qemu-e2k/hw/sparc/leon3.c
Thomas Huth 7164f7e402 hw/sparc/leon3: Fix wrong usage of DO_UPCAST macro
leon3.c currently fails to compile with some compilers when the -Wvla
option has been enabled:

 ../hw/sparc/leon3.c: In function ‘leon3_cpu_reset’:
 ../hw/sparc/leon3.c:153:5: error: ISO C90 forbids variable length array
  ‘offset_must_be_zero’ [-Werror=vla]
   153 |     ResetData *s = (ResetData *)DO_UPCAST(ResetData, info[id], info);
       |     ^~~~~~~~~
 cc1: all warnings being treated as errors

Looking at this code, the DO_UPCAST macro is indeed used in a wrong way
here: DO_UPCAST is supposed to check that the second parameter is the
first entry of the struct that the first parameter indicates, but since
we use and index into the info[] array, this of course cannot work.

The intention here was likely rather to use the container_of() macro
instead, so switch the code accordingly.

Fixes: d65aba8286 ("hw/sparc/leon3: implement multiprocessor")
Signed-off-by: Thomas Huth <thuth@redhat.com>
Reviewed-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Message-ID: <20240221180751.190489-1-thuth@redhat.com>
Tested-by: Clément Chigot <chigot@adacore.com>
Signed-off-by: Philippe Mathieu-Daudé <philmd@linaro.org>
2024-02-22 12:47:40 +01:00

446 lines
15 KiB
C

/*
* QEMU Leon3 System Emulator
*
* SPDX-License-Identifier: MIT
*
* Copyright (c) 2010-2024 AdaCore
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "qemu/osdep.h"
#include "qemu/units.h"
#include "qemu/error-report.h"
#include "qapi/error.h"
#include "qemu/datadir.h"
#include "cpu.h"
#include "hw/irq.h"
#include "qemu/timer.h"
#include "hw/ptimer.h"
#include "hw/qdev-properties.h"
#include "sysemu/sysemu.h"
#include "sysemu/qtest.h"
#include "sysemu/reset.h"
#include "hw/boards.h"
#include "hw/loader.h"
#include "elf.h"
#include "trace.h"
#include "hw/timer/grlib_gptimer.h"
#include "hw/char/grlib_uart.h"
#include "hw/intc/grlib_irqmp.h"
#include "hw/misc/grlib_ahb_apb_pnp.h"
/* Default system clock. */
#define CPU_CLK (40 * 1000 * 1000)
#define LEON3_PROM_FILENAME "u-boot.bin"
#define LEON3_PROM_OFFSET (0x00000000)
#define LEON3_RAM_OFFSET (0x40000000)
#define MAX_CPUS 4
#define LEON3_UART_OFFSET (0x80000100)
#define LEON3_UART_IRQ (3)
#define LEON3_IRQMP_OFFSET (0x80000200)
#define LEON3_TIMER_OFFSET (0x80000300)
#define LEON3_TIMER_IRQ (6)
#define LEON3_TIMER_COUNT (2)
#define LEON3_APB_PNP_OFFSET (0x800FF000)
#define LEON3_AHB_PNP_OFFSET (0xFFFFF000)
typedef struct ResetData {
struct CPUResetData {
int id;
SPARCCPU *cpu;
} info[MAX_CPUS];
uint32_t entry; /* save kernel entry in case of reset */
} ResetData;
static uint32_t *gen_store_u32(uint32_t *code, hwaddr addr, uint32_t val)
{
stl_p(code++, 0x82100000); /* mov %g0, %g1 */
stl_p(code++, 0x84100000); /* mov %g0, %g2 */
stl_p(code++, 0x03000000 +
extract32(addr, 10, 22));
/* sethi %hi(addr), %g1 */
stl_p(code++, 0x82106000 +
extract32(addr, 0, 10));
/* or %g1, addr, %g1 */
stl_p(code++, 0x05000000 +
extract32(val, 10, 22));
/* sethi %hi(val), %g2 */
stl_p(code++, 0x8410a000 +
extract32(val, 0, 10));
/* or %g2, val, %g2 */
stl_p(code++, 0xc4204000); /* st %g2, [ %g1 ] */
return code;
}
/*
* When loading a kernel in RAM the machine is expected to be in a different
* state (eg: initialized by the bootloader). This little code reproduces
* this behavior. Also this code can be executed by the secondary cpus as
* well since it looks at the %asr17 register before doing any
* initialization, it allows to use the same reset address for all the
* cpus.
