2507c12ab0
As stated before, devices can be little, big or native endian. The target endianness is not of their concern, so we need to push things down a level. This patch adds a parameter to cpu_register_io_memory that allows a device to choose its endianness. For now, all devices simply choose native endian, because that's the same behavior as before. Signed-off-by: Alexander Graf <agraf@suse.de> Signed-off-by: Blue Swirl <blauwirbel@gmail.com>
311 lines
7.1 KiB
C
311 lines
7.1 KiB
C
/*
|
|
* ColdFire UART emulation.
|
|
*
|
|
* Copyright (c) 2007 CodeSourcery.
|
|
*
|
|
* This code is licenced under the GPL
|
|
*/
|
|
#include "hw.h"
|
|
#include "mcf.h"
|
|
#include "qemu-char.h"
|
|
|
|
typedef struct {
|
|
uint8_t mr[2];
|
|
uint8_t sr;
|
|
uint8_t isr;
|
|
uint8_t imr;
|
|
uint8_t bg1;
|
|
uint8_t bg2;
|
|
uint8_t fifo[4];
|
|
uint8_t tb;
|
|
int current_mr;
|
|
int fifo_len;
|
|
int tx_enabled;
|
|
int rx_enabled;
|
|
qemu_irq irq;
|
|
CharDriverState *chr;
|
|
} mcf_uart_state;
|
|
|
|
/* UART Status Register bits. */
|
|
#define MCF_UART_RxRDY 0x01
|
|
#define MCF_UART_FFULL 0x02
|
|
#define MCF_UART_TxRDY 0x04
|
|
#define MCF_UART_TxEMP 0x08
|
|
#define MCF_UART_OE 0x10
|
|
#define MCF_UART_PE 0x20
|
|
#define MCF_UART_FE 0x40
|
|
#define MCF_UART_RB 0x80
|
|
|
|
/* Interrupt flags. */
|
|
#define MCF_UART_TxINT 0x01
|
|
#define MCF_UART_RxINT 0x02
|
|
#define MCF_UART_DBINT 0x04
|
|
#define MCF_UART_COSINT 0x80
|
|
|
|
/* UMR1 flags. */
|
|
#define MCF_UART_BC0 0x01
|
|
#define MCF_UART_BC1 0x02
|
|
#define MCF_UART_PT 0x04
|
|
#define MCF_UART_PM0 0x08
|
|
#define MCF_UART_PM1 0x10
|
|
#define MCF_UART_ERR 0x20
|
|
#define MCF_UART_RxIRQ 0x40
|
|
#define MCF_UART_RxRTS 0x80
|
|
|
|
static void mcf_uart_update(mcf_uart_state *s)
|
|
{
|
|
s->isr &= ~(MCF_UART_TxINT | MCF_UART_RxINT);
|
|
if (s->sr & MCF_UART_TxRDY)
|
|
s->isr |= MCF_UART_TxINT;
|
|
if ((s->sr & ((s->mr[0] & MCF_UART_RxIRQ)
|
|
? MCF_UART_FFULL : MCF_UART_RxRDY)) != 0)
|
|
s->isr |= MCF_UART_RxINT;
|
|
|
|
qemu_set_irq(s->irq, (s->isr & s->imr) != 0);
|
|
}
|
|
|
|
uint32_t mcf_uart_read(void *opaque, target_phys_addr_t addr)
|
|
{
|
|
mcf_uart_state *s = (mcf_uart_state *)opaque;
|
|
switch (addr & 0x3f) {
|
|
case 0x00:
|
|
return s->mr[s->current_mr];
|
|
case 0x04:
|
|
return s->sr;
|
|
case 0x0c:
|
|
{
|
|
uint8_t val;
|
|
int i;
|
|
|
|
if (s->fifo_len == 0)
|
|
return 0;
|
|
|
|
val = s->fifo[0];
|
|
s->fifo_len--;
|
|
for (i = 0; i < s->fifo_len; i++)
|
|
s->fifo[i] = s->fifo[i + 1];
