_ADMA2 > 1 || SDHC_CAPAB_ADMA1 > 1 ||\
SDHC_CAPAB_TOUNIT > 1
#error Capabilities features can have value 0 or 1 only!
#endif
#if SDHC_CAPAB_MAXBLOCKLENGTH == 512
#define MAX_BLOCK_LENGTH 0ul
#elif SDHC_CAPAB_MAXBLOCKLENGTH == 1024
#define MAX_BLOCK_LENGTH 1ul
#elif SDHC_CAPAB_MAXBLOCKLENGTH == 2048
#define MAX_BLOCK_LENGTH 2ul
#else
#error Max host controller block size can have value 512, 1024 or 2048 only!
#endif
#if (SDHC_CAPAB_BASECLKFREQ > 0 && SDHC_CAPAB_BASECLKFREQ < 10) || \
SDHC_CAPAB_BASECLKFREQ > 63
#error SDclock frequency can have value in range 0, 10-63 only!
#endif
#if SDHC_CAPAB_TOCLKFREQ > 63
#error Timeout clock frequency can have value in range 0-63 only!
#endif
#define SDHC_CAPAB_REG_DEFAULT \
((SDHC_CAPAB_64BITBUS << 28) | (SDHC_CAPAB_18V << 26) | \
(SDHC_CAPAB_30V << 25) | (SDHC_CAPAB_33V << 24) | \
(SDHC_CAPAB_SUSPRESUME << 23) | (SDHC_CAPAB_SDMA << 22) | \
(SDHC_CAPAB_HIGHSPEED << 21) | (SDHC_CAPAB_ADMA1 << 20) | \
(SDHC_CAPAB_ADMA2 << 19) | (MAX_BLOCK_LENGTH << 16) | \
(SDHC_CAPAB_BASECLKFREQ << 8) | (SDHC_CAPAB_TOUNIT << 7) | \
(SDHC_CAPAB_TOCLKFREQ))
#define MASKED_WRITE(reg, mask, val) (reg = (reg & (mask)) | (val))
static uint8_t sdhci_slotint(SDHCIState *s)
{
return (s->norintsts & s->norintsigen) || (s->errintsts & s->errintsigen) ||
((s->norintsts & SDHC_NIS_INSERT) && (s->wakcon & SDHC_WKUP_ON_INS)) ||
((s->norintsts & SDHC_NIS_REMOVE) && (s->wakcon & SDHC_WKUP_ON_RMV));
}
static inline void sdhci_update_irq(SDHCIState *s)
{
qemu_set_irq(s->irq, sdhci_slotint(s));
}
static void sdhci_raise_insertion_irq(void *opaque)
{
SDHCIState *s = (SDHCIState *)opaque;
if (s->norintsts & SDHC_NIS_REMOVE) {
timer_mod(s->insert_timer,
qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + SDHC_INSERTION_DELAY);
} else {
s->prnsts = 0x1ff0000;
if (s->norintstsen & SDHC_NISEN_INSERT) {
s->norintsts |= SDHC_NIS_INSERT;
}
sdhci_update_irq(s);
}
}
static void sdhci_set_inserted(DeviceState *dev, bool level)
{
SDHCIState *s = (SDHCIState *)dev;
trace_sdhci_set_inserted(level ? "insert" : "eject");
if ((s->norintsts & SDHC_NIS_REMOVE) && level) {
/* Give target some time to notice card ejection */
timer_mod(s->insert_timer,
qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + SDHC_INSERTION_DELAY);
} else {
if (level) {
s->prnsts = 0x1ff0000;
if (s->norintstsen & SDHC_NISEN_INSERT) {
s->norintsts |= SDHC_NIS_INSERT;
}
} else {
s->prnsts = 0x1fa0000;
s->pwrcon &= ~SDHC_POWER_ON;
s->clkcon &= ~SDHC_CLOCK_SDCLK_EN;
if (s->norintstsen & SDHC_NISEN_REMOVE) {
s->norintsts |= SDHC_NIS_REMOVE;
}
}
sdhci_update_irq(s);
}
}
static void sdhci_set_readonly(DeviceState *dev, bool level)
{
SDHCIState *s = (SDHCIState *)dev;
if (level) {
s->prnsts &= ~SDHC_WRITE_PROTECT;
} else {
/* Write enabled */
s->prnsts |= SDHC_WRITE_PROTECT;
}
}
static void sdhci_reset(SDHCIState *s)
{
DeviceState *dev = DEVICE(s);
timer_del(s->insert_timer);
timer_del(s->transfer_timer);
/* Set all registers to 0. Capabilities registers are not cleared
* and assumed to always preserve their value, given to them during
* initialization */
memset(&s->sdmasysad, 0, (uintptr_t)&s->capareg - (uintptr_t)&s->sdmasysad);
/* Reset other state based on current card insertion/readonly status */
sdhci_set_inserted(dev, sdbus_get_inserted(&s->sdbus));
sdhci_set_readonly(dev, sdbus_get_readonly(&s->sdbus));
s->data_count = 0;
s->stopped_state = sdhc_not_stopped;
s->pending_insert_state = false;
}
static void sdhci_poweron_reset(DeviceState *dev)
{
/* QOM (ie power-on) reset. This is identical to reset
* commanded via device register apart from handling of the
* 'pending insert on powerup' quirk.
