b1669e5e32
Several targets forgot to include softmmu_exec.h, which would break them with a header cleanup to follow. Reviewed-by: Aurelien Jarno <aurelien@aurel32.net> Signed-off-by: Richard Henderson <rth@twiddle.net>
966 lines
28 KiB
C
966 lines
28 KiB
C
/*
|
|
* Copyright (c) 2011, Max Filippov, Open Source and Linux Lab.
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions are met:
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* * Neither the name of the Open Source and Linux Lab nor the
|
|
* names of its contributors may be used to endorse or promote products
|
|
* derived from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
|
|
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
|
|
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
|
|
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
|
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include "cpu.h"
|
|
#include "helper.h"
|
|
#include "qemu/host-utils.h"
|
|
#include "exec/softmmu_exec.h"
|
|
|
|
static void do_unaligned_access(CPUXtensaState *env,
|
|
target_ulong addr, int is_write, int is_user, uintptr_t retaddr);
|
|
|
|
#define ALIGNED_ONLY
|
|
#define MMUSUFFIX _mmu
|
|
|
|
#define SHIFT 0
|
|
#include "exec/softmmu_template.h"
|
|
|
|
#define SHIFT 1
|
|
#include "exec/softmmu_template.h"
|
|
|
|
#define SHIFT 2
|
|
#include "exec/softmmu_template.h"
|
|
|
|
#define SHIFT 3
|
|
#include "exec/softmmu_template.h"
|
|
|
|
static void do_unaligned_access(CPUXtensaState *env,
|
|
target_ulong addr, int is_write, int is_user, uintptr_t retaddr)
|
|
{
|
|
if (xtensa_option_enabled(env->config, XTENSA_OPTION_UNALIGNED_EXCEPTION) &&
|
|
!xtensa_option_enabled(env->config, XTENSA_OPTION_HW_ALIGNMENT)) {
|
|
cpu_restore_state(env, retaddr);
|
|
HELPER(exception_cause_vaddr)(env,
|
|
env->pc, LOAD_STORE_ALIGNMENT_CAUSE, addr);
|
|
}
|
|
}
|
|
|
|
void tlb_fill(CPUXtensaState *env,
|
|
target_ulong vaddr, int is_write, int mmu_idx, uintptr_t retaddr)
|
|
{
|
|
uint32_t paddr;
|
|
uint32_t page_size;
|
|
unsigned access;
|
|
int ret = xtensa_get_physical_addr(env, true, vaddr, is_write, mmu_idx,
|
|
&paddr, &page_size, &access);
|
|
|
|
qemu_log("%s(%08x, %d, %d) -> %08x, ret = %d\n", __func__,
|
|
vaddr, is_write, mmu_idx, paddr, ret);
|
|
|
|
if (ret == 0) {
|
|
tlb_set_page(env,
|
|
vaddr & TARGET_PAGE_MASK,
|
|
paddr & TARGET_PAGE_MASK,
|
|
access, mmu_idx, page_size);
|
|
} else {
|
|
cpu_restore_state(env, retaddr);
|
|
HELPER(exception_cause_vaddr)(env, env->pc, ret, vaddr);
|
|
}
|
|
}
|
|
|
|
static void tb_invalidate_virtual_addr(CPUXtensaState *env, uint32_t vaddr)
|
|
{
|
|
uint32_t paddr;
|
|
uint32_t page_size;
|
|
unsigned access;
|
|
int ret = xtensa_get_physical_addr(env, false, vaddr, 2, 0,
|
|
&paddr, &page_size, &access);
|
|
if (ret == 0) {
|
|
tb_invalidate_phys_addr(paddr);
|
|
}
|
|
}
|
|
|
|
void HELPER(exception)(CPUXtensaState *env, uint32_t excp)
|
|
{
|
|
env->exception_index = excp;
|
|
if (excp == EXCP_DEBUG) {
|
|
env->exception_taken = 0;
|
|
}
|
|
cpu_loop_exit(env);
|
|
}
|
|
|
|
void HELPER(exception_cause)(CPUXtensaState *env, uint32_t pc, uint32_t cause)
|
|
{
|
|
uint32_t vector;
|
|
|
|
env->pc = pc;
|
|
if (env->sregs[PS] & PS_EXCM) {
|
|
if (env->config->ndepc) {
