qemu-e2k/hw/i386/acpi-build.c
David Hildenbrand f2ffbe2b7d pc: rename "hotplug memory" terminology to "device memory"
Let's make it clear that we are dealing with device memory. That it can
be used for memory hotplug is just a special case.

Signed-off-by: David Hildenbrand <david@redhat.com>
Message-Id: <20180423165126.15441-10-david@redhat.com>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Eduardo Habkost <ehabkost@redhat.com>
2018-05-07 10:00:02 -03:00

2944 lines
100 KiB
C

/* Support for generating ACPI tables and passing them to Guests
*
* Copyright (C) 2008-2010 Kevin O'Connor <kevin@koconnor.net>
* Copyright (C) 2006 Fabrice Bellard
* Copyright (C) 2013 Red Hat Inc
*
* Author: Michael S. Tsirkin <mst@redhat.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
* You should have received a copy of the GNU General Public License along
* with this program; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "qapi/error.h"
#include "qapi/qmp/qnum.h"
#include "acpi-build.h"
#include "qemu-common.h"
#include "qemu/bitmap.h"
#include "qemu/error-report.h"
#include "hw/pci/pci.h"
#include "qom/cpu.h"
#include "target/i386/cpu.h"
#include "hw/misc/pvpanic.h"
#include "hw/timer/hpet.h"
#include "hw/acpi/acpi-defs.h"
#include "hw/acpi/acpi.h"
#include "hw/acpi/cpu.h"
#include "hw/nvram/fw_cfg.h"
#include "hw/acpi/bios-linker-loader.h"
#include "hw/loader.h"
#include "hw/isa/isa.h"
#include "hw/block/fdc.h"
#include "hw/acpi/memory_hotplug.h"
#include "sysemu/tpm.h"
#include "hw/acpi/tpm.h"
#include "hw/acpi/vmgenid.h"
#include "sysemu/tpm_backend.h"
#include "hw/timer/mc146818rtc_regs.h"
#include "hw/mem/memory-device.h"
#include "sysemu/numa.h"
/* Supported chipsets: */
#include "hw/acpi/piix4.h"
#include "hw/acpi/pcihp.h"
#include "hw/i386/ich9.h"
#include "hw/pci/pci_bus.h"
#include "hw/pci-host/q35.h"
#include "hw/i386/x86-iommu.h"
#include "hw/acpi/aml-build.h"
#include "qom/qom-qobject.h"
#include "hw/i386/amd_iommu.h"
#include "hw/i386/intel_iommu.h"
#include "hw/acpi/ipmi.h"
/* These are used to size the ACPI tables for -M pc-i440fx-1.7 and
* -M pc-i440fx-2.0. Even if the actual amount of AML generated grows
* a little bit, there should be plenty of free space since the DSDT
* shrunk by ~1.5k between QEMU 2.0 and QEMU 2.1.
*/
#define ACPI_BUILD_LEGACY_CPU_AML_SIZE 97
#define ACPI_BUILD_ALIGN_SIZE 0x1000
#define ACPI_BUILD_TABLE_SIZE 0x20000
/* #define DEBUG_ACPI_BUILD */
#ifdef DEBUG_ACPI_BUILD
#define ACPI_BUILD_DPRINTF(fmt, ...) \
do {printf("ACPI_BUILD: " fmt, ## __VA_ARGS__); } while (0)
#else
#define ACPI_BUILD_DPRINTF(fmt, ...)