*/
SDHCIState *s = (SDHCIState *)dev;
sdhci_reset(s);
if (s->pending_insert_quirk) {
s->pending_insert_state = true;
}
}
static void sdhci_data_transfer(void *opaque);
static void sdhci_send_command(SDHCIState *s)
{
SDRequest request;
uint8_t response[16];
int rlen;
s->errintsts = 0;
s->acmd12errsts = 0;
request.cmd = s->cmdreg >> 8;
request.arg = s->argument;
trace_sdhci_send_command(request.cmd, request.arg);
rlen = sdbus_do_command(&s->sdbus, &request, response);
if (s->cmdreg & SDHC_CMD_RESPONSE) {
if (rlen == 4) {
s->rspreg[0] = (response[0] << 24) | (response[1] << 16) |
(response[2] << 8) | response[3];
s->rspreg[1] = s->rspreg[2] = s->rspreg[3] = 0;
trace_sdhci_response4(s->rspreg[0]);
} else if (rlen == 16) {
s->rspreg[0] = (response[11] << 24) | (response[12] << 16) |
(response[13] << 8) | response[14];
s->rspreg[1] = (response[7] << 24) | (response[8] << 16) |
(response[9] << 8) | response[10];
s->rspreg[2] = (response[3] << 24) | (response[4] << 16) |
(response[5] << 8) | response[6];
s->rspreg[3] = (response[0] << 16) | (response[1] << 8) |
response[2];
trace_sdhci_response16(s->rspreg[3], s->rspreg[2],
s->rspreg[1], s->rspreg[0]);
} else {
trace_sdhci_error("timeout waiting for command response");
if (s->errintstsen & SDHC_EISEN_CMDTIMEOUT) {
s->errintsts |= SDHC_EIS_CMDTIMEOUT;
s->norintsts |= SDHC_NIS_ERR;
}
}
if ((s->norintstsen & SDHC_NISEN_TRSCMP) &&
(s->cmdreg & SDHC_CMD_RESPONSE) == SDHC_CMD_RSP_WITH_BUSY) {
s->norintsts |= SDHC_NIS_TRSCMP;
}
}
if (s->norintstsen & SDHC_NISEN_CMDCMP) {
s->norintsts |= SDHC_NIS_CMDCMP;
}
sdhci_update_irq(s);
if (s->blksize && (s->cmdreg & SDHC_CMD_DATA_PRESENT)) {
s->data_count = 0;
sdhci_data_transfer(s);
}
}
static void sdhci_end_transfer(SDHCIState *s)
{
/* Automatically send CMD12 to stop transfer if AutoCMD12 enabled */
if ((s->trnmod & SDHC_TRNS_ACMD12) != 0) {
SDRequest request;
uint8_t response[16];
request.cmd = 0x0C;
request.arg = 0;
trace_sdhci_end_transfer(request.cmd, request.arg);
sdbus_do_command(&s->sdbus, &request, response);
/* Auto CMD12 response goes to the upper Response register */
s->rspreg[3] = (response[0] << 24) | (response[1] << 16) |
(response[2] << 8) | response[3];
}
s->prnsts &= ~(SDHC_DOING_READ | SDHC_DOING_WRITE |
SDHC_DAT_LINE_ACTIVE | SDHC_DATA_INHIBIT |
SDHC_SPACE_AVAILABLE | SDHC_DATA_AVAILABLE);
if (s->norintstsen & SDHC_NISEN_TRSCMP) {
s->norintsts |= SDHC_NIS_TRSCMP;
}
sdhci_update_irq(s);
}
/*
* Programmed i/o data transfer
*/
/* Fill host controller's read buffer with BLKSIZE bytes of data from card */
static void sdhci_read_block_from_card(SDHCIState *s)
{
int index = 0;
if ((s->trnmod & SDHC_TRNS_MULTI) &&
(s->trnmod & SDHC_TRNS_BLK_CNT_EN) && (s->blkcnt == 0)) {
return;
}
for (index = 0; index < (s->blksize & 0x0fff); index++) {
s->fifo_buffer[index] = sdbus_read_data(&s->sdbus);
}
/* New data now available for READ through Buffer Port Register */
s->prnsts |= SDHC_DATA_AVAILABLE;
if (s->norintstsen & SDHC_NISEN_RBUFRDY) {
s->norintsts |= SDHC_NIS_RBUFRDY;
}
/* Clear DAT line active status if that was the last block */
if ((s->trnmod & SDHC_TRNS_MULTI) == 0 ||
((s->trnmod & SDHC_TRNS_MULTI) && s->blkcnt == 1)) {
s->prnsts &= ~SDHC_DAT_LINE_ACTIVE;
}
/* If stop at block gap request was set and it's not the last block of
* data - generate Block Event interrupt */
if (s->stopped_state == sdhc_gap_read && (s->trnmod & SDHC_TRNS_MULTI) &&
s->blkcnt != 1) {
s->prnsts &= ~SDHC_DAT_LINE_ACTIVE;
if (s->norintstsen & SDHC_EISEN_BLKGAP) {
s->norintsts |= SDHC_EIS_BLKGAP;
}
}
sdhci_update_irq(s);
}
/* Read @size byte of data from host controller @s BUFFER DATA PORT register */
static uint32_t sdhci_read_dataport(SDHCIState *s, unsigned size)
{
uint32_t value = 0;
int i;
/* first check that a valid data exists in host controller input buffer */
if ((s->prnsts & SDHC_DATA_AVAILABLE) == 0) {
trace_sdhci_error("read from empty buffer");
return 0;
}
for (i = 0; i < size; i++) {
value |= s->fifo_buffer[s->data_count] << i * 8;
s->data_count++;
/* check if we've read all valid data (blksize bytes) from buffer */
if ((s->data_count) >= (s->blksize & 0x0fff)) {
trace_sdhci_read_dataport(s->data_count);
s->prnsts &= ~SDHC_DATA_AVAILABLE; /* no more data in a buffer */
s->data_count = 0; /* next buff read must start at position [0] */
if (s->trnmod & SDHC_TRNS_BLK_CNT_EN) {
s->blkcnt--;
}
/* if that was the last block of data */
if ((s->trnmod & SDHC_TRNS_MULTI) == 0 ||
((s->trnmod & SDHC_TRNS_BLK_CNT_EN) && (s->blkcnt == 0)) ||
/* stop at gap request */
(s->stopped_state == sdhc_gap_read &&
!(s->prnsts & SDHC_DAT_LINE_ACTIVE))) {
sdhci_end_transfer(s);
} else { /* if there are more data, read next block from card */
sdhci_read_block_from_card(s);
}
break;
}
}
return value;
}
/* Write data from host controller FIFO to card */
static void sdhci_write_block_to_card(SDHCIState *s)
{
int index = 0;
if (s->prnsts & SDHC_SPACE_AVAILABLE) {
if (s->norintstsen & SDHC_NISEN_WBUFRDY) {
s->norintsts |= SDHC_NIS_WBUFRDY;
}
