qemu-e2k/target/s390x/misc_helper.c
David Hildenbrand 86c34633c5 s390x/tcg: wire up SET ADDRESS LIMIT
Let's handle it just like KVM:
    Depending on the model, this instruction may not be
    provided. When this instruction is not provided, it is
    checked for operand exception and privileged-opera-
    tion exception, and then is suppressed.

Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: David Hildenbrand <david@redhat.com>
Message-Id: <20171208160207.26494-9-david@redhat.com>
Signed-off-by: Cornelia Huck <cohuck@redhat.com>
2017-12-14 17:56:54 +01:00

545 lines
15 KiB
C

/*
* S/390 misc helper routines
*
* Copyright (c) 2009 Ulrich Hecht
* Copyright (c) 2009 Alexander Graf
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "qemu/main-loop.h"
#include "cpu.h"
#include "internal.h"
#include "exec/memory.h"
#include "qemu/host-utils.h"
#include "exec/helper-proto.h"
#include "qemu/timer.h"
#include "exec/address-spaces.h"
#include "exec/exec-all.h"
#include "exec/cpu_ldst.h"
#if !defined(CONFIG_USER_ONLY)
#include "sysemu/cpus.h"
#include "sysemu/sysemu.h"
#include "hw/s390x/ebcdic.h"
#include "hw/s390x/s390-virtio-hcall.h"
#include "hw/s390x/sclp.h"
#endif
/* #define DEBUG_HELPER */
#ifdef DEBUG_HELPER
#define HELPER_LOG(x...) qemu_log(x)
#else
#define HELPER_LOG(x...)
#endif
/* Raise an exception statically from a TB. */
void HELPER(exception)(CPUS390XState *env, uint32_t excp)
{
CPUState *cs = CPU(s390_env_get_cpu(env));
HELPER_LOG("%s: exception %d\n", __func__, excp);
cs->exception_index = excp;
cpu_loop_exit(cs);
}
#ifndef CONFIG_USER_ONLY
/* SCLP service call */
uint32_t HELPER(servc)(CPUS390XState *env, uint64_t r1, uint64_t r2)
{
qemu_mutex_lock_iothread();
int r = sclp_service_call(env, r1, r2);
qemu_mutex_unlock_iothread();
if (r < 0) {
s390_program_interrupt(env, -r, 4, GETPC());
}
return r;
}
void HELPER(diag)(CPUS390XState *env, uint32_t r1, uint32_t r3, uint32_t num)
{
uint64_t r;
switch (num) {
case 0x500:
/* KVM hypercall */
qemu_mutex_lock_iothread();
r = s390_virtio_hypercall(env);
qemu_mutex_unlock_iothread();
break;
case 0x44:
/* yield */
r = 0;
break;
case 0x308:
/* ipl */
qemu_mutex_lock_iothread();
handle_diag_308(env, r1, r3, GETPC());
qemu_mutex_unlock_iothread();
r = 0;
break;
case 0x288:
/* time bomb (watchdog) */
r = handle_diag_288(env, r1, r3);
break;
default:
r = -1;
break;
}
if (r) {
s390_program_interrupt(env, PGM_SPECIFICATION, ILEN_AUTO, GETPC());
}
}
/* Set Prefix */
void HELPER(spx)(CPUS390XState *env, uint64_t a1)
{
CPUState *cs = CPU(s390_env_get_cpu(env));
uint32_t prefix = a1 & 0x7fffe000;
env->psa = prefix;
HELPER_LOG("prefix: %#x\n", prefix);
tlb_flush_page(cs, 0);
tlb_flush_page(cs, TARGET_PAGE_SIZE);
}
/* Store Clock */
uint64_t HELPER(stck)(CPUS390XState *env)
{
uint64_t time;
time = env->tod_offset +
time2tod(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - env->tod_basetime);
return time;
}
/* Set Clock Comparator */
void HELPER(sckc)(CPUS390XState *env, uint64_t time)
{
if (time == -1ULL) {
return;
}
env->ckc = time;
/* difference between origins */
time -= env->tod_offset;
/* nanoseconds */
time = tod2time(time);
timer_mod(env->tod_timer, env->tod_basetime + time);
}
/* Set Tod Programmable Field */
void HELPER(sckpf)(CPUS390XState *env, uint64_t r0)
{
uint32_t val = r0;
if (val & 0xffff0000) {
s390_program_interrupt(env, PGM_SPECIFICATION, 2, GETPC());
}
env->todpr = val;
}
/* Store Clock Comparator */