*/
static void write_bootloader(void *ptr, hwaddr kernel_addr)
{
uint32_t *p = ptr;
uint32_t *sec_cpu_branch_p = NULL;
/* If we are running on a secondary CPU, jump directly to the kernel. */
stl_p(p++, 0x85444000); /* rd %asr17, %g2 */
stl_p(p++, 0x8530a01c); /* srl %g2, 0x1c, %g2 */
stl_p(p++, 0x80908000); /* tst %g2 */
/* Filled below. */
sec_cpu_branch_p = p;
stl_p(p++, 0x0BADC0DE); /* bne xxx */
stl_p(p++, 0x01000000); /* nop */
/* Initialize the UARTs */
/* *UART_CONTROL = UART_RECEIVE_ENABLE | UART_TRANSMIT_ENABLE; */
p = gen_store_u32(p, 0x80000108, 3);
/* Initialize the TIMER 0 */
/* *GPTIMER_SCALER_RELOAD = 40 - 1; */
p = gen_store_u32(p, 0x80000304, 39);
/* *GPTIMER0_COUNTER_RELOAD = 0xFFFE; */
p = gen_store_u32(p, 0x80000314, 0xFFFFFFFE);
/* *GPTIMER0_CONFIG = GPTIMER_ENABLE | GPTIMER_RESTART; */
p = gen_store_u32(p, 0x80000318, 3);
/* Now, the relative branch above can be computed. */
stl_p(sec_cpu_branch_p, 0x12800000
+ (p - sec_cpu_branch_p));
/* JUMP to the entry point */
stl_p(p++, 0x82100000); /* mov %g0, %g1 */
stl_p(p++, 0x03000000 + extract32(kernel_addr, 10, 22));
/* sethi %hi(kernel_addr), %g1 */
stl_p(p++, 0x82106000 + extract32(kernel_addr, 0, 10));
/* or kernel_addr, %g1 */
stl_p(p++, 0x81c04000); /* jmp %g1 */
stl_p(p++, 0x01000000); /* nop */
}
static void leon3_cpu_reset(void *opaque)
{
struct CPUResetData *info = (struct CPUResetData *) opaque;
int id = info->id;
ResetData *s = container_of(info, ResetData, info[id]);
CPUState *cpu = CPU(s->info[id].cpu);
CPUSPARCState *env = cpu_env(cpu);
cpu_reset(cpu);
cpu->halted = cpu->cpu_index != 0;
env->pc = s->entry;
env->npc = s->entry + 4;
}
static void leon3_cache_control_int(CPUSPARCState *env)
{
uint32_t state = 0;
if (env->cache_control & CACHE_CTRL_IF) {
/* Instruction cache state */
state = env->cache_control & CACHE_STATE_MASK;
if (state == CACHE_ENABLED) {
state = CACHE_FROZEN;
trace_int_helper_icache_freeze();
}
env->cache_control &= ~CACHE_STATE_MASK;
env->cache_control |= state;
}
if (env->cache_control & CACHE_CTRL_DF) {
/* Data cache state */
state = (env->cache_control >> 2) & CACHE_STATE_MASK;
if (state == CACHE_ENABLED) {
state = CACHE_FROZEN;
trace_int_helper_dcache_freeze();
}
env->cache_control &= ~(CACHE_STATE_MASK << 2);
env->cache_control |= (state << 2);
}
}
static void leon3_irq_ack(CPUSPARCState *env, int intno)
{
CPUState *cpu = CPU(env_cpu(env));
grlib_irqmp_ack(env->irq_manager, cpu->cpu_index, intno);
}
/*
* This device assumes that the incoming 'level' value on the
* qemu_irq is the interrupt number, not just a simple 0/1 level.