sdhci_update_irq(s);
return;
}
if (s->trnmod & SDHC_TRNS_BLK_CNT_EN) {
if (s->blkcnt == 0) {
return;
} else {
s->blkcnt--;
}
}
for (index = 0; index < (s->blksize & 0x0fff); index++) {
sdbus_write_data(&s->sdbus, s->fifo_buffer[index]);
}
/* Next data can be written through BUFFER DATORT register */
s->prnsts |= SDHC_SPACE_AVAILABLE;
/* Finish transfer if that was the last block of data */
if ((s->trnmod & SDHC_TRNS_MULTI) == 0 ||
((s->trnmod & SDHC_TRNS_MULTI) &&
(s->trnmod & SDHC_TRNS_BLK_CNT_EN) && (s->blkcnt == 0))) {
sdhci_end_transfer(s);
} else if (s->norintstsen & SDHC_NISEN_WBUFRDY) {
s->norintsts |= SDHC_NIS_WBUFRDY;
}
/* Generate Block Gap Event if requested and if not the last block */
if (s->stopped_state == sdhc_gap_write && (s->trnmod & SDHC_TRNS_MULTI) &&
s->blkcnt > 0) {
s->prnsts &= ~SDHC_DOING_WRITE;
if (s->norintstsen & SDHC_EISEN_BLKGAP) {
s->norintsts |= SDHC_EIS_BLKGAP;
}
sdhci_end_transfer(s);
}
sdhci_update_irq(s);
}
/* Write @size bytes of @value data to host controller @s Buffer Data Port
* register */
static void sdhci_write_dataport(SDHCIState *s, uint32_t value, unsigned size)
{
unsigned i;
/* Check that there is free space left in a buffer */
if (!(s->prnsts & SDHC_SPACE_AVAILABLE)) {
trace_sdhci_error("Can't write to data buffer: buffer full");
return;
}
for (i = 0; i < size; i++) {
s->fifo_buffer[s->data_count] = value & 0xFF;
s->data_count++;
value >>= 8;
if (s->data_count >= (s->blksize & 0x0fff)) {
trace_sdhci_write_dataport(s->data_count);
s->data_count = 0;
s->prnsts &= ~SDHC_SPACE_AVAILABLE;
if (s->prnsts & SDHC_DOING_WRITE) {
sdhci_write_block_to_card(s);
}
}
}
}
/*
* Single DMA data transfer
*/
/* Multi block SDMA transfer */
static void sdhci_sdma_transfer_multi_blocks(SDHCIState *s)
{
bool page_aligned = false;
unsigned int n, begin;
const uint16_t block_size = s->blksize & 0x0fff;
uint32_t boundary_chk = 1 << (((s->blksize & 0xf000) >> 12) + 12);
uint32_t boundary_count = boundary_chk - (s->sdmasysad % boundary_chk);
if (!(s->trnmod & SDHC_TRNS_BLK_CNT_EN) || !s->blkcnt) {
qemu_log_mask(LOG_UNIMP, "infinite transfer is not supported\n");
return;
}
/* XXX: Some sd/mmc drivers (for example, u-boot-slp) do not account for
* possible stop at page boundary if initial address is not page aligned,
* allow them to work properly */
if ((s->sdmasysad % boundary_chk) == 0) {
page_aligned = true;
}
if (s->trnmod & SDHC_TRNS_READ) {
s->prnsts |= SDHC_DOING_READ | SDHC_DATA_INHIBIT |
SDHC_DAT_LINE_ACTIVE;
while (s->blkcnt) {
if (s->data_count == 0) {
for (n = 0; n < block_size; n++) {
s->fifo_buffer[n] = sdbus_read_data(&s->sdbus);
}
}
begin = s->data_count;
if (((boundary_count + begin) < block_size) && page_aligned) {
s->data_count = boundary_count + begin;
boundary_count = 0;
} else {
s->data_count = block_size;
boundary_count -= block_size - begin;
if (s->trnmod & SDHC_TRNS_BLK_CNT_EN) {
s->blkcnt--;
}
}
dma_memory_write(s->dma_as, s->sdmasysad,
&s->fifo_buffer[begin], s->data_count - begin);
s->sdmasysad += s->data_count - begin;
if (s->data_count == block_size) {
s->data_count = 0;
}
if (page_aligned && boundary_count == 0) {
break;
}
}
} else {
s->prnsts |= SDHC_DOING_WRITE | SDHC_DATA_INHIBIT |
SDHC_DAT_LINE_ACTIVE;
while (s->blkcnt) {
begin = s->data_count;
if (((boundary_count + begin) < block_size) && page_aligned) {
s->data_count = boundary_count + begin;
boundary_count = 0;
} else {
s->data_count = block_size;
boundary_count -= block_size - begin;
}
dma_memory_read(s->dma_as, s->sdmasysad,
&s->fifo_buffer[begin], s->data_count - begin);
s->sdmasysad += s->data_count - begin;
if (s->data_count == block_size) {
for (n = 0; n < block_size; n++) {
sdbus_write_data(&s->sdbus, s->fifo_buffer[n]);
}
s->data_count = 0;
if (s->trnmod & SDHC_TRNS_BLK_CNT_EN) {
s->blkcnt--;
}
}
if (page_aligned && boundary_count == 0) {
break;
}
}
}
if (s->blkcnt == 0) {
sdhci_end_transfer(s);
} else {
if (s->norintstsen & SDHC_NISEN_DMA) {
s->norintsts |= SDHC_NIS_DMA;
}
sdhci_update_irq(s);
}
}
/* single block SDMA transfer */
static void sdhci_sdma_transfer_single_block(SDHCIState *s)
{
int n;
uint32_t datacnt = s->blksize & 0x0fff;
if (s->trnmod & SDHC_TRNS_READ) {
for (n = 0; n < datacnt; n++) {
s->fifo_buffer[n] = sdbus_read_data(&s->sdbus);
}
dma_memory_write(s->dma_as, s->sdmasysad, s->fifo_buffer, datacnt);
} else {
dma_memory_read(s->dma_as, s->sdmasysad, s->fifo_buffer, datacnt);
for (n = 0; n < datacnt; n++) {
sdbus_write_data(&s->sdbus, s->fifo_buffer[n]);
}
}
s->blkcnt--;
sdhci_end_transfer(s);
}
typedef struct ADMADescr {
hwaddr addr;
uint16_t length;
uint8_t attr;
uint8_t incr;
} ADMADescr;
static void get_adma_description(SDHCIState *s, ADMADescr *dscr)
{
uint32_t adma1 = 0;
uint64_t adma2 = 0;
hwaddr entry_addr = (hwaddr)s->admasysaddr;
switch (SDHC_DMA_TYPE(s->hostctl)) {
case SDHC_CTRL_ADMA2_32:
dma_memory_read(s->dma_as, entry_addr, (uint8_t *)&adma2,
sizeof(adma2));
adma2 = le64_to_cpu(adma2);
/* The spec does not specify endianness of descriptor table.