uint64_t HELPER(stckc)(CPUS390XState *env)
{
return env->ckc;
}
/* Set CPU Timer */
void HELPER(spt)(CPUS390XState *env, uint64_t time)
{
if (time == -1ULL) {
return;
}
/* nanoseconds */
time = tod2time(time);
env->cputm = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + time;
timer_mod(env->cpu_timer, env->cputm);
}
/* Store CPU Timer */
uint64_t HELPER(stpt)(CPUS390XState *env)
{
return time2tod(env->cputm - qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL));
}
/* Store System Information */
uint32_t HELPER(stsi)(CPUS390XState *env, uint64_t a0,
uint64_t r0, uint64_t r1)
{
S390CPU *cpu = s390_env_get_cpu(env);
int cc = 0;
int sel1, sel2;
if ((r0 & STSI_LEVEL_MASK) <= STSI_LEVEL_3 &&
((r0 & STSI_R0_RESERVED_MASK) || (r1 & STSI_R1_RESERVED_MASK))) {
/* valid function code, invalid reserved bits */
s390_program_interrupt(env, PGM_SPECIFICATION, 4, GETPC());
}
sel1 = r0 & STSI_R0_SEL1_MASK;
sel2 = r1 & STSI_R1_SEL2_MASK;
/* XXX: spec exception if sysib is not 4k-aligned */
switch (r0 & STSI_LEVEL_MASK) {
case STSI_LEVEL_1:
if ((sel1 == 1) && (sel2 == 1)) {
/* Basic Machine Configuration */
struct sysib_111 sysib;
char type[5] = {};
memset(&sysib, 0, sizeof(sysib));
ebcdic_put(sysib.manuf, "QEMU ", 16);
/* same as machine type number in STORE CPU ID, but in EBCDIC */
snprintf(type, ARRAY_SIZE(type), "%X", cpu->model->def->type);
ebcdic_put(sysib.type, type, 4);
/* model number (not stored in STORE CPU ID for z/Architecure) */
ebcdic_put(sysib.model, "QEMU ", 16);
ebcdic_put(sysib.sequence, "QEMU ", 16);
ebcdic_put(sysib.plant, "QEMU", 4);
cpu_physical_memory_write(a0, &sysib, sizeof(sysib));
} else if ((sel1 == 2) && (sel2 == 1)) {
/* Basic Machine CPU */
struct sysib_121 sysib;
memset(&sysib, 0, sizeof(sysib));
/* XXX make different for different CPUs? */
ebcdic_put(sysib.sequence, "QEMUQEMUQEMUQEMU", 16);
ebcdic_put(sysib.plant, "QEMU", 4);
stw_p(&sysib.cpu_addr, env->core_id);
cpu_physical_memory_write(a0, &sysib, sizeof(sysib));
} else if ((sel1 == 2) && (sel2 == 2)) {
/* Basic Machine CPUs */
struct sysib_122 sysib;
memset(&sysib, 0, sizeof(sysib));
stl_p(&sysib.capability, 0x443afc29);
/* XXX change when SMP comes */
stw_p(&sysib.total_cpus, 1);
stw_p(&sysib.active_cpus, 1);
stw_p(&sysib.standby_cpus, 0);
stw_p(&sysib.reserved_cpus, 0);
cpu_physical_memory_write(a0, &sysib, sizeof(sysib));
} else {
cc = 3;
}
break;
case STSI_LEVEL_2:
{
if ((sel1 == 2) && (sel2 == 1)) {
/* LPAR CPU */
struct sysib_221 sysib;
memset(&sysib, 0, sizeof(sysib));
/* XXX make different for different CPUs? */
ebcdic_put(sysib.sequence, "QEMUQEMUQEMUQEMU", 16);
ebcdic_put(sysib.plant, "QEMU", 4);
stw_p(&sysib.cpu_addr, env->core_id);
stw_p(&sysib.cpu_id, 0);
cpu_physical_memory_write(a0, &sysib, sizeof(sysib));
} else if ((sel1 == 2) && (sel2 == 2)) {
/* LPAR CPUs */
struct sysib_222 sysib;
memset(&sysib, 0, sizeof(sysib));
stw_p(&sysib.lpar_num, 0);
sysib.lcpuc = 0;
/* XXX change when SMP comes */
stw_p(&sysib.total_cpus, 1);
stw_p(&sysib.conf_cpus, 1);
stw_p(&sysib.standby_cpus, 0);
stw_p(&sysib.reserved_cpus, 0);
ebcdic_put(sysib.name, "QEMU ", 8);
stl_p(&sysib.caf, 1000);
stw_p(&sysib.dedicated_cpus, 0);
stw_p(&sysib.shared_cpus, 0);
cpu_physical_memory_write(a0, &sysib, sizeof(sysib));
} else {
cc = 3;
}
break;
}
case STSI_LEVEL_3:
{
if ((sel1 == 2) && (sel2 == 2)) {
/* VM CPUs */
struct sysib_322 sysib;
memset(&sysib, 0, sizeof(sysib));
sysib.count = 1;
/* XXX change when SMP comes */