#endif
/* Default IOAPIC ID */
#define ACPI_BUILD_IOAPIC_ID 0x0
typedef struct AcpiMcfgInfo {
uint64_t mcfg_base;
uint32_t mcfg_size;
} AcpiMcfgInfo;
typedef struct AcpiPmInfo {
bool s3_disabled;
bool s4_disabled;
bool pcihp_bridge_en;
uint8_t s4_val;
AcpiFadtData fadt;
uint16_t cpu_hp_io_base;
uint16_t pcihp_io_base;
uint16_t pcihp_io_len;
} AcpiPmInfo;
typedef struct AcpiMiscInfo {
bool is_piix4;
bool has_hpet;
TPMVersion tpm_version;
const unsigned char *dsdt_code;
unsigned dsdt_size;
uint16_t pvpanic_port;
uint16_t applesmc_io_base;
} AcpiMiscInfo;
typedef struct AcpiBuildPciBusHotplugState {
GArray *device_table;
GArray *notify_table;
struct AcpiBuildPciBusHotplugState *parent;
bool pcihp_bridge_en;
} AcpiBuildPciBusHotplugState;
static void init_common_fadt_data(Object *o, AcpiFadtData *data)
{
uint32_t io = object_property_get_uint(o, ACPI_PM_PROP_PM_IO_BASE, NULL);
AmlAddressSpace as = AML_AS_SYSTEM_IO;
AcpiFadtData fadt = {
.rev = 3,
.flags =
(1 << ACPI_FADT_F_WBINVD) |
(1 << ACPI_FADT_F_PROC_C1) |
(1 << ACPI_FADT_F_SLP_BUTTON) |
(1 << ACPI_FADT_F_RTC_S4) |
(1 << ACPI_FADT_F_USE_PLATFORM_CLOCK) |
/* APIC destination mode ("Flat Logical") has an upper limit of 8
* CPUs for more than 8 CPUs, "Clustered Logical" mode has to be
* used
*/
((max_cpus > 8) ? (1 << ACPI_FADT_F_FORCE_APIC_CLUSTER_MODEL) : 0),
.int_model = 1 /* Multiple APIC */,
.rtc_century = RTC_CENTURY,
.plvl2_lat = 0xfff /* C2 state not supported */,
.plvl3_lat = 0xfff /* C3 state not supported */,
.smi_cmd = ACPI_PORT_SMI_CMD,
.sci_int = object_property_get_uint(o, ACPI_PM_PROP_SCI_INT, NULL),
.acpi_enable_cmd =
object_property_get_uint(o, ACPI_PM_PROP_ACPI_ENABLE_CMD, NULL),
.acpi_disable_cmd =
object_property_get_uint(o, ACPI_PM_PROP_ACPI_DISABLE_CMD, NULL),
.pm1a_evt = { .space_id = as, .bit_width = 4 * 8, .address = io },
.pm1a_cnt = { .space_id = as, .bit_width = 2 * 8,
.address = io + 0x04 },
.pm_tmr = { .space_id = as, .bit_width = 4 * 8, .address = io + 0x08 },
.gpe0_blk = { .space_id = as, .bit_width =
object_property_get_uint(o, ACPI_PM_PROP_GPE0_BLK_LEN, NULL) * 8,
.address = object_property_get_uint(o, ACPI_PM_PROP_GPE0_BLK, NULL)
},
};
*data = fadt;
}
static void acpi_get_pm_info(AcpiPmInfo *pm)
{
Object *piix = piix4_pm_find();
Object *lpc = ich9_lpc_find();
Object *obj = piix ? piix : lpc;
QObject *o;
pm->cpu_hp_io_base = 0;
pm->pcihp_io_base = 0;
pm->pcihp_io_len = 0;
init_common_fadt_data(obj, &pm->fadt);
if (piix) {
/* w2k requires FADT(rev1) or it won't boot, keep PC compatible */
pm->fadt.rev = 1;
pm->cpu_hp_io_base = PIIX4_CPU_HOTPLUG_IO_BASE;
pm->pcihp_io_base =
object_property_get_uint(obj, ACPI_PCIHP_IO_BASE_PROP, NULL);
pm->pcihp_io_len =
object_property_get_uint(obj, ACPI_PCIHP_IO_LEN_PROP, NULL);
}
if (lpc) {
struct AcpiGenericAddress r = { .space_id = AML_AS_SYSTEM_IO,
.bit_width = 8, .address = ICH9_RST_CNT_IOPORT };
pm->fadt.reset_reg = r;
pm->fadt.reset_val = 0xf;
pm->fadt.flags |= 1 << ACPI_FADT_F_RESET_REG_SUP;
pm->cpu_hp_io_base = ICH9_CPU_HOTPLUG_IO_BASE;
}
assert(obj);
/* The above need not be conditional on machine type because the reset port
* happens to be the same on PIIX (pc) and ICH9 (q35). */
QEMU_BUILD_BUG_ON(ICH9_RST_CNT_IOPORT != RCR_IOPORT);
/* Fill in optional s3/s4 related properties */
o = object_property_get_qobject(obj, ACPI_PM_PROP_S3_DISABLED, NULL);
if (o) {
pm->s3_disabled = qnum_get_uint(qobject_to(QNum, o));
} else {
pm->s3_disabled = false;
}
qobject_unref(o);
o = object_property_get_qobject(obj, ACPI_PM_PROP_S4_DISABLED, NULL);
if (o) {
pm->s4_disabled = qnum_get_uint(qobject_to(QNum, o));
} else {
pm->s4_disabled = false;
}
qobject_unref(o);
o = object_property_get_qobject(obj, ACPI_PM_PROP_S4_VAL, NULL);
if (o) {
pm->s4_val = qnum_get_uint(qobject_to(QNum, o));
} else {
pm->s4_val = false;
}
qobject_unref(o);
pm->pcihp_bridge_en =
object_property_get_bool(obj, "acpi-pci-hotplug-with-bridge-support",
NULL);
}
static void acpi_get_misc_info(AcpiMiscInfo *info)
{
Object *piix = piix4_pm_find();
Object *lpc = ich9_lpc_find();
assert(!!piix != !!lpc);
if (piix) {
info->is_piix4 = true;
}
if (lpc) {
info->is_piix4 = false;
}
info->has_hpet = hpet_find();
info->tpm_version = tpm_get_version(tpm_find());
info->pvpanic_port = pvpanic_port();
info->applesmc_io_base = applesmc_port();
}
/*
* Because of the PXB hosts we cannot simply query TYPE_PCI_HOST_BRIDGE.