* We currently assume that it is LE.
*/
dscr->addr = (hwaddr)extract64(adma2, 32, 32) & ~0x3ull;
dscr->length = (uint16_t)extract64(adma2, 16, 16);
dscr->attr = (uint8_t)extract64(adma2, 0, 7);
dscr->incr = 8;
break;
case SDHC_CTRL_ADMA1_32:
dma_memory_read(s->dma_as, entry_addr, (uint8_t *)&adma1,
sizeof(adma1));
adma1 = le32_to_cpu(adma1);
dscr->addr = (hwaddr)(adma1 & 0xFFFFF000);
dscr->attr = (uint8_t)extract32(adma1, 0, 7);
dscr->incr = 4;
if ((dscr->attr & SDHC_ADMA_ATTR_ACT_MASK) == SDHC_ADMA_ATTR_SET_LEN) {
dscr->length = (uint16_t)extract32(adma1, 12, 16);
} else {
dscr->length = 4096;
}
break;
case SDHC_CTRL_ADMA2_64:
dma_memory_read(s->dma_as, entry_addr,
(uint8_t *)(&dscr->attr), 1);
dma_memory_read(s->dma_as, entry_addr + 2,
(uint8_t *)(&dscr->length), 2);
dscr->length = le16_to_cpu(dscr->length);
dma_memory_read(s->dma_as, entry_addr + 4,
(uint8_t *)(&dscr->addr), 8);
dscr->attr = le64_to_cpu(dscr->attr);
dscr->attr &= 0xfffffff8;
dscr->incr = 12;
break;
}
}
/* Advanced DMA data transfer */
static void sdhci_do_adma(SDHCIState *s)
{
unsigned int n, begin, length;
const uint16_t block_size = s->blksize & 0x0fff;
ADMADescr dscr = {};
int i;
for (i = 0; i < SDHC_ADMA_DESCS_PER_DELAY; ++i) {
s->admaerr &= ~SDHC_ADMAERR_LENGTH_MISMATCH;
get_adma_description(s, &dscr);
trace_sdhci_adma_loop(dscr.addr, dscr.length, dscr.attr);
if ((dscr.attr & SDHC_ADMA_ATTR_VALID) == 0) {
/* Indicate that error occurred in ST_FDS state */
s->admaerr &= ~SDHC_ADMAERR_STATE_MASK;
s->admaerr |= SDHC_ADMAERR_STATE_ST_FDS;
/* Generate ADMA error interrupt */
if (s->errintstsen & SDHC_EISEN_ADMAERR) {
s->errintsts |= SDHC_EIS_ADMAERR;
s->norintsts |= SDHC_NIS_ERR;
}
sdhci_update_irq(s);
return;
}
length = dscr.length ? dscr.length : 65536;
switch (dscr.attr & SDHC_ADMA_ATTR_ACT_MASK) {
case SDHC_ADMA_ATTR_ACT_TRAN: /* data transfer */
if (s->trnmod & SDHC_TRNS_READ) {
while (length) {
if (s->data_count == 0) {
for (n = 0; n < block_size; n++) {
s->fifo_buffer[n] = sdbus_read_data(&s->sdbus);
}
}
begin = s->data_count;
if ((length + begin) < block_size) {
s->data_count = length + begin;
length = 0;
} else {
s->data_count = block_size;
length -= block_size - begin;
}
dma_memory_write(s->dma_as, dscr.addr,
&s->fifo_buffer[begin],
s->data_count - begin);
dscr.addr += s->data_count - begin;
if (s->data_count == block_size) {
s->data_count = 0;
if (s->trnmod & SDHC_TRNS_BLK_CNT_EN) {
s->blkcnt--;
if (s->blkcnt == 0) {
break;
}
}
}
}
} else {
while (length) {
begin = s->data_count;
if ((length + begin) < block_size) {
s->data_count = length + begin;
length = 0;
} else {
s->data_count = block_size;
length -= block_size - begin;
}
dma_memory_read(s->dma_as, dscr.addr,
&s->fifo_buffer[begin],
s->data_count - begin);
dscr.addr += s->data_count - begin;
if (s->data_count == block_size) {
for (n = 0; n < block_size; n++) {
sdbus_write_data(&s->sdbus, s->fifo_buffer[n]);
}
s->data_count = 0;
if (s->trnmod & SDHC_TRNS_BLK_CNT_EN) {
s->blkcnt--;
if (s->blkcnt == 0) {
break;
}
}
}
}
}
s->admasysaddr += dscr.incr;
break;
case SDHC_ADMA_ATTR_ACT_LINK: /* link to next descriptor table */
s->admasysaddr = dscr.addr;
trace_sdhci_adma("link", s->admasysaddr);
break;
default:
s->admasysaddr += dscr.incr;
break;
}
if (dscr.attr & SDHC_ADMA_ATTR_INT) {
trace_sdhci_adma("interrupt", s->admasysaddr);
if (s->norintstsen & SDHC_NISEN_DMA) {
s->norintsts |= SDHC_NIS_DMA;
}
sdhci_update_irq(s);
}
/* ADMA transfer terminates if blkcnt == 0 or by END attribute */
if (((s->trnmod & SDHC_TRNS_BLK_CNT_EN) &&
(s->blkcnt == 0)) || (dscr.attr & SDHC_ADMA_ATTR_END)) {
trace_sdhci_adma_transfer_completed();
if (length || ((dscr.attr & SDHC_ADMA_ATTR_END) &&
(s->trnmod & SDHC_TRNS_BLK_CNT_EN) &&
s->blkcnt != 0)) {
trace_sdhci_error("SD/MMC host ADMA length mismatch");
s->admaerr |= SDHC_ADMAERR_LENGTH_MISMATCH |
SDHC_ADMAERR_STATE_ST_TFR;
if (s->errintstsen & SDHC_EISEN_ADMAERR) {
trace_sdhci_error("Set ADMA error flag");
s->errintsts |= SDHC_EIS_ADMAERR;