stw_p(&sysib.vm[0].total_cpus, 1);
stw_p(&sysib.vm[0].conf_cpus, 1);
stw_p(&sysib.vm[0].standby_cpus, 0);
stw_p(&sysib.vm[0].reserved_cpus, 0);
ebcdic_put(sysib.vm[0].name, "KVMguest", 8);
stl_p(&sysib.vm[0].caf, 1000);
ebcdic_put(sysib.vm[0].cpi, "KVM/Linux ", 16);
cpu_physical_memory_write(a0, &sysib, sizeof(sysib));
} else {
cc = 3;
}
break;
}
case STSI_LEVEL_CURRENT:
env->regs[0] = STSI_LEVEL_3;
break;
default:
cc = 3;
break;
}
return cc;
}
uint32_t HELPER(sigp)(CPUS390XState *env, uint64_t order_code, uint32_t r1,
uint32_t r3)
{
int cc;
/* TODO: needed to inject interrupts - push further down */
qemu_mutex_lock_iothread();
cc = handle_sigp(env, order_code & SIGP_ORDER_MASK, r1, r3);
qemu_mutex_unlock_iothread();
return cc;
}
#endif
#ifndef CONFIG_USER_ONLY
void HELPER(xsch)(CPUS390XState *env, uint64_t r1)
{
S390CPU *cpu = s390_env_get_cpu(env);
qemu_mutex_lock_iothread();
ioinst_handle_xsch(cpu, r1, GETPC());
qemu_mutex_unlock_iothread();
}
void HELPER(csch)(CPUS390XState *env, uint64_t r1)
{
S390CPU *cpu = s390_env_get_cpu(env);
qemu_mutex_lock_iothread();
ioinst_handle_csch(cpu, r1, GETPC());
qemu_mutex_unlock_iothread();
}
void HELPER(hsch)(CPUS390XState *env, uint64_t r1)
{
S390CPU *cpu = s390_env_get_cpu(env);
qemu_mutex_lock_iothread();
ioinst_handle_hsch(cpu, r1, GETPC());
qemu_mutex_unlock_iothread();
}
void HELPER(msch)(CPUS390XState *env, uint64_t r1, uint64_t inst)
{
S390CPU *cpu = s390_env_get_cpu(env);
qemu_mutex_lock_iothread();
ioinst_handle_msch(cpu, r1, inst >> 16, GETPC());
qemu_mutex_unlock_iothread();
}
void HELPER(rchp)(CPUS390XState *env, uint64_t r1)
{
S390CPU *cpu = s390_env_get_cpu(env);
qemu_mutex_lock_iothread();
ioinst_handle_rchp(cpu, r1, GETPC());
qemu_mutex_unlock_iothread();
}
void HELPER(rsch)(CPUS390XState *env, uint64_t r1)
{
S390CPU *cpu = s390_env_get_cpu(env);
qemu_mutex_lock_iothread();
ioinst_handle_rsch(cpu, r1, GETPC());
qemu_mutex_unlock_iothread();
}
void HELPER(sal)(CPUS390XState *env, uint64_t r1)
{
S390CPU *cpu = s390_env_get_cpu(env);
qemu_mutex_lock_iothread();
ioinst_handle_sal(cpu, r1, GETPC());
qemu_mutex_unlock_iothread();
}
void HELPER(ssch)(CPUS390XState *env, uint64_t r1, uint64_t inst)
{
S390CPU *cpu = s390_env_get_cpu(env);
qemu_mutex_lock_iothread();
ioinst_handle_ssch(cpu, r1, inst >> 16, GETPC());
qemu_mutex_unlock_iothread();
}
void HELPER(stcrw)(CPUS390XState *env, uint64_t inst)
{
S390CPU *cpu = s390_env_get_cpu(env);
qemu_mutex_lock_iothread();
ioinst_handle_stcrw(cpu, inst >> 16, GETPC());
qemu_mutex_unlock_iothread();
}
void HELPER(stsch)(CPUS390XState *env, uint64_t r1, uint64_t inst)
{
S390CPU *cpu = s390_env_get_cpu(env);
qemu_mutex_lock_iothread();
ioinst_handle_stsch(cpu, r1, inst >> 16, GETPC());
qemu_mutex_unlock_iothread();
}
void HELPER(tsch)(CPUS390XState *env, uint64_t r1, uint64_t inst)
{
S390CPU *cpu = s390_env_get_cpu(env);
qemu_mutex_lock_iothread();
ioinst_handle_tsch(cpu, r1, inst >> 16, GETPC());
qemu_mutex_unlock_iothread();
}
void HELPER(chsc)(CPUS390XState *env, uint64_t inst)
{
S390CPU *cpu = s390_env_get_cpu(env);
qemu_mutex_lock_iothread();
ioinst_handle_chsc(cpu, inst >> 16, GETPC());
qemu_mutex_unlock_iothread();
}
#endif
#ifndef CONFIG_USER_ONLY
void HELPER(per_check_exception)(CPUS390XState *env)
{
uint32_t ilen;
if (env->per_perc_atmid) {
/*
* FIXME: ILEN_AUTO is most probably the right thing to use. ilen
* always has to match the instruction referenced in the PSW. E.g.