*/
static void leon3_set_pil_in(void *opaque, int n, int level)
{
DeviceState *cpu = opaque;
CPUState *cs = CPU(cpu);
CPUSPARCState *env = cpu_env(cs);
uint32_t pil_in = level;
assert(env != NULL);
env->pil_in = pil_in;
if (env->pil_in && (env->interrupt_index == 0 ||
(env->interrupt_index & ~15) == TT_EXTINT)) {
unsigned int i;
for (i = 15; i > 0; i--) {
if (env->pil_in & (1 << i)) {
int old_interrupt = env->interrupt_index;
env->interrupt_index = TT_EXTINT | i;
if (old_interrupt != env->interrupt_index) {
trace_leon3_set_irq(i);
cpu_interrupt(cs, CPU_INTERRUPT_HARD);
}
break;
}
}
} else if (!env->pil_in && (env->interrupt_index & ~15) == TT_EXTINT) {
trace_leon3_reset_irq(env->interrupt_index & 15);
env->interrupt_index = 0;
cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
}
}
static void leon3_start_cpu_async_work(CPUState *cpu, run_on_cpu_data data)
{
cpu->halted = 0;
}
static void leon3_start_cpu(void *opaque, int n, int level)
{
DeviceState *cpu = opaque;
CPUState *cs = CPU(cpu);
assert(level == 1);
async_run_on_cpu(cs, leon3_start_cpu_async_work, RUN_ON_CPU_NULL);
}
static void leon3_irq_manager(CPUSPARCState *env, int intno)
{
leon3_irq_ack(env, intno);
leon3_cache_control_int(env);
}
static void leon3_generic_hw_init(MachineState *machine)
{
ram_addr_t ram_size = machine->ram_size;
const char *bios_name = machine->firmware ?: LEON3_PROM_FILENAME;
const char *kernel_filename = machine->kernel_filename;
SPARCCPU *cpu;
CPUSPARCState *env;
MemoryRegion *address_space_mem = get_system_memory();
MemoryRegion *prom = g_new(MemoryRegion, 1);
int ret;
char *filename;
int bios_size;
int prom_size;
ResetData *reset_info;
DeviceState *dev, *irqmpdev;
int i;
AHBPnp *ahb_pnp;
APBPnp *apb_pnp;
reset_info = g_malloc0(sizeof(ResetData));
for (i = 0; i < machine->smp.cpus; i++) {
/* Init CPU */
cpu = SPARC_CPU(object_new(machine->cpu_type));
qdev_init_gpio_in_named(DEVICE(cpu), leon3_start_cpu, "start_cpu", 1);
qdev_init_gpio_in_named(DEVICE(cpu), leon3_set_pil_in, "pil", 1);
qdev_realize(DEVICE(cpu), NULL, &error_fatal);
env = &cpu->env;
cpu_sparc_set_id(env, i);
/* Reset data */
reset_info->info[i].id = i;
reset_info->info[i].cpu = cpu;
qemu_register_reset(leon3_cpu_reset, &reset_info->info[i]);
}
ahb_pnp = GRLIB_AHB_PNP(qdev_new(TYPE_GRLIB_AHB_PNP));
sysbus_realize_and_unref(SYS_BUS_DEVICE(ahb_pnp), &error_fatal);
sysbus_mmio_map(SYS_BUS_DEVICE(ahb_pnp), 0, LEON3_AHB_PNP_OFFSET);
grlib_ahb_pnp_add_entry(ahb_pnp, 0, 0, GRLIB_VENDOR_GAISLER,
GRLIB_LEON3_DEV, GRLIB_AHB_MASTER,
GRLIB_CPU_AREA);
apb_pnp = GRLIB_APB_PNP(qdev_new(TYPE_GRLIB_APB_PNP));
sysbus_realize_and_unref(SYS_BUS_DEVICE(apb_pnp), &error_fatal);
sysbus_mmio_map(SYS_BUS_DEVICE(apb_pnp), 0, LEON3_APB_PNP_OFFSET);
grlib_ahb_pnp_add_entry(ahb_pnp, LEON3_APB_PNP_OFFSET, 0xFFF,
GRLIB_VENDOR_GAISLER, GRLIB_APBMST_DEV,
GRLIB_AHB_SLAVE, GRLIB_AHBMEM_AREA);
/* Allocate IRQ manager */
irqmpdev = qdev_new(TYPE_GRLIB_IRQMP);
object_property_set_int(OBJECT(irqmpdev), "ncpus", machine->smp.cpus,
&error_fatal);
sysbus_realize_and_unref(SYS_BUS_DEVICE(irqmpdev), &error_fatal);
for (i = 0; i < machine->smp.cpus; i++) {
cpu = reset_info->info[i].cpu;
env = &cpu->env;
qdev_connect_gpio_out_named(irqmpdev, "grlib-start-cpu", i,
qdev_get_gpio_in_named(DEVICE(cpu),
"start_cpu", 0));
qdev_connect_gpio_out_named(irqmpdev, "grlib-irq", i,
qdev_get_gpio_in_named(DEVICE(cpu),
"pil", 0));
env->irq_manager = irqmpdev;