|
|
env->sregs[DEPC] = pc;
|
|
} else {
|
|
env->sregs[EPC1] = pc;
|
|
}
|
|
vector = EXC_DOUBLE;
|
|
} else {
|
|
env->sregs[EPC1] = pc;
|
|
vector = (env->sregs[PS] & PS_UM) ? EXC_USER : EXC_KERNEL;
|
|
}
|
|
|
|
env->sregs[EXCCAUSE] = cause;
|
|
env->sregs[PS] |= PS_EXCM;
|
|
|
|
HELPER(exception)(env, vector);
|
|
}
|
|
|
|
void HELPER(exception_cause_vaddr)(CPUXtensaState *env,
|
|
uint32_t pc, uint32_t cause, uint32_t vaddr)
|
|
{
|
|
env->sregs[EXCVADDR] = vaddr;
|
|
HELPER(exception_cause)(env, pc, cause);
|
|
}
|
|
|
|
void debug_exception_env(CPUXtensaState *env, uint32_t cause)
|
|
{
|
|
if (xtensa_get_cintlevel(env) < env->config->debug_level) {
|
|
HELPER(debug_exception)(env, env->pc, cause);
|
|
}
|
|
}
|
|
|
|
void HELPER(debug_exception)(CPUXtensaState *env, uint32_t pc, uint32_t cause)
|
|
{
|
|
unsigned level = env->config->debug_level;
|
|
|
|
env->pc = pc;
|
|
env->sregs[DEBUGCAUSE] = cause;
|
|
env->sregs[EPC1 + level - 1] = pc;
|
|
env->sregs[EPS2 + level - 2] = env->sregs[PS];
|
|
env->sregs[PS] = (env->sregs[PS] & ~PS_INTLEVEL) | PS_EXCM |
|
|
(level << PS_INTLEVEL_SHIFT);
|
|
HELPER(exception)(env, EXC_DEBUG);
|
|
}
|
|
|
|
uint32_t HELPER(nsa)(uint32_t v)
|
|
{
|
|
if (v & 0x80000000) {
|
|
v = ~v;
|
|
}
|
|
return v ? clz32(v) - 1 : 31;
|
|
}
|
|
|
|
uint32_t HELPER(nsau)(uint32_t v)
|
|
{
|
|
return v ? clz32(v) : 32;
|
|
}
|
|
|
|
static void copy_window_from_phys(CPUXtensaState *env,
|
|
uint32_t window, uint32_t phys, uint32_t n)
|
|
{
|
|
assert(phys < env->config->nareg);
|
|
if (phys + n <= env->config->nareg) {
|
|
memcpy(env->regs + window, env->phys_regs + phys,
|
|
n * sizeof(uint32_t));
|
|
} else {
|
|
uint32_t n1 = env->config->nareg - phys;
|
|
memcpy(env->regs + window, env->phys_regs + phys,
|
|
n1 * sizeof(uint32_t));
|
|
memcpy(env->regs + window + n1, env->phys_regs,
|
|
(n - n1) * sizeof(uint32_t));
|
|
}
|
|
}
|
|
|
|
static void copy_phys_from_window(CPUXtensaState *env,
|
|
uint32_t phys, uint32_t window, uint32_t n)
|
|
{
|
|
assert(phys < env->config->nareg);
|
|
if (phys + n <= env->config->nareg) {
|
|
memcpy(env->phys_regs + phys, env->regs + window,
|
|
n * sizeof(uint32_t));
|
|
} else {
|
|
uint32_t n1 = env->config->nareg - phys;
|
|
memcpy(env->phys_regs + phys, env->regs + window,
|
|
n1 * sizeof(uint32_t));
|
|
memcpy(env->phys_regs, env->regs + window + n1,
|
|
(n - n1) * sizeof(uint32_t));
|
|
}
|
|
}
|
|
|
|
|
|
static inline unsigned windowbase_bound(unsigned a, const CPUXtensaState *env)
|
|
{
|
|
return a & (env->config->nareg / 4 - 1);
|
|
}
|
|
|
|
static inline unsigned windowstart_bit(unsigned a, const CPUXtensaState *env)
|
|
{
|
|
return 1 << windowbase_bound(a, env);
|
|
}
|
|
|
|
void xtensa_sync_window_from_phys(CPUXtensaState *env)
|
|
{
|
|
copy_window_from_phys(env, 0, env->sregs[WINDOW_BASE] * 4, 16);
|
|
}
|
|
|
|
void xtensa_sync_phys_from_window(CPUXtensaState *env)
|
|
{
|
|
copy_phys_from_window(env, env->sregs[WINDOW_BASE] * 4, 0, 16);
|
|
}
|
|
|
|
static void rotate_window_abs(CPUXtensaState *env, uint32_t position)
|
|
{
|
|
xtensa_sync_phys_from_window(env);
|
|
env->sregs[WINDOW_BASE] = windowbase_bound(position, env);
|
|
xtensa_sync_window_from_phys(env);
|
|
}
|
|
|
|