s->norintsts |= SDHC_NIS_ERR;
}
sdhci_update_irq(s);
}
sdhci_end_transfer(s);
return;
}
}
/* we have unfinished business - reschedule to continue ADMA */
timer_mod(s->transfer_timer,
qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + SDHC_TRANSFER_DELAY);
}
/* Perform data transfer according to controller configuration */
static void sdhci_data_transfer(void *opaque)
{
SDHCIState *s = (SDHCIState *)opaque;
if (s->trnmod & SDHC_TRNS_DMA) {
switch (SDHC_DMA_TYPE(s->hostctl)) {
case SDHC_CTRL_SDMA:
if ((s->blkcnt == 1) || !(s->trnmod & SDHC_TRNS_MULTI)) {
sdhci_sdma_transfer_single_block(s);
} else {
sdhci_sdma_transfer_multi_blocks(s);
}
break;
case SDHC_CTRL_ADMA1_32:
if (!(s->capareg & SDHC_CAN_DO_ADMA1)) {
trace_sdhci_error("ADMA1 not supported");
break;
}
sdhci_do_adma(s);
break;
case SDHC_CTRL_ADMA2_32:
if (!(s->capareg & SDHC_CAN_DO_ADMA2)) {
trace_sdhci_error("ADMA2 not supported");
break;
}
sdhci_do_adma(s);
break;
case SDHC_CTRL_ADMA2_64:
if (!(s->capareg & SDHC_CAN_DO_ADMA2) ||
!(s->capareg & SDHC_64_BIT_BUS_SUPPORT)) {
trace_sdhci_error("64 bit ADMA not supported");
break;
}
sdhci_do_adma(s);
break;
default:
trace_sdhci_error("Unsupported DMA type");
break;
}
} else {
if ((s->trnmod & SDHC_TRNS_READ) && sdbus_data_ready(&s->sdbus)) {
s->prnsts |= SDHC_DOING_READ | SDHC_DATA_INHIBIT |
SDHC_DAT_LINE_ACTIVE;
sdhci_read_block_from_card(s);
} else {
s->prnsts |= SDHC_DOING_WRITE | SDHC_DAT_LINE_ACTIVE |
SDHC_SPACE_AVAILABLE | SDHC_DATA_INHIBIT;
sdhci_write_block_to_card(s);
}
}
}
static bool sdhci_can_issue_command(SDHCIState *s)
{
if (!SDHC_CLOCK_IS_ON(s->clkcon) ||
(((s->prnsts & SDHC_DATA_INHIBIT) || s->stopped_state) &&
((s->cmdreg & SDHC_CMD_DATA_PRESENT) ||
((s->cmdreg & SDHC_CMD_RESPONSE) == SDHC_CMD_RSP_WITH_BUSY &&
!(SDHC_COMMAND_TYPE(s->cmdreg) == SDHC_CMD_ABORT))))) {
return false;
}
return true;
}
/* The Buffer Data Port register must be accessed in sequential and
* continuous manner */
static inline bool
sdhci_buff_access_is_sequential(SDHCIState *s, unsigned byte_num)
{
if ((s->data_count & 0x3) != byte_num) {
trace_sdhci_error("Non-sequential access to Buffer Data Port register"
"is prohibited\n");
return false;
}
return true;
}
static uint64_t sdhci_read(void *opaque, hwaddr offset, unsigned size)
{
SDHCIState *s = (SDHCIState *)opaque;
uint32_t ret = 0;
switch (offset & ~0x3) {
case SDHC_SYSAD:
ret = s->sdmasysad;
break;
case SDHC_BLKSIZE:
ret = s->blksize | (s->blkcnt << 16);
break;
case SDHC_ARGUMENT:
ret = s->argument;
break;
case SDHC_TRNMOD:
ret = s->trnmod | (s->cmdreg << 16);
break;
case SDHC_RSPREG0 ... SDHC_RSPREG3:
ret = s->rspreg[((offset & ~0x3) - SDHC_RSPREG0) >> 2];
break;
case SDHC_BDATA:
if (sdhci_buff_access_is_sequential(s, offset - SDHC_BDATA)) {
ret = sdhci_read_dataport(s, size);
trace_sdhci_access("rd", size << 3, offset, "->", ret, ret);
return ret;
}
break;
case SDHC_PRNSTS:
ret = s->prnsts;
break;
case SDHC_HOSTCTL:
ret = s->hostctl | (s->pwrcon << 8) | (s->blkgap << 16) |
(s->wakcon << 24);
break;
case SDHC_CLKCON:
ret = s->clkcon | (s->timeoutcon << 16);
break;
case SDHC_NORINTSTS:
ret = s->norintsts | (s->errintsts << 16);
break;
case SDHC_NORINTSTSEN:
ret = s->norintstsen | (s->errintstsen << 16);
break;
case SDHC_NORINTSIGEN:
ret = s->norintsigen | (s->errintsigen << 16);
break;
case SDHC_ACMD12ERRSTS:
ret = s->acmd12errsts;
break;
case SDHC_CAPAB:
ret = (uint32_t)s->capareg;
break;
case SDHC_CAPAB + 4:
ret = (uint32_t)(s->capareg >> 32);
break;
case SDHC_MAXCURR:
ret = (uint32_t)s->maxcurr;
break;
case SDHC_MAXCURR + 4:
ret = (uint32_t)(s->maxcurr >> 32);
break;
case SDHC_ADMAERR:
ret = s->admaerr;
break;
case SDHC_ADMASYSADDR:
ret = (uint32_t)s->admasysaddr;
break;
case SDHC_ADMASYSADDR + 4:
ret = (uint32_t)(s->admasysaddr >> 32);
break;
case SDHC_SLOT_INT_STATUS:
ret = (SD_HOST_SPECv2_VERS << 16) | sdhci_slotint(s);
break;
default:
qemu_log_mask(LOG_UNIMP, "SDHC rd_%ub @0x%02" HWADDR_PRIx " "
"not implemented\n", size, offset);