|
|
s->sr &= ~MCF_UART_FFULL;
|
|
if (s->fifo_len == 0)
|
|
s->sr &= ~MCF_UART_RxRDY;
|
|
mcf_uart_update(s);
|
|
qemu_chr_accept_input(s->chr);
|
|
return val;
|
|
}
|
|
case 0x10:
|
|
/* TODO: Implement IPCR. */
|
|
return 0;
|
|
case 0x14:
|
|
return s->isr;
|
|
case 0x18:
|
|
return s->bg1;
|
|
case 0x1c:
|
|
return s->bg2;
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/* Update TxRDY flag and set data if present and enabled. */
|
|
static void mcf_uart_do_tx(mcf_uart_state *s)
|
|
{
|
|
if (s->tx_enabled && (s->sr & MCF_UART_TxEMP) == 0) {
|
|
if (s->chr)
|
|
qemu_chr_write(s->chr, (unsigned char *)&s->tb, 1);
|
|
s->sr |= MCF_UART_TxEMP;
|
|
}
|
|
if (s->tx_enabled) {
|
|
s->sr |= MCF_UART_TxRDY;
|
|
} else {
|
|
s->sr &= ~MCF_UART_TxRDY;
|
|
}
|
|
}
|
|
|
|
static void mcf_do_command(mcf_uart_state *s, uint8_t cmd)
|
|
{
|
|
/* Misc command. */
|
|
switch ((cmd >> 4) & 3) {
|
|
case 0: /* No-op. */
|
|
break;
|
|
case 1: /* Reset mode register pointer. */
|
|
s->current_mr = 0;
|
|
break;
|
|
case 2: /* Reset receiver. */
|
|
s->rx_enabled = 0;
|
|
s->fifo_len = 0;
|
|
s->sr &= ~(MCF_UART_RxRDY | MCF_UART_FFULL);
|
|
break;
|
|
case 3: /* Reset transmitter. */
|
|
s->tx_enabled = 0;
|
|
s->sr |= MCF_UART_TxEMP;
|
|
s->sr &= ~MCF_UART_TxRDY;
|
|
break;
|
|
case 4: /* Reset error status. */
|
|
break;
|
|
case 5: /* Reset break-change interrupt. */
|
|
s->isr &= ~MCF_UART_DBINT;
|
|
break;
|
|
case 6: /* Start break. */
|
|
case 7: /* Stop break. */
|
|
break;
|
|
}
|
|
|
|
/* Transmitter command. */
|
|
switch ((cmd >> 2) & 3) {
|
|
case 0: /* No-op. */
|
|
break;
|
|
case 1: /* Enable. */
|
|
s->tx_enabled = 1;
|
|
mcf_uart_do_tx(s);
|
|
break;
|
|
case 2: /* Disable. */
|
|
s->tx_enabled = 0;
|
|
mcf_uart_do_tx(s);
|
|
break;
|
|
case 3: /* Reserved. */
|
|
fprintf(stderr, "mcf_uart: Bad TX command\n");
|
|
break;
|
|
}
|
|
|
|
/* Receiver command. */
|
|
switch (cmd & 3) {
|
|
case 0: /* No-op. */
|
|
break;
|
|
case 1: /* Enable. */
|
|
s->rx_enabled = 1;
|
|
break;
|
|
case 2:
|
|
s->rx_enabled = 0;
|
|
break;
|
|
case 3: /* Reserved. */
|
|
fprintf(stderr, "mcf_uart: Bad RX command\n");
|
|
break;
|
|
}
|
|
}
|
|
|
|
void mcf_uart_write(void *opaque, target_phys_addr_t addr, uint32_t val)
|
|
{
|
|
mcf_uart_state *s = (mcf_uart_state *)opaque;
|
|
switch (addr & 0x3f) {
|
|
case 0x00:
|
|
s->mr[s->current_mr] = val;
|
|
s->current_mr = 1;
|
|
break;
|
|
case 0x04:
|
|
/* CSR is ignored. */
|
|
break;
|
|
case 0x08: /* Command Register. */