static void rotate_window(CPUXtensaState *env, uint32_t delta)
|
|
{
|
|
rotate_window_abs(env, env->sregs[WINDOW_BASE] + delta);
|
|
}
|
|
|
|
void HELPER(wsr_windowbase)(CPUXtensaState *env, uint32_t v)
|
|
{
|
|
rotate_window_abs(env, v);
|
|
}
|
|
|
|
void HELPER(entry)(CPUXtensaState *env, uint32_t pc, uint32_t s, uint32_t imm)
|
|
{
|
|
int callinc = (env->sregs[PS] & PS_CALLINC) >> PS_CALLINC_SHIFT;
|
|
if (s > 3 || ((env->sregs[PS] & (PS_WOE | PS_EXCM)) ^ PS_WOE) != 0) {
|
|
qemu_log("Illegal entry instruction(pc = %08x), PS = %08x\n",
|
|
pc, env->sregs[PS]);
|
|
HELPER(exception_cause)(env, pc, ILLEGAL_INSTRUCTION_CAUSE);
|
|
} else {
|
|
env->regs[(callinc << 2) | (s & 3)] = env->regs[s] - (imm << 3);
|
|
rotate_window(env, callinc);
|
|
env->sregs[WINDOW_START] |=
|
|
windowstart_bit(env->sregs[WINDOW_BASE], env);
|
|
}
|
|
}
|
|
|
|
void HELPER(window_check)(CPUXtensaState *env, uint32_t pc, uint32_t w)
|
|
{
|
|
uint32_t windowbase = windowbase_bound(env->sregs[WINDOW_BASE], env);
|
|
uint32_t windowstart = env->sregs[WINDOW_START];
|
|
uint32_t m, n;
|
|
|
|
if ((env->sregs[PS] & (PS_WOE | PS_EXCM)) ^ PS_WOE) {
|
|
return;
|
|
}
|
|
|
|
for (n = 1; ; ++n) {
|
|
if (n > w) {
|
|
return;
|
|
}
|
|
if (windowstart & windowstart_bit(windowbase + n, env)) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
m = windowbase_bound(windowbase + n, env);
|
|
rotate_window(env, n);
|
|
env->sregs[PS] = (env->sregs[PS] & ~PS_OWB) |
|
|
(windowbase << PS_OWB_SHIFT) | PS_EXCM;
|
|
env->sregs[EPC1] = env->pc = pc;
|
|
|
|
if (windowstart & windowstart_bit(m + 1, env)) {
|
|
HELPER(exception)(env, EXC_WINDOW_OVERFLOW4);
|
|
} else if (windowstart & windowstart_bit(m + 2, env)) {
|
|
HELPER(exception)(env, EXC_WINDOW_OVERFLOW8);
|
|
} else {
|
|
HELPER(exception)(env, EXC_WINDOW_OVERFLOW12);
|
|
}
|
|
}
|
|
|
|
uint32_t HELPER(retw)(CPUXtensaState *env, uint32_t pc)
|
|
{
|
|
int n = (env->regs[0] >> 30) & 0x3;
|
|
int m = 0;
|
|
uint32_t windowbase = windowbase_bound(env->sregs[WINDOW_BASE], env);
|
|
uint32_t windowstart = env->sregs[WINDOW_START];
|
|
uint32_t ret_pc = 0;
|
|
|
|
if (windowstart & windowstart_bit(windowbase - 1, env)) {
|
|
m = 1;
|
|
} else if (windowstart & windowstart_bit(windowbase - 2, env)) {
|
|
m = 2;
|
|
} else if (windowstart & windowstart_bit(windowbase - 3, env)) {
|
|
m = 3;
|
|
}
|
|
|
|
if (n == 0 || (m != 0 && m != n) ||
|
|
((env->sregs[PS] & (PS_WOE | PS_EXCM)) ^ PS_WOE) != 0) {
|
|
qemu_log("Illegal retw instruction(pc = %08x), "
|
|
"PS = %08x, m = %d, n = %d\n",
|
|
pc, env->sregs[PS], m, n);
|
|
HELPER(exception_cause)(env, pc, ILLEGAL_INSTRUCTION_CAUSE);
|
|
} else {
|
|
int owb = windowbase;
|
|
|
|
ret_pc = (pc & 0xc0000000) | (env->regs[0] & 0x3fffffff);
|
|
|
|
rotate_window(env, -n);
|
|
if (windowstart & windowstart_bit(env->sregs[WINDOW_BASE], env)) {
|
|
env->sregs[WINDOW_START] &= ~windowstart_bit(owb, env);
|
|
} else {
|
|
/* window underflow */
|
|
env->sregs[PS] = (env->sregs[PS] & ~PS_OWB) |
|
|
(windowbase << PS_OWB_SHIFT) | PS_EXCM;
|
|
env->sregs[EPC1] = env->pc = pc;
|
|
|
|
if (n == 1) {
|
|
HELPER(exception)(env, EXC_WINDOW_UNDERFLOW4);
|
|
} else if (n == 2) {
|
|
HELPER(exception)(env, EXC_WINDOW_UNDERFLOW8);
|
|
} else if (n == 3) {
|
|