break;
}
ret >>= (offset & 0x3) * 8;
ret &= (1ULL << (size * 8)) - 1;
trace_sdhci_access("rd", size << 3, offset, "->", ret, ret);
return ret;
}
static inline void sdhci_blkgap_write(SDHCIState *s, uint8_t value)
{
if ((value & SDHC_STOP_AT_GAP_REQ) && (s->blkgap & SDHC_STOP_AT_GAP_REQ)) {
return;
}
s->blkgap = value & SDHC_STOP_AT_GAP_REQ;
if ((value & SDHC_CONTINUE_REQ) && s->stopped_state &&
(s->blkgap & SDHC_STOP_AT_GAP_REQ) == 0) {
if (s->stopped_state == sdhc_gap_read) {
s->prnsts |= SDHC_DAT_LINE_ACTIVE | SDHC_DOING_READ;
sdhci_read_block_from_card(s);
} else {
s->prnsts |= SDHC_DAT_LINE_ACTIVE | SDHC_DOING_WRITE;
sdhci_write_block_to_card(s);
}
s->stopped_state = sdhc_not_stopped;
} else if (!s->stopped_state && (value & SDHC_STOP_AT_GAP_REQ)) {
if (s->prnsts & SDHC_DOING_READ) {
s->stopped_state = sdhc_gap_read;
} else if (s->prnsts & SDHC_DOING_WRITE) {
s->stopped_state = sdhc_gap_write;
}
}
}
static inline void sdhci_reset_write(SDHCIState *s, uint8_t value)
{
switch (value) {
case SDHC_RESET_ALL:
sdhci_reset(s);
break;
case SDHC_RESET_CMD:
s->prnsts &= ~SDHC_CMD_INHIBIT;
s->norintsts &= ~SDHC_NIS_CMDCMP;
break;
case SDHC_RESET_DATA:
s->data_count = 0;
s->prnsts &= ~(SDHC_SPACE_AVAILABLE | SDHC_DATA_AVAILABLE |
SDHC_DOING_READ | SDHC_DOING_WRITE |
SDHC_DATA_INHIBIT | SDHC_DAT_LINE_ACTIVE);
s->blkgap &= ~(SDHC_STOP_AT_GAP_REQ | SDHC_CONTINUE_REQ);
s->stopped_state = sdhc_not_stopped;
s->norintsts &= ~(SDHC_NIS_WBUFRDY | SDHC_NIS_RBUFRDY |
SDHC_NIS_DMA | SDHC_NIS_TRSCMP | SDHC_NIS_BLKGAP);
break;
}
}
static void
sdhci_write(void *opaque, hwaddr offset, uint64_t val, unsigned size)
{
SDHCIState *s = (SDHCIState *)opaque;
unsigned shift = 8 * (offset & 0x3);
uint32_t mask = ~(((1ULL << (size * 8)) - 1) << shift);
uint32_t value = val;
value <<= shift;
switch (offset & ~0x3) {
case SDHC_SYSAD:
s->sdmasysad = (s->sdmasysad & mask) | value;
MASKED_WRITE(s->sdmasysad, mask, value);
/* Writing to last byte of sdmasysad might trigger transfer */
if (!(mask & 0xFF000000) && TRANSFERRING_DATA(s->prnsts) && s->blkcnt &&
s->blksize && SDHC_DMA_TYPE(s->hostctl) == SDHC_CTRL_SDMA) {
if (s->trnmod & SDHC_TRNS_MULTI) {
sdhci_sdma_transfer_multi_blocks(s);
} else {
sdhci_sdma_transfer_single_block(s);
}
}
break;
case SDHC_BLKSIZE:
if (!TRANSFERRING_DATA(s->prnsts)) {
MASKED_WRITE(s->blksize, mask, value);
MASKED_WRITE(s->blkcnt, mask >> 16, value >> 16);
}
/* Limit block size to the maximum buffer size */
if (extract32(s->blksize, 0, 12) > s->buf_maxsz) {
qemu_log_mask(LOG_GUEST_ERROR, "%s: Size 0x%x is larger than " \
"the maximum buffer 0x%x", __func__, s->blksize,
s->buf_maxsz);
s->blksize = deposit32(s->blksize, 0, 12, s->buf_maxsz);
}
break;
case SDHC_ARGUMENT:
MASKED_WRITE(s->argument, mask, value);
break;
case SDHC_TRNMOD:
/* DMA can be enabled only if it is supported as indicated by
* capabilities register */
if (!(s->capareg & SDHC_CAN_DO_DMA)) {
value &= ~SDHC_TRNS_DMA;
}
MASKED_WRITE(s->trnmod, mask, value & SDHC_TRNMOD_MASK);
MASKED_WRITE(s->cmdreg, mask >> 16, value >> 16);
/* Writing to the upper byte of CMDREG triggers SD command generation */
if ((mask & 0xFF000000) || !sdhci_can_issue_command(s)) {
break;
}
sdhci_send_command(s);
break;
case SDHC_BDATA:
if (sdhci_buff_access_is_sequential(s, offset - SDHC_BDATA)) {
sdhci_write_dataport(s, value >> shift, size);
}
break;
case SDHC_HOSTCTL:
if (!(mask & 0xFF0000)) {
sdhci_blkgap_write(s, value >> 16);
}
MASKED_WRITE(s->hostctl, mask, value);
MASKED_WRITE(s->pwrcon, mask >> 8, value >> 8);
MASKED_WRITE(s->wakcon, mask >> 24, value >> 24);
if (!(s->prnsts & SDHC_CARD_PRESENT) || ((s->pwrcon >> 1) & 0x7) < 5 ||
!(s->capareg & (1 << (31 - ((s->pwrcon >> 1) & 0x7))))) {
s->pwrcon &= ~SDHC_POWER_ON;
}
break;
case SDHC_CLKCON:
if (!(mask & 0xFF000000)) {
sdhci_reset_write(s, value >> 24);
}
MASKED_WRITE(s->clkcon, mask, value);
MASKED_WRITE(s->timeoutcon, mask >> 16, value >> 16);
if (s->clkcon & SDHC_CLOCK_INT_EN) {
