qemu-e2k/target/hppa/cpu.h
Gavin Shan d33fc716dc target/hppa: Use generic cpu_list()
No changes in the output from the following command.

[gshan@gshan q]$ ./build/qemu-system-hppa -cpu ?
Available CPUs:
  hppa
  hppa64

Signed-off-by: Gavin Shan <gshan@redhat.com>
Reviewed-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-ID: <20231114235628.534334-13-gshan@redhat.com>
Signed-off-by: Philippe Mathieu-Daudé <philmd@linaro.org>
2024-01-05 16:20:14 +01:00

406 lines
14 KiB
C

/*
* PA-RISC emulation cpu definitions for qemu.
*
* Copyright (c) 2016 Richard Henderson <rth@twiddle.net>
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#ifndef HPPA_CPU_H
#define HPPA_CPU_H
#include "cpu-qom.h"
#include "exec/cpu-defs.h"
#include "qemu/cpu-float.h"
#include "qemu/interval-tree.h"
/* PA-RISC 1.x processors have a strong memory model. */
/* ??? While we do not yet implement PA-RISC 2.0, those processors have
a weak memory model, but with TLB bits that force ordering on a per-page
basis. It's probably easier to fall back to a strong memory model. */
#define TCG_GUEST_DEFAULT_MO TCG_MO_ALL
#define MMU_ABS_W_IDX 6
#define MMU_ABS_IDX 7
#define MMU_KERNEL_IDX 8
#define MMU_KERNEL_P_IDX 9
#define MMU_PL1_IDX 10
#define MMU_PL1_P_IDX 11
#define MMU_PL2_IDX 12
#define MMU_PL2_P_IDX 13
#define MMU_USER_IDX 14
#define MMU_USER_P_IDX 15
#define MMU_IDX_MMU_DISABLED(MIDX) ((MIDX) < MMU_KERNEL_IDX)
#define MMU_IDX_TO_PRIV(MIDX) (((MIDX) - MMU_KERNEL_IDX) / 2)
#define MMU_IDX_TO_P(MIDX) (((MIDX) - MMU_KERNEL_IDX) & 1)
#define PRIV_P_TO_MMU_IDX(PRIV, P) ((PRIV) * 2 + !!(P) + MMU_KERNEL_IDX)
#define TARGET_INSN_START_EXTRA_WORDS 2
/* No need to flush MMU_ABS*_IDX */
#define HPPA_MMU_FLUSH_MASK \
(1 << MMU_KERNEL_IDX | 1 << MMU_KERNEL_P_IDX | \
1 << MMU_PL1_IDX | 1 << MMU_PL1_P_IDX | \
1 << MMU_PL2_IDX | 1 << MMU_PL2_P_IDX | \
1 << MMU_USER_IDX | 1 << MMU_USER_P_IDX)
/* Indices to flush for access_id changes. */
#define HPPA_MMU_FLUSH_P_MASK \
(1 << MMU_KERNEL_P_IDX | 1 << MMU_PL1_P_IDX | \
1 << MMU_PL2_P_IDX | 1 << MMU_USER_P_IDX)
/* Hardware exceptions, interrupts, faults, and traps. */
#define EXCP_HPMC 1 /* high priority machine check */
#define EXCP_POWER_FAIL 2
#define EXCP_RC 3 /* recovery counter */
#define EXCP_EXT_INTERRUPT 4 /* external interrupt */
#define EXCP_LPMC 5 /* low priority machine check */
#define EXCP_ITLB_MISS 6 /* itlb miss / instruction page fault */
#define EXCP_IMP 7 /* instruction memory protection trap */
#define EXCP_ILL 8 /* illegal instruction trap */
#define EXCP_BREAK 9 /* break instruction */
#define EXCP_PRIV_OPR 10 /* privileged operation trap */
#define EXCP_PRIV_REG 11 /* privileged register trap */
#define EXCP_OVERFLOW 12 /* signed overflow trap */
#define EXCP_COND 13 /* trap-on-condition */
#define EXCP_ASSIST 14 /* assist exception trap */
#define EXCP_DTLB_MISS 15 /* dtlb miss / data page fault */
#define EXCP_NA_ITLB_MISS 16 /* non-access itlb miss */
#define EXCP_NA_DTLB_MISS 17 /* non-access dtlb miss */
#define EXCP_DMP 18 /* data memory protection trap */
#define EXCP_DMB 19 /* data memory break trap */
#define EXCP_TLB_DIRTY 20 /* tlb dirty bit trap */