HELPER(exception)(env, EXC_WINDOW_UNDERFLOW12);
|
|
}
|
|
}
|
|
}
|
|
return ret_pc;
|
|
}
|
|
|
|
void HELPER(rotw)(CPUXtensaState *env, uint32_t imm4)
|
|
{
|
|
rotate_window(env, imm4);
|
|
}
|
|
|
|
void HELPER(restore_owb)(CPUXtensaState *env)
|
|
{
|
|
rotate_window_abs(env, (env->sregs[PS] & PS_OWB) >> PS_OWB_SHIFT);
|
|
}
|
|
|
|
void HELPER(movsp)(CPUXtensaState *env, uint32_t pc)
|
|
{
|
|
if ((env->sregs[WINDOW_START] &
|
|
(windowstart_bit(env->sregs[WINDOW_BASE] - 3, env) |
|
|
windowstart_bit(env->sregs[WINDOW_BASE] - 2, env) |
|
|
windowstart_bit(env->sregs[WINDOW_BASE] - 1, env))) == 0) {
|
|
HELPER(exception_cause)(env, pc, ALLOCA_CAUSE);
|
|
}
|
|
}
|
|
|
|
void HELPER(wsr_lbeg)(CPUXtensaState *env, uint32_t v)
|
|
{
|
|
if (env->sregs[LBEG] != v) {
|
|
tb_invalidate_virtual_addr(env, env->sregs[LEND] - 1);
|
|
env->sregs[LBEG] = v;
|
|
}
|
|
}
|
|
|
|
void HELPER(wsr_lend)(CPUXtensaState *env, uint32_t v)
|
|
{
|
|
if (env->sregs[LEND] != v) {
|
|
tb_invalidate_virtual_addr(env, env->sregs[LEND] - 1);
|
|
env->sregs[LEND] = v;
|
|
tb_invalidate_virtual_addr(env, env->sregs[LEND] - 1);
|
|
}
|
|
}
|
|
|
|
void HELPER(dump_state)(CPUXtensaState *env)
|
|
{
|
|
XtensaCPU *cpu = xtensa_env_get_cpu(env);
|
|
|
|
cpu_dump_state(CPU(cpu), stderr, fprintf, 0);
|
|
}
|
|
|
|
void HELPER(waiti)(CPUXtensaState *env, uint32_t pc, uint32_t intlevel)
|
|
{
|
|
CPUState *cpu;
|
|
|
|
env->pc = pc;
|
|
env->sregs[PS] = (env->sregs[PS] & ~PS_INTLEVEL) |
|
|
(intlevel << PS_INTLEVEL_SHIFT);
|
|
check_interrupts(env);
|
|
if (env->pending_irq_level) {
|
|
cpu_loop_exit(env);
|
|
return;
|
|
}
|
|
|
|
cpu = CPU(xtensa_env_get_cpu(env));
|
|
env->halt_clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
|
|
cpu->halted = 1;
|
|
if (xtensa_option_enabled(env->config, XTENSA_OPTION_TIMER_INTERRUPT)) {
|
|
xtensa_rearm_ccompare_timer(env);
|
|
}
|
|
HELPER(exception)(env, EXCP_HLT);
|
|
}
|
|
|
|
void HELPER(timer_irq)(CPUXtensaState *env, uint32_t id, uint32_t active)
|
|
{
|
|
xtensa_timer_irq(env, id, active);
|
|
}
|
|
|
|
void HELPER(advance_ccount)(CPUXtensaState *env, uint32_t d)
|
|
{
|
|
xtensa_advance_ccount(env, d);
|
|
}
|
|
|
|
void HELPER(check_interrupts)(CPUXtensaState *env)
|
|
{
|
|
check_interrupts(env);
|
|
}
|
|
|
|
/*!
|
|
* Check vaddr accessibility/cache attributes and raise an exception if
|
|
* specified by the ATOMCTL SR.
|
|
*
|
|
* Note: local memory exclusion is not implemented
|
|
*/
|
|
void HELPER(check_atomctl)(CPUXtensaState *env, uint32_t pc, uint32_t vaddr)
|
|
{
|
|
uint32_t paddr, page_size, access;
|
|
uint32_t atomctl = env->sregs[ATOMCTL];
|
|
int rc = xtensa_get_physical_addr(env, true, vaddr, 1,
|
|
xtensa_get_cring(env), &paddr, &page_size, &access);
|
|
|
|
/*
|
|
* s32c1i never causes LOAD_PROHIBITED_CAUSE exceptions,
|
|
* see opcode description in the ISA
|
|
*/
|
|
if (rc == 0 &&
|
|
(access & (PAGE_READ | PAGE_WRITE)) != (PAGE_READ | PAGE_WRITE)) {
|
|
rc = STORE_PROHIBITED_CAUSE;
|
|
}
|
|
|
|
if (rc) {
|
|
HELPER(exception_cause_vaddr)(env, pc, rc, vaddr);
|
|
}
|
|
|
|
/*
|
|
* When data cache is not configured use ATOMCTL bypass field.
|
|
* See ISA, 4.3.12.4 The Atomic Operation Control Register (ATOMCTL)
|
|
* under the Conditional Store Option.
