qemu-e2k/hw/misc/iotkit-sysctl.c
Markus Armbruster 54d31236b9 sysemu: Split sysemu/runstate.h off sysemu/sysemu.h
sysemu/sysemu.h is a rather unfocused dumping ground for stuff related
to the system-emulator.  Evidence:

* It's included widely: in my "build everything" tree, changing
  sysemu/sysemu.h still triggers a recompile of some 1100 out of 6600
  objects (not counting tests and objects that don't depend on
  qemu/osdep.h, down from 5400 due to the previous two commits).

* It pulls in more than a dozen additional headers.

Split stuff related to run state management into its own header
sysemu/runstate.h.

Touching sysemu/sysemu.h now recompiles some 850 objects.  qemu/uuid.h
also drops from 1100 to 850, and qapi/qapi-types-run-state.h from 4400
to 4200.  Touching new sysemu/runstate.h recompiles some 500 objects.

Since I'm touching MAINTAINERS to add sysemu/runstate.h anyway, also
add qemu/main-loop.h.

Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Markus Armbruster <armbru@redhat.com>
Message-Id: <20190812052359.30071-30-armbru@redhat.com>
Reviewed-by: Alex Bennée <alex.bennee@linaro.org>
[Unbreak OS-X build]
2019-08-16 13:37:36 +02:00

529 lines
15 KiB
C

/*
* ARM IoTKit system control element
*
* Copyright (c) 2018 Linaro Limited
* Written by Peter Maydell
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 or
* (at your option) any later version.
*/
/*
* This is a model of the "system control element" which is part of the
* Arm IoTKit and documented in
* http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ecm0601256/index.html
* Specifically, it implements the "system control register" blocks.
*/
#include "qemu/osdep.h"
#include "qemu/bitops.h"
#include "qemu/log.h"
#include "qemu/module.h"
#include "sysemu/runstate.h"
#include "trace.h"
#include "qapi/error.h"
#include "hw/sysbus.h"
#include "migration/vmstate.h"
#include "hw/registerfields.h"
#include "hw/misc/iotkit-sysctl.h"
#include "hw/qdev-properties.h"
#include "target/arm/arm-powerctl.h"
#include "target/arm/cpu.h"
REG32(SECDBGSTAT, 0x0)
REG32(SECDBGSET, 0x4)
REG32(SECDBGCLR, 0x8)
REG32(SCSECCTRL, 0xc)
REG32(FCLK_DIV, 0x10)
REG32(SYSCLK_DIV, 0x14)
REG32(CLOCK_FORCE, 0x18)
REG32(RESET_SYNDROME, 0x100)
REG32(RESET_MASK, 0x104)
REG32(SWRESET, 0x108)
FIELD(SWRESET, SWRESETREQ, 9, 1)
REG32(GRETREG, 0x10c)
REG32(INITSVTOR0, 0x110)
REG32(INITSVTOR1, 0x114)
REG32(CPUWAIT, 0x118)
REG32(NMI_ENABLE, 0x11c) /* BUSWAIT in IoTKit */
REG32(WICCTRL, 0x120)
REG32(EWCTRL, 0x124)
REG32(PDCM_PD_SYS_SENSE, 0x200)
REG32(PDCM_PD_SRAM0_SENSE, 0x20c)
REG32(PDCM_PD_SRAM1_SENSE, 0x210)
REG32(PDCM_PD_SRAM2_SENSE, 0x214)
REG32(PDCM_PD_SRAM3_SENSE, 0x218)
REG32(PID4, 0xfd0)
REG32(PID5, 0xfd4)
REG32(PID6, 0xfd8)
REG32(PID7, 0xfdc)
REG32(PID0, 0xfe0)
REG32(PID1, 0xfe4)
REG32(PID2, 0xfe8)
REG32(PID3, 0xfec)
REG32(CID0, 0xff0)
REG32(CID1, 0xff4)
REG32(CID2, 0xff8)
REG32(CID3, 0xffc)
/* PID/CID values */
static const int sysctl_id[] = {
0x04, 0x00, 0x00, 0x00, /* PID4..PID7 */
0x54, 0xb8, 0x0b, 0x00, /* PID0..PID3 */
0x0d, 0xf0, 0x05, 0xb1, /* CID0..CID3 */
};
/*
* Set the initial secure vector table offset address for the core.