#define EXCP_PAGE_REF 21 /* page reference trap */
#define EXCP_ASSIST_EMU 22 /* assist emulation trap */
#define EXCP_HPT 23 /* high-privilege transfer trap */
#define EXCP_LPT 24 /* low-privilege transfer trap */
#define EXCP_TB 25 /* taken branch trap */
#define EXCP_DMAR 26 /* data memory access rights trap */
#define EXCP_DMPI 27 /* data memory protection id trap */
#define EXCP_UNALIGN 28 /* unaligned data reference trap */
#define EXCP_PER_INTERRUPT 29 /* performance monitor interrupt */
/* Exceptions for linux-user emulation. */
#define EXCP_SYSCALL 30
#define EXCP_SYSCALL_LWS 31
/* Emulated hardware TOC button */
#define EXCP_TOC 32 /* TOC = Transfer of control (NMI) */
#define CPU_INTERRUPT_NMI CPU_INTERRUPT_TGT_EXT_3 /* TOC */
/* Taken from Linux kernel: arch/parisc/include/asm/psw.h */
#define PSW_I 0x00000001
#define PSW_D 0x00000002
#define PSW_P 0x00000004
#define PSW_Q 0x00000008
#define PSW_R 0x00000010
#define PSW_F 0x00000020
#define PSW_G 0x00000040 /* PA1.x only */
#define PSW_O 0x00000080 /* PA2.0 only */
#define PSW_CB 0x0000ff00
#define PSW_M 0x00010000
#define PSW_V 0x00020000
#define PSW_C 0x00040000
#define PSW_B 0x00080000
#define PSW_X 0x00100000
#define PSW_N 0x00200000
#define PSW_L 0x00400000
#define PSW_H 0x00800000
#define PSW_T 0x01000000
#define PSW_S 0x02000000
#define PSW_E 0x04000000
#define PSW_W 0x08000000 /* PA2.0 only */
#define PSW_Z 0x40000000 /* PA1.x only */
#define PSW_Y 0x80000000 /* PA1.x only */
#define PSW_SM (PSW_W | PSW_E | PSW_O | PSW_G | PSW_F \
| PSW_R | PSW_Q | PSW_P | PSW_D | PSW_I)
/* ssm/rsm instructions number PSW_W and PSW_E differently */
#define PSW_SM_I PSW_I /* Enable External Interrupts */
#define PSW_SM_D PSW_D
#define PSW_SM_P PSW_P
#define PSW_SM_Q PSW_Q /* Enable Interrupt State Collection */
#define PSW_SM_R PSW_R /* Enable Recover Counter Trap */
#define PSW_SM_E 0x100
#define PSW_SM_W 0x200 /* PA2.0 only : Enable Wide Mode */
#define CR_RC 0
#define CR_PSW_DEFAULT 6 /* see SeaBIOS PDC_PSW firmware call */
#define PDC_PSW_WIDE_BIT 2
#define CR_PID1 8
#define CR_PID2 9
#define CR_PID3 12
#define CR_PID4 13
#define CR_SCRCCR 10
#define CR_SAR 11
#define CR_IVA 14
#define CR_EIEM 15
#define CR_IT 16
#define CR_IIASQ 17
#define CR_IIAOQ 18
#define CR_IIR 19
#define CR_ISR 20
#define CR_IOR 21
#define CR_IPSW 22
#define CR_EIRR 23
typedef struct HPPATLBEntry {
union {
IntervalTreeNode itree;
struct HPPATLBEntry *unused_next;
};
target_ulong pa;
unsigned entry_valid : 1;
unsigned u : 1;
unsigned t : 1;
unsigned d : 1;
unsigned b : 1;
unsigned ar_type : 3;
unsigned ar_pl1 : 2;
unsigned ar_pl2 : 2;
unsigned access_id : 16;
} HPPATLBEntry;
typedef struct CPUArchState {
target_ulong iaoq_f; /* front */
target_ulong iaoq_b; /* back, aka next instruction */
target_ulong gr[32];
uint64_t fr[32];
uint64_t sr[8]; /* stored shifted into place for gva */
target_ulong psw; /* All psw bits except the following: */
target_ulong psw_n; /* boolean */
target_long psw_v; /* in most significant bit */
/* Splitting the carry-borrow field into the MSB and "the rest", allows
* for "the rest" to be deleted when it is unused, but the MSB is in use.