* On i386 arch we only have two pci hosts, so we can look only for them.
*/
static Object *acpi_get_i386_pci_host(void)
{
PCIHostState *host;
host = OBJECT_CHECK(PCIHostState,
object_resolve_path("/machine/i440fx", NULL),
TYPE_PCI_HOST_BRIDGE);
if (!host) {
host = OBJECT_CHECK(PCIHostState,
object_resolve_path("/machine/q35", NULL),
TYPE_PCI_HOST_BRIDGE);
}
return OBJECT(host);
}
static void acpi_get_pci_holes(Range *hole, Range *hole64)
{
Object *pci_host;
pci_host = acpi_get_i386_pci_host();
g_assert(pci_host);
range_set_bounds1(hole,
object_property_get_uint(pci_host,
PCI_HOST_PROP_PCI_HOLE_START,
NULL),
object_property_get_uint(pci_host,
PCI_HOST_PROP_PCI_HOLE_END,
NULL));
range_set_bounds1(hole64,
object_property_get_uint(pci_host,
PCI_HOST_PROP_PCI_HOLE64_START,
NULL),
object_property_get_uint(pci_host,
PCI_HOST_PROP_PCI_HOLE64_END,
NULL));
}
static void acpi_align_size(GArray *blob, unsigned align)
{
/* Align size to multiple of given size. This reduces the chance
* we need to change size in the future (breaking cross version migration).
*/
g_array_set_size(blob, ROUND_UP(acpi_data_len(blob), align));
}
/* FACS */
static void
build_facs(GArray *table_data, BIOSLinker *linker)
{
AcpiFacsDescriptorRev1 *facs = acpi_data_push(table_data, sizeof *facs);
memcpy(&facs->signature, "FACS", 4);
facs->length = cpu_to_le32(sizeof(*facs));
}
void pc_madt_cpu_entry(AcpiDeviceIf *adev, int uid,
const CPUArchIdList *apic_ids, GArray *entry)
{
uint32_t apic_id = apic_ids->cpus[uid].arch_id;
/* ACPI spec says that LAPIC entry for non present
* CPU may be omitted from MADT or it must be marked
* as disabled. However omitting non present CPU from
* MADT breaks hotplug on linux. So possible CPUs
* should be put in MADT but kept disabled.