|
|
*/
|
|
if (!xtensa_option_enabled(env->config, XTENSA_OPTION_DCACHE)) {
|
|
access = PAGE_CACHE_BYPASS;
|
|
}
|
|
|
|
switch (access & PAGE_CACHE_MASK) {
|
|
case PAGE_CACHE_WB:
|
|
atomctl >>= 2;
|
|
/* fall through */
|
|
case PAGE_CACHE_WT:
|
|
atomctl >>= 2;
|
|
/* fall through */
|
|
case PAGE_CACHE_BYPASS:
|
|
if ((atomctl & 0x3) == 0) {
|
|
HELPER(exception_cause_vaddr)(env, pc,
|
|
LOAD_STORE_ERROR_CAUSE, vaddr);
|
|
}
|
|
break;
|
|
|
|
case PAGE_CACHE_ISOLATE:
|
|
HELPER(exception_cause_vaddr)(env, pc,
|
|
LOAD_STORE_ERROR_CAUSE, vaddr);
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
void HELPER(wsr_rasid)(CPUXtensaState *env, uint32_t v)
|
|
{
|
|
v = (v & 0xffffff00) | 0x1;
|
|
if (v != env->sregs[RASID]) {
|
|
env->sregs[RASID] = v;
|
|
tlb_flush(env, 1);
|
|
}
|
|
}
|
|
|
|
static uint32_t get_page_size(const CPUXtensaState *env, bool dtlb, uint32_t way)
|
|
{
|
|
uint32_t tlbcfg = env->sregs[dtlb ? DTLBCFG : ITLBCFG];
|
|
|
|
switch (way) {
|
|
case 4:
|
|
return (tlbcfg >> 16) & 0x3;
|
|
|
|
case 5:
|
|
return (tlbcfg >> 20) & 0x1;
|
|
|
|
case 6:
|
|
return (tlbcfg >> 24) & 0x1;
|
|
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/*!
|
|
* Get bit mask for the virtual address bits translated by the TLB way
|
|
*/
|
|
uint32_t xtensa_tlb_get_addr_mask(const CPUXtensaState *env, bool dtlb, uint32_t way)
|
|
{
|
|
if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
|
|
bool varway56 = dtlb ?
|
|
env->config->dtlb.varway56 :
|
|
env->config->itlb.varway56;
|
|
|
|
switch (way) {
|
|
case 4:
|
|
return 0xfff00000 << get_page_size(env, dtlb, way) * 2;
|
|
|
|
case 5:
|
|
if (varway56) {
|
|
return 0xf8000000 << get_page_size(env, dtlb, way);
|
|
} else {
|
|
return 0xf8000000;
|
|
}
|
|
|
|
case 6:
|
|
if (varway56) {
|
|
return 0xf0000000 << (1 - get_page_size(env, dtlb, way));
|
|
} else {
|
|
return 0xf0000000;
|
|
}
|
|
|
|
default:
|
|
return 0xfffff000;
|
|
}
|
|
} else {
|
|
return REGION_PAGE_MASK;
|
|
}
|
|
}
|
|
|
|
/*!
|
|
* Get bit mask for the 'VPN without index' field.
|
|
* See ISA, 4.6.5.6, data format for RxTLB0
|
|
*/
|
|
static uint32_t get_vpn_mask(const CPUXtensaState *env, bool dtlb, uint32_t way)
|
|
{
|
|
if (way < 4) {
|
|
bool is32 = (dtlb ?
|
|
env->config->dtlb.nrefillentries :
|
|
env->config->itlb.nrefillentries) == 32;
|
|
return is32 ? 0xffff8000 : 0xffffc000;
|
|
} else if (way == 4) {
|
|
return xtensa_tlb_get_addr_mask(env, dtlb, way) << 2;
|
|
} else if (way <= 6) {
|
|
uint32_t mask = xtensa_tlb_get_addr_mask(env, dtlb, way);
|
|
bool varway56 = dtlb ?
|
|
env->config->dtlb.varway56 :
|
|
env->config->itlb.varway56;
|
|
|
|
if (varway56) {
|
|
return mask << (way == 5 ? 2 : 3);
|
|
} else {
|
|
return mask << 1;
|
|
}
|
|
} else {
|
|
return 0xfffff000;
|
|
}
|
|
}
|
|
|
|
/*!
|
|
* Split virtual address into VPN (with index) and entry index
|
|
* for the given TLB way
|
|
*/
|
|
void split_tlb_entry_spec_way(const CPUXtensaState *env, uint32_t v, bool dtlb,
|
|
uint32_t *vpn, uint32_t wi, uint32_t *ei)
|
|
{
|
|
bool varway56 = dtlb ?
|
|
env->config->dtlb.varway56 :
|
|
env->config->itlb.varway56;
|
|
|
|
if (!dtlb) {
|
|
wi &= 7;
|
|
}
|
|
|
|
if (wi < 4) {
|
|
bool is32 = (dtlb ?
|
|
env->config->dtlb.nrefillentries :
|
|
env->config->itlb.nrefillentries) == 32;
|
|
*ei = (v >> 12) & (is32 ? 0x7 : 0x3);
|
|
} else {
|
|
switch (wi) {
|
|
case 4:
|
|
{
|
|
uint32_t eibase = 20 + get_page_size(env, dtlb, wi) * 2;
|
|
*ei = (v >> eibase) & 0x3;
|
|
}
|
|
break;
|
|
|
|
case 5:
|
|
if (varway56) {
|
|
uint32_t eibase = 27 + get_page_size(env, dtlb, wi);
|
|
*ei = (v >> eibase) & 0x3;
|
|
} else {
|
|
*ei = (v >> 27) & 0x1;
|
|
}
|
|
break;
|
|
|
|
case 6:
|
|
if (varway56) {
|
|
uint32_t eibase = 29 - get_page_size(env, dtlb, wi);
|
|
*ei = (v >> eibase) & 0x7;
|
|
} else {
|
|
*ei = (v >> 28) & 0x1;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
*ei = 0;
|
|
break;
|
|
}
|
|
}
|
|
*vpn = v & xtensa_tlb_get_addr_mask(env, dtlb, wi);
|
|
}
|
|
|
|
/*!