* In addition, it's easier to compute carry-in for bit B+1 than it is to
* compute carry-out for bit B (3 vs 4 insns for addition, assuming the
* host has the appropriate add-with-carry insn to compute the msb).
* Therefore the carry bits are stored as: cb_msb : cb & 0x11111110.
*/
target_ulong psw_cb; /* in least significant bit of next nibble */
target_ulong psw_cb_msb; /* boolean */
uint64_t iasq_f;
uint64_t iasq_b;
uint32_t fr0_shadow; /* flags, c, ca/cq, rm, d, enables */
float_status fp_status;
target_ulong cr[32]; /* control registers */
target_ulong cr_back[2]; /* back of cr17/cr18 */
target_ulong shadow[7]; /* shadow registers */
/*
* During unwind of a memory insn, the base register of the address.
* This is used to construct CR_IOR for pa2.0.
*/
uint32_t unwind_breg;
/*
* ??? The number of entries isn't specified by the architecture.
* BTLBs are not supported in 64-bit machines.
*/
#define PA10_BTLB_FIXED 16
#define PA10_BTLB_VARIABLE 0
#define HPPA_TLB_ENTRIES 256
/* Index for round-robin tlb eviction. */
uint32_t tlb_last;
/*
* For pa1.x, the partial initialized, still invalid tlb entry
* which has had ITLBA performed, but not yet ITLBP.
*/
HPPATLBEntry *tlb_partial;
/* Linked list of all invalid (unused) tlb entries. */
HPPATLBEntry *tlb_unused;
/* Root of the search tree for all valid tlb entries. */
IntervalTreeRoot tlb_root;
HPPATLBEntry tlb[HPPA_TLB_ENTRIES];
} CPUHPPAState;
/**
* HPPACPU:
* @env: #CPUHPPAState
*
* An HPPA CPU.
*/
struct ArchCPU {
CPUState parent_obj;
CPUHPPAState env;
QEMUTimer *alarm_timer;
};
/**
* HPPACPUClass:
* @parent_realize: The parent class' realize handler.
* @parent_reset: The parent class' reset handler.
*
* An HPPA CPU model.
*/
struct HPPACPUClass {
CPUClass parent_class;
DeviceRealize parent_realize;
DeviceReset parent_reset;
};
#include "exec/cpu-all.h"
static inline bool hppa_is_pa20(CPUHPPAState *env)
{
return object_dynamic_cast(OBJECT(env_cpu(env)), TYPE_HPPA64_CPU) != NULL;
}
static inline int HPPA_BTLB_ENTRIES(CPUHPPAState *env)
{
return hppa_is_pa20(env) ? 0 : PA10_BTLB_FIXED + PA10_BTLB_VARIABLE;
}
static inline int cpu_mmu_index(CPUHPPAState *env, bool ifetch)
{
#ifdef CONFIG_USER_ONLY
return MMU_USER_IDX;
#else
if (env->psw & (ifetch ? PSW_C : PSW_D)) {
return PRIV_P_TO_MMU_IDX(env->iaoq_f & 3, env->psw & PSW_P);
}
/* mmu disabled */
return env->psw & PSW_W ? MMU_ABS_W_IDX : MMU_ABS_IDX;
#endif
}
void hppa_translate_init(void);
#define CPU_RESOLVING_TYPE TYPE_HPPA_CPU
static inline target_ulong hppa_form_gva_psw(target_ulong psw, uint64_t spc,
target_ulong off)
{
#ifdef CONFIG_USER_ONLY
return off;
#else
off &= psw & PSW_W ? MAKE_64BIT_MASK(0, 62) : MAKE_64BIT_MASK(0, 32);
return spc | off;
#endif
}
static inline target_ulong hppa_form_gva(CPUHPPAState *env, uint64_t spc,
target_ulong off)
{
return hppa_form_gva_psw(env->psw, spc, off);
}
hwaddr hppa_abs_to_phys_pa2_w0(vaddr addr);
hwaddr hppa_abs_to_phys_pa2_w1(vaddr addr);
/*
* Since PSW_{I,CB} will never need to be in tb->flags, reuse them.