s->clkcon |= SDHC_CLOCK_INT_STABLE;
} else {
s->clkcon &= ~SDHC_CLOCK_INT_STABLE;
}
break;
case SDHC_NORINTSTS:
if (s->norintstsen & SDHC_NISEN_CARDINT) {
value &= ~SDHC_NIS_CARDINT;
}
s->norintsts &= mask | ~value;
s->errintsts &= (mask >> 16) | ~(value >> 16);
if (s->errintsts) {
s->norintsts |= SDHC_NIS_ERR;
} else {
s->norintsts &= ~SDHC_NIS_ERR;
}
sdhci_update_irq(s);
break;
case SDHC_NORINTSTSEN:
MASKED_WRITE(s->norintstsen, mask, value);
MASKED_WRITE(s->errintstsen, mask >> 16, value >> 16);
s->norintsts &= s->norintstsen;
s->errintsts &= s->errintstsen;
if (s->errintsts) {
s->norintsts |= SDHC_NIS_ERR;
} else {
s->norintsts &= ~SDHC_NIS_ERR;
}
/* Quirk for Raspberry Pi: pending card insert interrupt
* appears when first enabled after power on */
if ((s->norintstsen & SDHC_NISEN_INSERT) && s->pending_insert_state) {
assert(s->pending_insert_quirk);
s->norintsts |= SDHC_NIS_INSERT;
s->pending_insert_state = false;
}
sdhci_update_irq(s);
break;
case SDHC_NORINTSIGEN:
MASKED_WRITE(s->norintsigen, mask, value);
MASKED_WRITE(s->errintsigen, mask >> 16, value >> 16);
sdhci_update_irq(s);
break;
case SDHC_ADMAERR:
MASKED_WRITE(s->admaerr, mask, value);
break;
case SDHC_ADMASYSADDR:
s->admasysaddr = (s->admasysaddr & (0xFFFFFFFF00000000ULL |
(uint64_t)mask)) | (uint64_t)value;
break;
case SDHC_ADMASYSADDR + 4:
s->admasysaddr = (s->admasysaddr & (0x00000000FFFFFFFFULL |
((uint64_t)mask << 32))) | ((uint64_t)value << 32);
break;
case SDHC_FEAER:
s->acmd12errsts |= value;
s->errintsts |= (value >> 16) & s->errintstsen;
if (s->acmd12errsts) {
s->errintsts |= SDHC_EIS_CMD12ERR;
}
if (s->errintsts) {
s->norintsts |= SDHC_NIS_ERR;
}
sdhci_update_irq(s);
break;
case SDHC_ACMD12ERRSTS:
MASKED_WRITE(s->acmd12errsts, mask, value);
break;
case SDHC_CAPAB:
case SDHC_CAPAB + 4:
case SDHC_MAXCURR:
case SDHC_MAXCURR + 4:
qemu_log_mask(LOG_GUEST_ERROR, "SDHC wr_%ub @0x%02" HWADDR_PRIx
" <- 0x%08x read-only\n", size, offset, value >> shift);
break;
default:
qemu_log_mask(LOG_UNIMP, "SDHC wr_%ub @0x%02" HWADDR_PRIx " <- 0x%08x "
"not implemented\n", size, offset, value >> shift);
break;
}
trace_sdhci_access("wr", size << 3, offset, "<-",
value >> shift, value >> shift);
}
static const MemoryRegionOps sdhci_mmio_ops = {
.read = sdhci_read,
.write = sdhci_write,
.valid = {
.min_access_size = 1,
.max_access_size = 4,
.unaligned = false
},
.endianness = DEVICE_LITTLE_ENDIAN,
};
static inline unsigned int sdhci_get_fifolen(SDHCIState *s)
{
switch (SDHC_CAPAB_BLOCKSIZE(s->capareg)) {
case 0:
return 512;
case 1:
return 1024;
case 2:
return 2048;
default:
hw_error("SDHC: unsupported value for maximum block size\n");
return 0;
}
}
/* --- qdev common --- */
#define DEFINE_SDHCI_COMMON_PROPERTIES(_state) \
/* Capabilities registers provide information on supported features
* of this specific host controller implementation */ \
DEFINE_PROP_UINT64("capareg", _state, capareg, SDHC_CAPAB_REG_DEFAULT), \
DEFINE_PROP_UINT64("maxcurr", _state, maxcurr, 0)
static void sdhci_initfn(SDHCIState *s)
{
qbus_create_inplace(&s->sdbus, sizeof(s->sdbus),
TYPE_SDHCI_BUS, DEVICE(s), "sd-bus");
s->insert_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, sdhci_raise_insertion_irq, s);
s->transfer_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, sdhci_data_transfer, s);
}
static void sdhci_uninitfn(SDHCIState *s)
{
timer_del(s->insert_timer);
timer_free(s->insert_timer);
timer_del(s->transfer_timer);
timer_free(s->transfer_timer);
g_free(s->fifo_buffer);
s->fifo_buffer = NULL;
}
static void sdhci_common_realize(SDHCIState *s, Error **errp)
{
s->buf_maxsz = sdhci_get_fifolen(s);
s->fifo_buffer = g_malloc0(s->buf_maxsz);
memory_region_init_io(&s->iomem, OBJECT(s), &sdhci_mmio_ops, s, "sdhci",
SDHC_REGISTERS_MAP_SIZE);
}
static void sdhci_common_unrealize(SDHCIState *s, Error **errp)
{
/* This function is expected to be called only once for each class:
* - SysBus: via DeviceClass->unrealize(),
* - PCI: via PCIDeviceClass->exit().