* This will take effect when the CPU next resets.
*/
static void set_init_vtor(uint64_t cpuid, uint32_t vtor)
{
Object *cpuobj = OBJECT(arm_get_cpu_by_id(cpuid));
if (cpuobj) {
if (object_property_find(cpuobj, "init-svtor", NULL)) {
object_property_set_uint(cpuobj, vtor, "init-svtor", &error_abort);
}
}
}
static uint64_t iotkit_sysctl_read(void *opaque, hwaddr offset,
unsigned size)
{
IoTKitSysCtl *s = IOTKIT_SYSCTL(opaque);
uint64_t r;
switch (offset) {
case A_SECDBGSTAT:
r = s->secure_debug;
break;
case A_SCSECCTRL:
if (!s->is_sse200) {
goto bad_offset;
}
r = s->scsecctrl;
break;
case A_FCLK_DIV:
if (!s->is_sse200) {
goto bad_offset;
}
r = s->fclk_div;
break;
case A_SYSCLK_DIV:
if (!s->is_sse200) {
goto bad_offset;
}
r = s->sysclk_div;
break;
case A_CLOCK_FORCE:
if (!s->is_sse200) {
goto bad_offset;
}
r = s->clock_force;
break;
case A_RESET_SYNDROME:
r = s->reset_syndrome;
break;
case A_RESET_MASK:
r = s->reset_mask;
break;
case A_GRETREG:
r = s->gretreg;
break;
case A_INITSVTOR0:
r = s->initsvtor0;
break;
case A_INITSVTOR1:
if (!s->is_sse200) {
goto bad_offset;
}
r = s->initsvtor1;
break;
case A_CPUWAIT:
r = s->cpuwait;
break;
case A_NMI_ENABLE:
/* In IoTKit this is named BUSWAIT but is marked reserved, R/O, zero */
if (!s->is_sse200) {
r = 0;
break;
}
r = s->nmi_enable;
break;
case A_WICCTRL:
r = s->wicctrl;
break;
case A_EWCTRL:
if (!s->is_sse200) {
goto bad_offset;
}
r = s->ewctrl;
break;
case A_PDCM_PD_SYS_SENSE:
if (!s->is_sse200) {
goto bad_offset;
}
r = s->pdcm_pd_sys_sense;
break;
case A_PDCM_PD_SRAM0_SENSE:
if (!s->is_sse200) {
goto bad_offset;
}
r = s->pdcm_pd_sram0_sense;
break;
case A_PDCM_PD_SRAM1_SENSE:
if (!s->is_sse200) {
goto bad_offset;
}
r = s->pdcm_pd_sram1_sense;
break;
case A_PDCM_PD_SRAM2_SENSE:
if (!s->is_sse200) {
goto bad_offset;
}
r = s->pdcm_pd_sram2_sense;
break;
case A_PDCM_PD_SRAM3_SENSE:
if (!s->is_sse200) {
goto bad_offset;
}
r = s->pdcm_pd_sram3_sense;
break;
case A_PID4 ... A_CID3:
r = sysctl_id[(offset - A_PID4) / 4];
break;
case A_SECDBGSET:
case A_SECDBGCLR:
case A_SWRESET:
qemu_log_mask(LOG_GUEST_ERROR,
"IoTKit SysCtl read: read of WO offset %x\n",
(int)offset);
r = 0;
break;
default:
bad_offset:
qemu_log_mask(LOG_GUEST_ERROR,
"IoTKit SysCtl read: bad offset %x\n", (int)offset);
r = 0;
break;
}
trace_iotkit_sysctl_read(offset, r, size);
return r;
}
static void iotkit_sysctl_write(void *opaque, hwaddr offset,
uint64_t value, unsigned size)
{
IoTKitSysCtl *s = IOTKIT_SYSCTL(opaque);
trace_iotkit_sysctl_write(offset, value, size);
/*
* Most of the state here has to do with control of reset and
* similar kinds of power up -- for instance the guest can ask
* what the reason for the last reset was, or forbid reset for
* some causes (like the non-secure watchdog). Most of this is
* not relevant to QEMU, which doesn't really model anything other
* than a full power-on reset.