|
|
* Split TLB address into TLB way, entry index and VPN (with index).
|
|
* See ISA, 4.6.5.5 - 4.6.5.8 for the TLB addressing format
|
|
*/
|
|
static void split_tlb_entry_spec(CPUXtensaState *env, uint32_t v, bool dtlb,
|
|
uint32_t *vpn, uint32_t *wi, uint32_t *ei)
|
|
{
|
|
if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
|
|
*wi = v & (dtlb ? 0xf : 0x7);
|
|
split_tlb_entry_spec_way(env, v, dtlb, vpn, *wi, ei);
|
|
} else {
|
|
*vpn = v & REGION_PAGE_MASK;
|
|
*wi = 0;
|
|
*ei = (v >> 29) & 0x7;
|
|
}
|
|
}
|
|
|
|
static xtensa_tlb_entry *get_tlb_entry(CPUXtensaState *env,
|
|
uint32_t v, bool dtlb, uint32_t *pwi)
|
|
{
|
|
uint32_t vpn;
|
|
uint32_t wi;
|
|
uint32_t ei;
|
|
|
|
split_tlb_entry_spec(env, v, dtlb, &vpn, &wi, &ei);
|
|
if (pwi) {
|
|
*pwi = wi;
|
|
}
|
|
return xtensa_tlb_get_entry(env, dtlb, wi, ei);
|
|
}
|
|
|
|
uint32_t HELPER(rtlb0)(CPUXtensaState *env, uint32_t v, uint32_t dtlb)
|
|
{
|
|
if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
|
|
uint32_t wi;
|
|
const xtensa_tlb_entry *entry = get_tlb_entry(env, v, dtlb, &wi);
|
|
return (entry->vaddr & get_vpn_mask(env, dtlb, wi)) | entry->asid;
|
|
} else {
|
|
return v & REGION_PAGE_MASK;
|
|
}
|
|
}
|
|
|
|
uint32_t HELPER(rtlb1)(CPUXtensaState *env, uint32_t v, uint32_t dtlb)
|
|
{
|
|
const xtensa_tlb_entry *entry = get_tlb_entry(env, v, dtlb, NULL);
|
|
return entry->paddr | entry->attr;
|
|
}
|
|
|
|
void HELPER(itlb)(CPUXtensaState *env, uint32_t v, uint32_t dtlb)
|
|
{
|
|
if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
|
|
uint32_t wi;
|
|
xtensa_tlb_entry *entry = get_tlb_entry(env, v, dtlb, &wi);
|
|
if (entry->variable && entry->asid) {
|
|
tlb_flush_page(env, entry->vaddr);
|
|
entry->asid = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
uint32_t HELPER(ptlb)(CPUXtensaState *env, uint32_t v, uint32_t dtlb)
|
|
{
|
|
if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
|
|
uint32_t wi;
|
|
uint32_t ei;
|
|
uint8_t ring;
|
|
int res = xtensa_tlb_lookup(env, v, dtlb, &wi, &ei, &ring);
|
|
|
|
switch (res) {
|
|
case 0:
|
|
if (ring >= xtensa_get_ring(env)) {
|
|
return (v & 0xfffff000) | wi | (dtlb ? 0x10 : 0x8);
|
|
}
|
|
break;
|
|
|
|
case INST_TLB_MULTI_HIT_CAUSE:
|
|
case LOAD_STORE_TLB_MULTI_HIT_CAUSE:
|
|
HELPER(exception_cause_vaddr)(env, env->pc, res, v);
|
|
break;
|
|
}
|
|
return 0;
|
|
} else {
|
|
return (v & REGION_PAGE_MASK) | 0x1;
|
|
}
|
|
}
|
|
|
|
void xtensa_tlb_set_entry_mmu(const CPUXtensaState *env,
|
|
xtensa_tlb_entry *entry, bool dtlb,
|
|
unsigned wi, unsigned ei, uint32_t vpn, uint32_t pte)
|
|
{
|
|
entry->vaddr = vpn;
|
|
entry->paddr = pte & xtensa_tlb_get_addr_mask(env, dtlb, wi);
|
|
entry->asid = (env->sregs[RASID] >> ((pte >> 1) & 0x18)) & 0xff;
|
|
entry->attr = pte & 0xf;
|
|
}
|
|
|
|
void xtensa_tlb_set_entry(CPUXtensaState *env, bool dtlb,
|
|
unsigned wi, unsigned ei, uint32_t vpn, uint32_t pte)
|
|
{
|
|
xtensa_tlb_entry *entry = xtensa_tlb_get_entry(env, dtlb, wi, ei);
|
|
|
|
if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
|
|
if (entry->variable) {
|
|
if (entry->asid) {
|
|
tlb_flush_page(env, entry->vaddr);
|
|
}
|
|
xtensa_tlb_set_entry_mmu(env, entry, dtlb, wi, ei, vpn, pte);
|
|
tlb_flush_page(env, entry->vaddr);
|
|
} else {
|
|
qemu_log("%s %d, %d, %d trying to set immutable entry\n",
|
|