|
|
mcf_do_command(s, val);
|
|
break;
|
|
case 0x0c: /* Transmit Buffer. */
|
|
s->sr &= ~MCF_UART_TxEMP;
|
|
s->tb = val;
|
|
mcf_uart_do_tx(s);
|
|
break;
|
|
case 0x10:
|
|
/* ACR is ignored. */
|
|
break;
|
|
case 0x14:
|
|
s->imr = val;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
mcf_uart_update(s);
|
|
}
|
|
|
|
static void mcf_uart_reset(mcf_uart_state *s)
|
|
{
|
|
s->fifo_len = 0;
|
|
s->mr[0] = 0;
|
|
s->mr[1] = 0;
|
|
s->sr = MCF_UART_TxEMP;
|
|
s->tx_enabled = 0;
|
|
s->rx_enabled = 0;
|
|
s->isr = 0;
|
|
s->imr = 0;
|
|
}
|
|
|
|
static void mcf_uart_push_byte(mcf_uart_state *s, uint8_t data)
|
|
{
|
|
/* Break events overwrite the last byte if the fifo is full. */
|
|
if (s->fifo_len == 4)
|
|
s->fifo_len--;
|
|
|
|
s->fifo[s->fifo_len] = data;
|
|
s->fifo_len++;
|
|
s->sr |= MCF_UART_RxRDY;
|
|
if (s->fifo_len == 4)
|
|
s->sr |= MCF_UART_FFULL;
|
|
|
|
mcf_uart_update(s);
|
|
}
|
|
|
|
static void mcf_uart_event(void *opaque, int event)
|
|
{
|
|
mcf_uart_state *s = (mcf_uart_state *)opaque;
|
|
|
|
switch (event) {
|
|
case CHR_EVENT_BREAK:
|
|
s->isr |= MCF_UART_DBINT;
|
|
mcf_uart_push_byte(s, 0);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
static int mcf_uart_can_receive(void *opaque)
|
|
{
|
|
mcf_uart_state *s = (mcf_uart_state *)opaque;
|
|
|
|
return s->rx_enabled && (s->sr & MCF_UART_FFULL) == 0;
|
|
}
|
|
|
|
static void mcf_uart_receive(void *opaque, const uint8_t *buf, int size)
|
|
{
|
|
mcf_uart_state *s = (mcf_uart_state *)opaque;
|
|
|
|
mcf_uart_push_byte(s, buf[0]);
|
|
}
|
|
|
|
void *mcf_uart_init(qemu_irq irq, CharDriverState *chr)
|
|
{
|
|
mcf_uart_state *s;
|
|
|
|
s = qemu_mallocz(sizeof(mcf_uart_state));
|
|
s->chr = chr;
|
|
s->irq = irq;
|
|
if (chr) {
|
|
qemu_chr_add_handlers(chr, mcf_uart_can_receive, mcf_uart_receive,
|
|
mcf_uart_event, s);
|
|
}
|
|
mcf_uart_reset(s);
|
|
return s;
|
|
}
|
|
|
|
|
|
static CPUReadMemoryFunc * const mcf_uart_readfn[] = {
|
|
mcf_uart_read,
|
|
mcf_uart_read,
|
|
mcf_uart_read
|
|
};
|
|
|
|
static CPUWriteMemoryFunc * const mcf_uart_writefn[] = {
|
|
mcf_uart_write,
|
|
mcf_uart_write,
|
|
mcf_uart_write
|
|
};
|
|
|
|
void mcf_uart_mm_init(target_phys_addr_t base, qemu_irq irq,
|
|
CharDriverState *chr)
|
|
{
|
|
mcf_uart_state *s;
|
|
int iomemtype;
|
|
|
|
s = mcf_uart_init(irq, chr);
|
|
iomemtype = cpu_register_io_memory(mcf_uart_readfn,
|
|
mcf_uart_writefn, s,
|
|
DEVICE_NATIVE_ENDIAN);
|
|
cpu_register_physical_memory(base, 0x40, iomemtype);
|
|
}
|