* We just model the registers as reads-as-written.
*/
switch (offset) {
case A_RESET_SYNDROME:
qemu_log_mask(LOG_UNIMP,
"IoTKit SysCtl RESET_SYNDROME unimplemented\n");
s->reset_syndrome = value;
break;
case A_RESET_MASK:
qemu_log_mask(LOG_UNIMP, "IoTKit SysCtl RESET_MASK unimplemented\n");
s->reset_mask = value;
break;
case A_GRETREG:
/*
* General retention register, which is only reset by a power-on
* reset. Technically this implementation is complete, since
* QEMU only supports power-on resets...
*/
s->gretreg = value;
break;
case A_INITSVTOR0:
s->initsvtor0 = value;
set_init_vtor(0, s->initsvtor0);
break;
case A_CPUWAIT:
if ((s->cpuwait & 1) && !(value & 1)) {
/* Powering up CPU 0 */
arm_set_cpu_on_and_reset(0);
}
if ((s->cpuwait & 2) && !(value & 2)) {
/* Powering up CPU 1 */
arm_set_cpu_on_and_reset(1);
}
s->cpuwait = value;
break;
case A_WICCTRL:
qemu_log_mask(LOG_UNIMP, "IoTKit SysCtl WICCTRL unimplemented\n");
s->wicctrl = value;
break;
case A_SECDBGSET:
/* write-1-to-set */
qemu_log_mask(LOG_UNIMP, "IoTKit SysCtl SECDBGSET unimplemented\n");
s->secure_debug |= value;
break;
case A_SECDBGCLR:
/* write-1-to-clear */
s->secure_debug &= ~value;
break;
case A_SWRESET:
/* One w/o bit to request a reset; all other bits reserved */
if (value & R_SWRESET_SWRESETREQ_MASK) {
qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
}
break;
case A_SCSECCTRL:
if (!s->is_sse200) {
goto bad_offset;
}
qemu_log_mask(LOG_UNIMP, "IoTKit SysCtl SCSECCTRL unimplemented\n");
s->scsecctrl = value;
break;
case A_FCLK_DIV:
if (!s->is_sse200) {
goto bad_offset;
}
qemu_log_mask(LOG_UNIMP, "IoTKit SysCtl FCLK_DIV unimplemented\n");
s->fclk_div = value;
break;
case A_SYSCLK_DIV:
if (!s->is_sse200) {
goto bad_offset;
}
qemu_log_mask(LOG_UNIMP, "IoTKit SysCtl SYSCLK_DIV unimplemented\n");
s->sysclk_div = value;
break;
case A_CLOCK_FORCE:
if (!s->is_sse200) {
goto bad_offset;
}
qemu_log_mask(LOG_UNIMP, "IoTKit SysCtl CLOCK_FORCE unimplemented\n");
s->clock_force = value;
break;
case A_INITSVTOR1:
if (!s->is_sse200) {
goto bad_offset;
}
s->initsvtor1 = value;
set_init_vtor(1, s->initsvtor1);
break;
case A_EWCTRL:
if (!s->is_sse200) {
goto bad_offset;
}
qemu_log_mask(LOG_UNIMP, "IoTKit SysCtl EWCTRL unimplemented\n");
s->ewctrl = value;
break;
case A_PDCM_PD_SYS_SENSE:
if (!s->is_sse200) {
goto bad_offset;
}
qemu_log_mask(LOG_UNIMP,
"IoTKit SysCtl PDCM_PD_SYS_SENSE unimplemented\n");
s->pdcm_pd_sys_sense = value;
break;
case A_PDCM_PD_SRAM0_SENSE:
if (!s->is_sse200) {
goto bad_offset;
}
qemu_log_mask(LOG_UNIMP,
"IoTKit SysCtl PDCM_PD_SRAM0_SENSE unimplemented\n");
s->pdcm_pd_sram0_sense = value;
break;
case A_PDCM_PD_SRAM1_SENSE:
if (!s->is_sse200) {
goto bad_offset;
}
qemu_log_mask(LOG_UNIMP,
"IoTKit SysCtl PDCM_PD_SRAM1_SENSE unimplemented\n");
s->pdcm_pd_sram1_sense = value;
break;
case A_PDCM_PD_SRAM2_SENSE:
if (!s->is_sse200) {
goto bad_offset;
}
qemu_log_mask(LOG_UNIMP,
"IoTKit SysCtl PDCM_PD_SRAM2_SENSE unimplemented\n");
s->pdcm_pd_sram2_sense = value;
break;
case A_PDCM_PD_SRAM3_SENSE:
if (!s->is_sse200) {
goto bad_offset;
}
qemu_log_mask(LOG_UNIMP,
"IoTKit SysCtl PDCM_PD_SRAM3_SENSE unimplemented\n");
s->pdcm_pd_sram3_sense = value;
break;
case A_NMI_ENABLE:
/* In IoTKit this is BUSWAIT: reserved, R/O, zero */
if (!s->is_sse200) {
goto ro_offset;
}
qemu_log_mask(LOG_UNIMP, "IoTKit SysCtl NMI_ENABLE unimplemented\n");
s->nmi_enable = value;
break;
case A_SECDBGSTAT:
case A_PID4 ... A_CID3:
ro_offset:
qemu_log_mask(LOG_GUEST_ERROR,
"IoTKit SysCtl write: write of RO offset %x\n",
(int)offset);
break;
default:
bad_offset:
qemu_log_mask(LOG_GUEST_ERROR,
"IoTKit SysCtl write: bad offset %x\n", (int)offset);
break;
}
}
static const MemoryRegionOps iotkit_sysctl_ops = {
.read = iotkit_sysctl_read,
.write = iotkit_sysctl_write,
.endianness = DEVICE_LITTLE_ENDIAN,
/* byte/halfword accesses are just zero-padded on reads and writes */
.impl.min_access_size = 4,
.impl.max_access_size = 4,
.valid.min_access_size = 1,
.valid.max_access_size = 4,
};
static void iotkit_sysctl_reset(DeviceState *dev)
{
IoTKitSysCtl *s = IOTKIT_SYSCTL(dev);
trace_iotkit_sysctl_reset();
s->secure_debug = 0;
s->reset_syndrome = 1;
s->reset_mask = 0;
s->gretreg = 0;
s->initsvtor0 = s->initsvtor0_rst;
s->initsvtor1 = s->initsvtor1_rst;
s->cpuwait = s->cpuwait_rst;
s->wicctrl = 0;
s->scsecctrl = 0;
s->fclk_div = 0;
s->sysclk_div = 0;
s->clock_force = 0;
s->nmi_enable = 0;
s->ewctrl = 0;
s->pdcm_pd_sys_sense = 0x7f;
s->pdcm_pd_sram0_sense = 0;
s->pdcm_pd_sram1_sense = 0;
s->pdcm_pd_sram2_sense = 0;
s->pdcm_pd_sram3_sense = 0;
}
static void iotkit_sysctl_init(Object *obj)
{
SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
IoTKitSysCtl *s = IOTKIT_SYSCTL(obj);
memory_region_init_io(&s->iomem, obj, &iotkit_sysctl_ops,
s, "iotkit-sysctl", 0x1000);
sysbus_init_mmio(sbd, &s->iomem);
}
static void iotkit_sysctl_realize(DeviceState *dev, Error **errp)
{
IoTKitSysCtl *s = IOTKIT_SYSCTL(dev);