env->qemu_irq_ack = leon3_irq_manager;
}
sysbus_mmio_map(SYS_BUS_DEVICE(irqmpdev), 0, LEON3_IRQMP_OFFSET);
grlib_apb_pnp_add_entry(apb_pnp, LEON3_IRQMP_OFFSET, 0xFFF,
GRLIB_VENDOR_GAISLER, GRLIB_IRQMP_DEV,
2, 0, GRLIB_APBIO_AREA);
/* Allocate RAM */
if (ram_size > 1 * GiB) {
error_report("Too much memory for this machine: %" PRId64 "MB,"
" maximum 1G",
ram_size / MiB);
exit(1);
}
memory_region_add_subregion(address_space_mem, LEON3_RAM_OFFSET,
machine->ram);
/* Allocate BIOS */
prom_size = 8 * MiB;
memory_region_init_rom(prom, NULL, "Leon3.bios", prom_size, &error_fatal);
memory_region_add_subregion(address_space_mem, LEON3_PROM_OFFSET, prom);
/* Load boot prom */
filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
if (filename) {
bios_size = get_image_size(filename);
} else {
bios_size = -1;
}
if (bios_size > prom_size) {
error_report("could not load prom '%s': file too big", filename);
exit(1);
}
if (bios_size > 0) {
ret = load_image_targphys(filename, LEON3_PROM_OFFSET, bios_size);
if (ret < 0 || ret > prom_size) {
error_report("could not load prom '%s'", filename);
exit(1);
}
} else if (kernel_filename == NULL && !qtest_enabled()) {
error_report("Can't read bios image '%s'", filename
? filename
: LEON3_PROM_FILENAME);
exit(1);
}
g_free(filename);
/* Can directly load an application. */
if (kernel_filename != NULL) {
long kernel_size;
uint64_t entry;
kernel_size = load_elf(kernel_filename, NULL, NULL, NULL,
&entry, NULL, NULL, NULL,
1 /* big endian */, EM_SPARC, 0, 0);
if (kernel_size < 0) {
kernel_size = load_uimage(kernel_filename, NULL, &entry,
NULL, NULL, NULL);
}
if (kernel_size < 0) {
error_report("could not load kernel '%s'", kernel_filename);
exit(1);
}
if (bios_size <= 0) {
/*
* If there is no bios/monitor just start the application but put
* the machine in an initialized state through a little
* bootloader.
*/
write_bootloader(memory_region_get_ram_ptr(prom), entry);
reset_info->entry = LEON3_PROM_OFFSET;
for (i = 0; i < machine->smp.cpus; i++) {
reset_info->info[i].cpu->env.pc = LEON3_PROM_OFFSET;
reset_info->info[i].cpu->env.npc = LEON3_PROM_OFFSET + 4;
}
}
}
/* Allocate timers */
dev = qdev_new(TYPE_GRLIB_GPTIMER);
qdev_prop_set_uint32(dev, "nr-timers", LEON3_TIMER_COUNT);
qdev_prop_set_uint32(dev, "frequency", CPU_CLK);
qdev_prop_set_uint32(dev, "irq-line", LEON3_TIMER_IRQ);
sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, LEON3_TIMER_OFFSET);
for (i = 0; i < LEON3_TIMER_COUNT; i++) {
sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
qdev_get_gpio_in(irqmpdev, LEON3_TIMER_IRQ + i));
}
grlib_apb_pnp_add_entry(apb_pnp, LEON3_TIMER_OFFSET, 0xFFF,
GRLIB_VENDOR_GAISLER, GRLIB_GPTIMER_DEV,
0, LEON3_TIMER_IRQ, GRLIB_APBIO_AREA);
/* Allocate uart */
dev = qdev_new(TYPE_GRLIB_APB_UART);
qdev_prop_set_chr(dev, "chrdev", serial_hd(0));
sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, LEON3_UART_OFFSET);
sysbus_connect_irq(SYS_BUS_DEVICE(dev), 0,
qdev_get_gpio_in(irqmpdev, LEON3_UART_IRQ));
grlib_apb_pnp_add_entry(apb_pnp, LEON3_UART_OFFSET, 0xFFF,
GRLIB_VENDOR_GAISLER, GRLIB_APBUART_DEV, 1,
LEON3_UART_IRQ, GRLIB_APBIO_AREA);
}
static void leon3_generic_machine_init(MachineClass *mc)
{
mc->desc = "Leon-3 generic";
mc->init = leon3_generic_hw_init;
mc->default_cpu_type = SPARC_CPU_TYPE_NAME("LEON3");
mc->default_ram_id = "leon3.ram";
mc->max_cpus = MAX_CPUS;
}
DEFINE_MACHINE("leon3_generic", leon3_generic_machine_init)