* TB_FLAG_SR_SAME indicates that SR4 through SR7 all contain the
* same value.
*/
#define TB_FLAG_SR_SAME PSW_I
#define TB_FLAG_PRIV_SHIFT 8
#define TB_FLAG_UNALIGN 0x400
static inline void cpu_get_tb_cpu_state(CPUHPPAState *env, vaddr *pc,
uint64_t *cs_base, uint32_t *pflags)
{
uint32_t flags = env->psw_n * PSW_N;
/* TB lookup assumes that PC contains the complete virtual address.
If we leave space+offset separate, we'll get ITLB misses to an
incomplete virtual address. This also means that we must separate
out current cpu privilege from the low bits of IAOQ_F. */
#ifdef CONFIG_USER_ONLY
*pc = env->iaoq_f & -4;
*cs_base = env->iaoq_b & -4;
flags |= TB_FLAG_UNALIGN * !env_cpu(env)->prctl_unalign_sigbus;
#else
/* ??? E, T, H, L, B bits need to be here, when implemented. */
flags |= env->psw & (PSW_W | PSW_C | PSW_D | PSW_P);
flags |= (env->iaoq_f & 3) << TB_FLAG_PRIV_SHIFT;
*pc = hppa_form_gva_psw(env->psw, (env->psw & PSW_C ? env->iasq_f : 0),
env->iaoq_f & -4);
*cs_base = env->iasq_f;
/* Insert a difference between IAOQ_B and IAOQ_F within the otherwise zero
low 32-bits of CS_BASE. This will succeed for all direct branches,
which is the primary case we care about -- using goto_tb within a page.
Failure is indicated by a zero difference. */
if (env->iasq_f == env->iasq_b) {
target_long diff = env->iaoq_b - env->iaoq_f;
if (diff == (int32_t)diff) {
*cs_base |= (uint32_t)diff;
}
}
if ((env->sr[4] == env->sr[5])
& (env->sr[4] == env->sr[6])
& (env->sr[4] == env->sr[7])) {
flags |= TB_FLAG_SR_SAME;
}
#endif
*pflags = flags;
}
target_ulong cpu_hppa_get_psw(CPUHPPAState *env);
void cpu_hppa_put_psw(CPUHPPAState *env, target_ulong);
void cpu_hppa_loaded_fr0(CPUHPPAState *env);
#ifdef CONFIG_USER_ONLY
static inline void cpu_hppa_change_prot_id(CPUHPPAState *env) { }
#else
void cpu_hppa_change_prot_id(CPUHPPAState *env);
#endif
int hppa_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
int hppa_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
void hppa_cpu_dump_state(CPUState *cs, FILE *f, int);
#ifndef CONFIG_USER_ONLY
void hppa_ptlbe(CPUHPPAState *env);
hwaddr hppa_cpu_get_phys_page_debug(CPUState *cs, vaddr addr);
bool hppa_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
MMUAccessType access_type, int mmu_idx,
bool probe, uintptr_t retaddr);
void hppa_cpu_do_interrupt(CPUState *cpu);
bool hppa_cpu_exec_interrupt(CPUState *cpu, int int_req);
int hppa_get_physical_address(CPUHPPAState *env, vaddr addr, int mmu_idx,
int type, hwaddr *pphys, int *pprot,
HPPATLBEntry **tlb_entry);
extern const MemoryRegionOps hppa_io_eir_ops;
extern const VMStateDescription vmstate_hppa_cpu;
void hppa_cpu_alarm_timer(void *);
int hppa_artype_for_page(CPUHPPAState *env, target_ulong vaddr);
#endif
G_NORETURN void hppa_dynamic_excp(CPUHPPAState *env, int excp, uintptr_t ra);
#define CPU_RESOLVING_TYPE TYPE_HPPA_CPU
#endif /* HPPA_CPU_H */