* if a PER interrupt is triggered via EXECUTE, we have to use ilen
* of EXECUTE, while per_address contains the target of EXECUTE.
*/
ilen = get_ilen(cpu_ldub_code(env, env->per_address));
s390_program_interrupt(env, PGM_PER, ilen, GETPC());
}
}
/* Check if an address is within the PER starting address and the PER
ending address. The address range might loop. */
static inline bool get_per_in_range(CPUS390XState *env, uint64_t addr)
{
if (env->cregs[10] <= env->cregs[11]) {
return env->cregs[10] <= addr && addr <= env->cregs[11];
} else {
return env->cregs[10] <= addr || addr <= env->cregs[11];
}
}
void HELPER(per_branch)(CPUS390XState *env, uint64_t from, uint64_t to)
{
if ((env->cregs[9] & PER_CR9_EVENT_BRANCH)) {
if (!(env->cregs[9] & PER_CR9_CONTROL_BRANCH_ADDRESS)
|| get_per_in_range(env, to)) {
env->per_address = from;
env->per_perc_atmid = PER_CODE_EVENT_BRANCH | get_per_atmid(env);
}
}
}
void HELPER(per_ifetch)(CPUS390XState *env, uint64_t addr)
{
if ((env->cregs[9] & PER_CR9_EVENT_IFETCH) && get_per_in_range(env, addr)) {
env->per_address = addr;
env->per_perc_atmid = PER_CODE_EVENT_IFETCH | get_per_atmid(env);
/* If the instruction has to be nullified, trigger the
exception immediately. */
if (env->cregs[9] & PER_CR9_EVENT_NULLIFICATION) {
CPUState *cs = CPU(s390_env_get_cpu(env));
env->per_perc_atmid |= PER_CODE_EVENT_NULLIFICATION;
env->int_pgm_code = PGM_PER;
env->int_pgm_ilen = get_ilen(cpu_ldub_code(env, addr));
cs->exception_index = EXCP_PGM;
cpu_loop_exit(cs);
}
}
}
#endif
static uint8_t stfl_bytes[2048];
static unsigned int used_stfl_bytes;
static void prepare_stfl(void)
{
static bool initialized;
int i;
/* racy, but we don't care, the same values are always written */
if (initialized) {
return;
}
s390_get_feat_block(S390_FEAT_TYPE_STFL, stfl_bytes);
for (i = 0; i < sizeof(stfl_bytes); i++) {
if (stfl_bytes[i]) {
used_stfl_bytes = i + 1;
}
}
initialized = true;
}
#ifndef CONFIG_USER_ONLY
void HELPER(stfl)(CPUS390XState *env)
{
LowCore *lowcore;
lowcore = cpu_map_lowcore(env);
prepare_stfl();
memcpy(&lowcore->stfl_fac_list, stfl_bytes, sizeof(lowcore->stfl_fac_list));
cpu_unmap_lowcore(lowcore);
}
#endif
uint32_t HELPER(stfle)(CPUS390XState *env, uint64_t addr)
{
const uintptr_t ra = GETPC();
const int count_bytes = ((env->regs[0] & 0xff) + 1) * 8;
const int max_bytes = ROUND_UP(used_stfl_bytes, 8);
int i;
if (addr & 0x7) {
s390_program_interrupt(env, PGM_SPECIFICATION, 4, ra);
}
prepare_stfl();
for (i = 0; i < count_bytes; ++i) {
cpu_stb_data_ra(env, addr + i, stfl_bytes[i], ra);
}
env->regs[0] = deposit64(env->regs[0], 0, 8, (max_bytes / 8) - 1);
return count_bytes >= max_bytes ? 0 : 3;
}