__func__, dtlb, wi, ei);
|
|
}
|
|
} else {
|
|
tlb_flush_page(env, entry->vaddr);
|
|
if (xtensa_option_enabled(env->config,
|
|
XTENSA_OPTION_REGION_TRANSLATION)) {
|
|
entry->paddr = pte & REGION_PAGE_MASK;
|
|
}
|
|
entry->attr = pte & 0xf;
|
|
}
|
|
}
|
|
|
|
void HELPER(wtlb)(CPUXtensaState *env, uint32_t p, uint32_t v, uint32_t dtlb)
|
|
{
|
|
uint32_t vpn;
|
|
uint32_t wi;
|
|
uint32_t ei;
|
|
split_tlb_entry_spec(env, v, dtlb, &vpn, &wi, &ei);
|
|
xtensa_tlb_set_entry(env, dtlb, wi, ei, vpn, p);
|
|
}
|
|
|
|
|
|
void HELPER(wsr_ibreakenable)(CPUXtensaState *env, uint32_t v)
|
|
{
|
|
uint32_t change = v ^ env->sregs[IBREAKENABLE];
|
|
unsigned i;
|
|
|
|
for (i = 0; i < env->config->nibreak; ++i) {
|
|
if (change & (1 << i)) {
|
|
tb_invalidate_virtual_addr(env, env->sregs[IBREAKA + i]);
|
|
}
|
|
}
|
|
env->sregs[IBREAKENABLE] = v & ((1 << env->config->nibreak) - 1);
|
|
}
|
|
|
|
void HELPER(wsr_ibreaka)(CPUXtensaState *env, uint32_t i, uint32_t v)
|
|
{
|
|
if (env->sregs[IBREAKENABLE] & (1 << i) && env->sregs[IBREAKA + i] != v) {
|
|
tb_invalidate_virtual_addr(env, env->sregs[IBREAKA + i]);
|
|
tb_invalidate_virtual_addr(env, v);
|
|
}
|
|
env->sregs[IBREAKA + i] = v;
|
|
}
|
|
|
|
static void set_dbreak(CPUXtensaState *env, unsigned i, uint32_t dbreaka,
|
|
uint32_t dbreakc)
|
|
{
|
|
int flags = BP_CPU | BP_STOP_BEFORE_ACCESS;
|
|
uint32_t mask = dbreakc | ~DBREAKC_MASK;
|
|
|
|
if (env->cpu_watchpoint[i]) {
|
|
cpu_watchpoint_remove_by_ref(env, env->cpu_watchpoint[i]);
|
|
}
|
|
if (dbreakc & DBREAKC_SB) {
|
|
flags |= BP_MEM_WRITE;
|
|
}
|
|
if (dbreakc & DBREAKC_LB) {
|
|
flags |= BP_MEM_READ;
|
|
}
|
|
/* contiguous mask after inversion is one less than some power of 2 */
|
|
if ((~mask + 1) & ~mask) {
|
|
qemu_log("DBREAKC mask is not contiguous: 0x%08x\n", dbreakc);
|
|
/* cut mask after the first zero bit */
|
|
mask = 0xffffffff << (32 - clo32(mask));
|
|
}
|
|
if (cpu_watchpoint_insert(env, dbreaka & mask, ~mask + 1,
|
|
flags, &env->cpu_watchpoint[i])) {
|
|
env->cpu_watchpoint[i] = NULL;
|
|
qemu_log("Failed to set data breakpoint at 0x%08x/%d\n",
|
|
dbreaka & mask, ~mask + 1);
|
|
}
|
|
}
|
|
|
|
void HELPER(wsr_dbreaka)(CPUXtensaState *env, uint32_t i, uint32_t v)
|
|
{
|
|
uint32_t dbreakc = env->sregs[DBREAKC + i];
|
|
|
|
if ((dbreakc & DBREAKC_SB_LB) &&
|
|
env->sregs[DBREAKA + i] != v) {
|
|
set_dbreak(env, i, v, dbreakc);
|
|
}
|
|
env->sregs[DBREAKA + i] = v;
|
|
}
|
|
|
|
void HELPER(wsr_dbreakc)(CPUXtensaState *env, uint32_t i, uint32_t v)
|
|
{
|
|
if ((env->sregs[DBREAKC + i] ^ v) & (DBREAKC_SB_LB | DBREAKC_MASK)) {
|
|
if (v & DBREAKC_SB_LB) {
|
|
set_dbreak(env, i, env->sregs[DBREAKA + i], v);
|
|
} else {
|
|
if (env->cpu_watchpoint[i]) {
|
|
cpu_watchpoint_remove_by_ref(env, env->cpu_watchpoint[i]);
|
|
env->cpu_watchpoint[i] = NULL;
|
|
}
|
|
}
|
|
}
|
|
env->sregs[DBREAKC + i] = v;
|
|
}
|
|
|
|
void HELPER(wur_fcr)(CPUXtensaState *env, uint32_t v)
|
|
{
|
|
static const int rounding_mode[] = {
|
|
float_round_nearest_even,
|
|
float_round_to_zero,
|
|
float_round_up,
|
|
float_round_down,
|
|
};
|
|
|
|
env->uregs[FCR] = v & 0xfffff07f;
|
|
set_float_rounding_mode(rounding_mode[v & 3], &env->fp_status);
|
|
}
|
|
|
|
float32 HELPER(abs_s)(float32 v)
|
|
{
|
|
return float32_abs(v);
|
|
}
|
|
|
|
float32 HELPER(neg_s)(float32 v)