/* The top 4 bits of the SYS_VERSION register tell us if we're an SSE-200 */
if (extract32(s->sys_version, 28, 4) == 2) {
s->is_sse200 = true;
}
}
static bool sse200_needed(void *opaque)
{
IoTKitSysCtl *s = IOTKIT_SYSCTL(opaque);
return s->is_sse200;
}
static const VMStateDescription iotkit_sysctl_sse200_vmstate = {
.name = "iotkit-sysctl/sse-200",
.version_id = 1,
.minimum_version_id = 1,
.needed = sse200_needed,
.fields = (VMStateField[]) {
VMSTATE_UINT32(scsecctrl, IoTKitSysCtl),
VMSTATE_UINT32(fclk_div, IoTKitSysCtl),
VMSTATE_UINT32(sysclk_div, IoTKitSysCtl),
VMSTATE_UINT32(clock_force, IoTKitSysCtl),
VMSTATE_UINT32(initsvtor1, IoTKitSysCtl),
VMSTATE_UINT32(nmi_enable, IoTKitSysCtl),
VMSTATE_UINT32(pdcm_pd_sys_sense, IoTKitSysCtl),
VMSTATE_UINT32(pdcm_pd_sram0_sense, IoTKitSysCtl),
VMSTATE_UINT32(pdcm_pd_sram1_sense, IoTKitSysCtl),
VMSTATE_UINT32(pdcm_pd_sram2_sense, IoTKitSysCtl),
VMSTATE_UINT32(pdcm_pd_sram3_sense, IoTKitSysCtl),
VMSTATE_END_OF_LIST()
}
};
static const VMStateDescription iotkit_sysctl_vmstate = {
.name = "iotkit-sysctl",
.version_id = 1,
.minimum_version_id = 1,
.fields = (VMStateField[]) {
VMSTATE_UINT32(secure_debug, IoTKitSysCtl),
VMSTATE_UINT32(reset_syndrome, IoTKitSysCtl),
VMSTATE_UINT32(reset_mask, IoTKitSysCtl),
VMSTATE_UINT32(gretreg, IoTKitSysCtl),
VMSTATE_UINT32(initsvtor0, IoTKitSysCtl),
VMSTATE_UINT32(cpuwait, IoTKitSysCtl),
VMSTATE_UINT32(wicctrl, IoTKitSysCtl),
VMSTATE_END_OF_LIST()
},
.subsections = (const VMStateDescription*[]) {
&iotkit_sysctl_sse200_vmstate,
NULL
}
};
static Property iotkit_sysctl_props[] = {
DEFINE_PROP_UINT32("SYS_VERSION", IoTKitSysCtl, sys_version, 0),
DEFINE_PROP_UINT32("CPUWAIT_RST", IoTKitSysCtl, cpuwait_rst, 0),
DEFINE_PROP_UINT32("INITSVTOR0_RST", IoTKitSysCtl, initsvtor0_rst,
0x10000000),
DEFINE_PROP_UINT32("INITSVTOR1_RST", IoTKitSysCtl, initsvtor1_rst,
0x10000000),
DEFINE_PROP_END_OF_LIST()
};
static void iotkit_sysctl_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
dc->vmsd = &iotkit_sysctl_vmstate;
dc->reset = iotkit_sysctl_reset;
dc->props = iotkit_sysctl_props;
dc->realize = iotkit_sysctl_realize;
}
static const TypeInfo iotkit_sysctl_info = {
.name = TYPE_IOTKIT_SYSCTL,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_size = sizeof(IoTKitSysCtl),
.instance_init = iotkit_sysctl_init,
.class_init = iotkit_sysctl_class_init,
};
static void iotkit_sysctl_register_types(void)
{
type_register_static(&iotkit_sysctl_info);
}
type_init(iotkit_sysctl_register_types);