* However to avoid double-free and/or use-after-free we still nullify
* this variable (better safe than sorry!). */
g_free(s->fifo_buffer);
s->fifo_buffer = NULL;
}
static bool sdhci_pending_insert_vmstate_needed(void *opaque)
{
SDHCIState *s = opaque;
return s->pending_insert_state;
}
static const VMStateDescription sdhci_pending_insert_vmstate = {
.name = "sdhci/pending-insert",
.version_id = 1,
.minimum_version_id = 1,
.needed = sdhci_pending_insert_vmstate_needed,
.fields = (VMStateField[]) {
VMSTATE_BOOL(pending_insert_state, SDHCIState),
VMSTATE_END_OF_LIST()
},
};
const VMStateDescription sdhci_vmstate = {
.name = "sdhci",
.version_id = 1,
.minimum_version_id = 1,
.fields = (VMStateField[]) {
VMSTATE_UINT32(sdmasysad, SDHCIState),
VMSTATE_UINT16(blksize, SDHCIState),
VMSTATE_UINT16(blkcnt, SDHCIState),
VMSTATE_UINT32(argument, SDHCIState),
VMSTATE_UINT16(trnmod, SDHCIState),
VMSTATE_UINT16(cmdreg, SDHCIState),
VMSTATE_UINT32_ARRAY(rspreg, SDHCIState, 4),
VMSTATE_UINT32(prnsts, SDHCIState),
VMSTATE_UINT8(hostctl, SDHCIState),
VMSTATE_UINT8(pwrcon, SDHCIState),
VMSTATE_UINT8(blkgap, SDHCIState),
VMSTATE_UINT8(wakcon, SDHCIState),
VMSTATE_UINT16(clkcon, SDHCIState),
VMSTATE_UINT8(timeoutcon, SDHCIState),
VMSTATE_UINT8(admaerr, SDHCIState),
VMSTATE_UINT16(norintsts, SDHCIState),
VMSTATE_UINT16(errintsts, SDHCIState),
VMSTATE_UINT16(norintstsen, SDHCIState),
VMSTATE_UINT16(errintstsen, SDHCIState),
VMSTATE_UINT16(norintsigen, SDHCIState),
VMSTATE_UINT16(errintsigen, SDHCIState),
VMSTATE_UINT16(acmd12errsts, SDHCIState),
VMSTATE_UINT16(data_count, SDHCIState),
VMSTATE_UINT64(admasysaddr, SDHCIState),
VMSTATE_UINT8(stopped_state, SDHCIState),
VMSTATE_VBUFFER_UINT32(fifo_buffer, SDHCIState, 1, NULL, buf_maxsz),
VMSTATE_TIMER_PTR(insert_timer, SDHCIState),
VMSTATE_TIMER_PTR(transfer_timer, SDHCIState),
VMSTATE_END_OF_LIST()
},
.subsections = (const VMStateDescription*[]) {
&sdhci_pending_insert_vmstate,
NULL
},
};
static void sdhci_common_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
dc->vmsd = &sdhci_vmstate;
dc->reset = sdhci_poweron_reset;
}
/* --- qdev PCI --- */
static Property sdhci_pci_properties[] = {
DEFINE_SDHCI_COMMON_PROPERTIES(SDHCIState),
DEFINE_PROP_END_OF_LIST(),
};
static void sdhci_pci_realize(PCIDevice *dev, Error **errp)
{
SDHCIState *s = PCI_SDHCI(dev);
sdhci_initfn(s);
sdhci_common_realize(s, errp);
if (errp && *errp) {
return;
}
dev->config[PCI_CLASS_PROG] = 0x01; /* Standard Host supported DMA */
dev->config[PCI_INTERRUPT_PIN] = 0x01; /* interrupt pin A */
s->irq = pci_allocate_irq(dev);
s->dma_as = pci_get_address_space(dev);
pci_register_bar(dev, 0, PCI_BASE_ADDRESS_SPACE_MEMORY, &s->iomem);
}
static void sdhci_pci_exit(PCIDevice *dev)
{
SDHCIState *s = PCI_SDHCI(dev);
sdhci_common_unrealize(s, &error_abort);
sdhci_uninitfn(s);
}
static void sdhci_pci_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
k->realize = sdhci_pci_realize;
k->exit = sdhci_pci_exit;
k->vendor_id = PCI_VENDOR_ID_REDHAT;
k->device_id = PCI_DEVICE_ID_REDHAT_SDHCI;
k->class_id = PCI_CLASS_SYSTEM_SDHCI;
dc->props = sdhci_pci_properties;
sdhci_common_class_init(klass, data);
}
static const TypeInfo sdhci_pci_info = {
.name = TYPE_PCI_SDHCI,
.parent = TYPE_PCI_DEVICE,
.instance_size = sizeof(SDHCIState),
.class_init = sdhci_pci_class_init,
.interfaces = (InterfaceInfo[]) {
{ INTERFACE_CONVENTIONAL_PCI_DEVICE },
{ },
},
};
/* --- qdev SysBus --- */
static Property sdhci_sysbus_properties[] = {
DEFINE_SDHCI_COMMON_PROPERTIES(SDHCIState),
DEFINE_PROP_BOOL("pending-insert-quirk", SDHCIState, pending_insert_quirk,
false),
DEFINE_PROP_LINK("dma", SDHCIState,
dma_mr, TYPE_MEMORY_REGION, MemoryRegion *),
DEFINE_PROP_END_OF_LIST(),
};
static void sdhci_sysbus_init(Object *obj)
{
SDHCIState *s = SYSBUS_SDHCI(obj);
sdhci_initfn(s);
}
static void sdhci_sysbus_finalize(Object *obj)
{
SDHCIState *s = SYSBUS_SDHCI(obj);
if (s->dma_mr) {
object_unparent(OBJECT(s->dma_mr));
}
sdhci_uninitfn(s);
}
static void sdhci_sysbus_realize(DeviceState *dev, Error ** errp)
{
SDHCIState *s = SYSBUS_SDHCI(dev);
SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
sdhci_common_realize(s, errp);
if (errp && *errp) {
return;
}
if (s->dma_mr) {
s->dma_as = &s->sysbus_dma_as;
address_space_init(s->dma_as, s->dma_mr, "sdhci-dma");
} else {
/* use system_memory() if property "dma" not set */
s->dma_as = &address_space_memory;
}
sysbus_init_irq(sbd, &s->irq);
sysbus_init_mmio(sbd, &s->iomem);
}
static void sdhci_sysbus_unrealize(DeviceState *dev, Error **errp)
{
SDHCIState *s = SYSBUS_SDHCI(dev);
sdhci_common_unrealize(s, &error_abort);
if (s->dma_mr) {
address_space_destroy(s->dma_as);
}
}
static void sdhci_sysbus_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
dc->props = sdhci_sysbus_properties;
dc->realize = sdhci_sysbus_realize;
dc->unrealize = sdhci_sysbus_unrealize;
sdhci_common_class_init(klass, data);
}
static const TypeInfo sdhci_sysbus_info = {
.name = TYPE_SYSBUS_SDHCI,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_size = sizeof(SDHCIState),
.instance_init = sdhci_sysbus_init,
.instance_finalize = sdhci_sysbus_finalize,
.class_init = sdhci_sysbus_class_init,
};
/* --- qdev bus master --- */
static void sdhci_bus_class_init(ObjectClass *klass, void *data)
{
SDBusClass *sbc = SD_BUS_CLASS(klass);
sbc->set_inserted = sdhci_set_inserted;
sbc->set_readonly = sdhci_set_readonly;
}
static const TypeInfo sdhci_bus_info = {
.name = TYPE_SDHCI_BUS,
.parent = TYPE_SD_BUS,
.instance_size = sizeof(SDBus),
.class_init = sdhci_bus_class_init,
};
static void sdhci_register_types(void)
{
type_register_static(&sdhci_pci_info);
type_register_static(&sdhci_sysbus_info);
type_register_static(&sdhci_bus_info);
}
type_init(sdhci_register_types)