*/
if (apic_id < 255) {
AcpiMadtProcessorApic *apic = acpi_data_push(entry, sizeof *apic);
apic->type = ACPI_APIC_PROCESSOR;
apic->length = sizeof(*apic);
apic->processor_id = uid;
apic->local_apic_id = apic_id;
if (apic_ids->cpus[uid].cpu != NULL) {
apic->flags = cpu_to_le32(1);
} else {
apic->flags = cpu_to_le32(0);
}
} else {
AcpiMadtProcessorX2Apic *apic = acpi_data_push(entry, sizeof *apic);
apic->type = ACPI_APIC_LOCAL_X2APIC;
apic->length = sizeof(*apic);
apic->uid = cpu_to_le32(uid);
apic->x2apic_id = cpu_to_le32(apic_id);
if (apic_ids->cpus[uid].cpu != NULL) {
apic->flags = cpu_to_le32(1);
} else {
apic->flags = cpu_to_le32(0);
}
}
}
static void
build_madt(GArray *table_data, BIOSLinker *linker, PCMachineState *pcms)
{
MachineClass *mc = MACHINE_GET_CLASS(pcms);
const CPUArchIdList *apic_ids = mc->possible_cpu_arch_ids(MACHINE(pcms));
int madt_start = table_data->len;
AcpiDeviceIfClass *adevc = ACPI_DEVICE_IF_GET_CLASS(pcms->acpi_dev);
AcpiDeviceIf *adev = ACPI_DEVICE_IF(pcms->acpi_dev);
bool x2apic_mode = false;
AcpiMultipleApicTable *madt;
AcpiMadtIoApic *io_apic;
AcpiMadtIntsrcovr *intsrcovr;
int i;
madt = acpi_data_push(table_data, sizeof *madt);
madt->local_apic_address = cpu_to_le32(APIC_DEFAULT_ADDRESS);
madt->flags = cpu_to_le32(1);
for (i = 0; i < apic_ids->len; i++) {
adevc->madt_cpu(adev, i, apic_ids, table_data);
if (apic_ids->cpus[i].arch_id > 254) {
x2apic_mode = true;
}
}
io_apic = acpi_data_push(table_data, sizeof *io_apic);
io_apic->type = ACPI_APIC_IO;
io_apic->length = sizeof(*io_apic);
io_apic->io_apic_id = ACPI_BUILD_IOAPIC_ID;
io_apic->address = cpu_to_le32(IO_APIC_DEFAULT_ADDRESS);
io_apic->interrupt = cpu_to_le32(0);
if (pcms->apic_xrupt_override) {
intsrcovr = acpi_data_push(table_data, sizeof *intsrcovr);
intsrcovr->type = ACPI_APIC_XRUPT_OVERRIDE;
intsrcovr->length = sizeof(*intsrcovr);
intsrcovr->source = 0;
intsrcovr->gsi = cpu_to_le32(2);
intsrcovr->flags = cpu_to_le16(0); /* conforms to bus specifications */
}
for (i = 1; i < 16; i++) {
#define ACPI_BUILD_PCI_IRQS ((1<<5) | (1<<9) | (1<<10) | (1<<11))
if (!(ACPI_BUILD_PCI_IRQS & (1 << i))) {
/* No need for a INT source override structure. */
continue;
}
intsrcovr = acpi_data_push(table_data, sizeof *intsrcovr);
intsrcovr->type = ACPI_APIC_XRUPT_OVERRIDE;
intsrcovr->length = sizeof(*intsrcovr);
intsrcovr->source = i;
intsrcovr->gsi = cpu_to_le32(i);
intsrcovr->flags = cpu_to_le16(0xd); /* active high, level triggered */
}
if (x2apic_mode) {
AcpiMadtLocalX2ApicNmi *local_nmi;
local_nmi = acpi_data_push(table_data, sizeof *local_nmi);
local_nmi->type = ACPI_APIC_LOCAL_X2APIC_NMI;
local_nmi->length = sizeof(*local_nmi);
local_nmi->uid = 0xFFFFFFFF; /* all processors */
local_nmi->flags = cpu_to_le16(0);
local_nmi->lint = 1; /* ACPI_LINT1 */
} else {
AcpiMadtLocalNmi *local_nmi;
local_nmi = acpi_data_push(table_data, sizeof *local_nmi);
local_nmi->type = ACPI_APIC_LOCAL_NMI;
local_nmi->length = sizeof(*local_nmi);
local_nmi->processor_id = 0xff; /* all processors */
local_nmi->flags = cpu_to_le16(0);
local_nmi->lint = 1; /* ACPI_LINT1 */
}
build_header(linker, table_data,
(void *)(table_data->data + madt_start), "APIC",
table_data->len - madt_start, 1, NULL, NULL);
}
static void build_append_pcihp_notify_entry(Aml *method, int slot)
{
Aml *if_ctx;
int32_t devfn = PCI_DEVFN(slot, 0);
if_ctx = aml_if(aml_and(aml_arg(0), aml_int(0x1U << slot), NULL));
aml_append(if_ctx, aml_notify(aml_name("S%.02X", devfn), aml_arg(1)));