|
|
{
|
|
return float32_chs(v);
|
|
}
|
|
|
|
float32 HELPER(add_s)(CPUXtensaState *env, float32 a, float32 b)
|
|
{
|
|
return float32_add(a, b, &env->fp_status);
|
|
}
|
|
|
|
float32 HELPER(sub_s)(CPUXtensaState *env, float32 a, float32 b)
|
|
{
|
|
return float32_sub(a, b, &env->fp_status);
|
|
}
|
|
|
|
float32 HELPER(mul_s)(CPUXtensaState *env, float32 a, float32 b)
|
|
{
|
|
return float32_mul(a, b, &env->fp_status);
|
|
}
|
|
|
|
float32 HELPER(madd_s)(CPUXtensaState *env, float32 a, float32 b, float32 c)
|
|
{
|
|
return float32_muladd(b, c, a, 0,
|
|
&env->fp_status);
|
|
}
|
|
|
|
float32 HELPER(msub_s)(CPUXtensaState *env, float32 a, float32 b, float32 c)
|
|
{
|
|
return float32_muladd(b, c, a, float_muladd_negate_product,
|
|
&env->fp_status);
|
|
}
|
|
|
|
uint32_t HELPER(ftoi)(float32 v, uint32_t rounding_mode, uint32_t scale)
|
|
{
|
|
float_status fp_status = {0};
|
|
|
|
set_float_rounding_mode(rounding_mode, &fp_status);
|
|
return float32_to_int32(
|
|
float32_scalbn(v, scale, &fp_status), &fp_status);
|
|
}
|
|
|
|
uint32_t HELPER(ftoui)(float32 v, uint32_t rounding_mode, uint32_t scale)
|
|
{
|
|
float_status fp_status = {0};
|
|
float32 res;
|
|
|
|
set_float_rounding_mode(rounding_mode, &fp_status);
|
|
|
|
res = float32_scalbn(v, scale, &fp_status);
|
|
|
|
if (float32_is_neg(v) && !float32_is_any_nan(v)) {
|
|
return float32_to_int32(res, &fp_status);
|
|
} else {
|
|
return float32_to_uint32(res, &fp_status);
|
|
}
|
|
}
|
|
|
|
float32 HELPER(itof)(CPUXtensaState *env, uint32_t v, uint32_t scale)
|
|
{
|
|
return float32_scalbn(int32_to_float32(v, &env->fp_status),
|
|
(int32_t)scale, &env->fp_status);
|
|
}
|
|
|
|
float32 HELPER(uitof)(CPUXtensaState *env, uint32_t v, uint32_t scale)
|
|
{
|
|
return float32_scalbn(uint32_to_float32(v, &env->fp_status),
|
|
(int32_t)scale, &env->fp_status);
|
|
}
|
|
|
|
static inline void set_br(CPUXtensaState *env, bool v, uint32_t br)
|
|
{
|
|
if (v) {
|
|
env->sregs[BR] |= br;
|
|
} else {
|
|
env->sregs[BR] &= ~br;
|
|
}
|
|
}
|
|
|
|
void HELPER(un_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b)
|
|
{
|
|
set_br(env, float32_unordered_quiet(a, b, &env->fp_status), br);
|
|
}
|
|
|
|
void HELPER(oeq_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b)
|
|
{
|
|
set_br(env, float32_eq_quiet(a, b, &env->fp_status), br);
|
|
}
|
|
|
|
void HELPER(ueq_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b)
|
|
{
|
|
int v = float32_compare_quiet(a, b, &env->fp_status);
|
|
set_br(env, v == float_relation_equal || v == float_relation_unordered, br);
|
|
}
|
|
|
|
void HELPER(olt_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b)
|
|
{
|
|
set_br(env, float32_lt_quiet(a, b, &env->fp_status), br);
|
|
}
|
|
|
|
void HELPER(ult_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b)
|
|
{
|
|
int v = float32_compare_quiet(a, b, &env->fp_status);
|
|
set_br(env, v == float_relation_less || v == float_relation_unordered, br);
|
|
}
|
|
|
|
void HELPER(ole_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b)
|
|
{
|
|
set_br(env, float32_le_quiet(a, b, &env->fp_status), br);
|
|
}
|
|
|
|
void HELPER(ule_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b)
|
|
{
|
|
int v = float32_compare_quiet(a, b, &env->fp_status);
|
|
set_br(env, v != float_relation_greater, br);
|
|
}
|