aml_append(method, if_ctx);
}
static void build_append_pci_bus_devices(Aml *parent_scope, PCIBus *bus,
bool pcihp_bridge_en)
{
Aml *dev, *notify_method = NULL, *method;
QObject *bsel;
PCIBus *sec;
int i;
bsel = object_property_get_qobject(OBJECT(bus), ACPI_PCIHP_PROP_BSEL, NULL);
if (bsel) {
uint64_t bsel_val = qnum_get_uint(qobject_to(QNum, bsel));
aml_append(parent_scope, aml_name_decl("BSEL", aml_int(bsel_val)));
notify_method = aml_method("DVNT", 2, AML_NOTSERIALIZED);
}
for (i = 0; i < ARRAY_SIZE(bus->devices); i += PCI_FUNC_MAX) {
DeviceClass *dc;
PCIDeviceClass *pc;
PCIDevice *pdev = bus->devices[i];
int slot = PCI_SLOT(i);
bool hotplug_enabled_dev;
bool bridge_in_acpi;
if (!pdev) {
if (bsel) { /* add hotplug slots for non present devices */
dev = aml_device("S%.02X", PCI_DEVFN(slot, 0));
aml_append(dev, aml_name_decl("_SUN", aml_int(slot)));
aml_append(dev, aml_name_decl("_ADR", aml_int(slot << 16)));
method = aml_method("_EJ0", 1, AML_NOTSERIALIZED);
aml_append(method,
aml_call2("PCEJ", aml_name("BSEL"), aml_name("_SUN"))
);
aml_append(dev, method);
aml_append(parent_scope, dev);
build_append_pcihp_notify_entry(notify_method, slot);
}
continue;
}
pc = PCI_DEVICE_GET_CLASS(pdev);
dc = DEVICE_GET_CLASS(pdev);
/* When hotplug for bridges is enabled, bridges are
* described in ACPI separately (see build_pci_bus_end).
* In this case they aren't themselves hot-pluggable.
* Hotplugged bridges *are* hot-pluggable.
*/
bridge_in_acpi = pc->is_bridge && pcihp_bridge_en &&
!DEVICE(pdev)->hotplugged;
hotplug_enabled_dev = bsel && dc->hotpluggable && !bridge_in_acpi;
if (pc->class_id == PCI_CLASS_BRIDGE_ISA) {
continue;
}
/* start to compose PCI slot descriptor */
dev = aml_device("S%.02X", PCI_DEVFN(slot, 0));
aml_append(dev, aml_name_decl("_ADR", aml_int(slot << 16)));
if (pc->class_id == PCI_CLASS_DISPLAY_VGA) {
/* add VGA specific AML methods */
int s3d;
if (object_dynamic_cast(OBJECT(pdev), "qxl-vga")) {
s3d = 3;
} else {
s3d = 0;
}
method = aml_method("_S1D", 0, AML_NOTSERIALIZED);
aml_append(method, aml_return(aml_int(0)));
aml_append(dev, method);
method = aml_method("_S2D", 0, AML_NOTSERIALIZED);
aml_append(method, aml_return(aml_int(0)));
aml_append(dev, method);
method = aml_method("_S3D", 0, AML_NOTSERIALIZED);
aml_append(method, aml_return(aml_int(s3d)));
aml_append(dev, method);
} else if (hotplug_enabled_dev) {
/* add _SUN/_EJ0 to make slot hotpluggable */
aml_append(dev, aml_name_decl("_SUN", aml_int(slot)));
method = aml_method("_EJ0", 1, AML_NOTSERIALIZED);
aml_append(method,
aml_call2("PCEJ", aml_name("BSEL"), aml_name("_SUN"))
);
aml_append(dev, method);
if (bsel) {
build_append_pcihp_notify_entry(notify_method, slot);
}
} else if (bridge_in_acpi) {
/*
* device is coldplugged bridge,
* add child device descriptions into its scope
*/
PCIBus *sec_bus = pci_bridge_get_sec_bus(PCI_BRIDGE(pdev));
build_append_pci_bus_devices(dev, sec_bus, pcihp_bridge_en);
}
/* slot descriptor has been composed, add it into parent context */
aml_append(parent_scope, dev);
}
if (bsel) {
aml_append(parent_scope, notify_method);
}
/* Append PCNT method to notify about events on local and child buses.
* Add unconditionally for root since DSDT expects it.
*/
method = aml_method("PCNT", 0, AML_NOTSERIALIZED);
/* If bus supports hotplug select it and notify about local events */
if (bsel) {
uint64_t bsel_val = qnum_get_uint(qobject_to(QNum, bsel));
aml_append(method, aml_store(aml_int(bsel_val), aml_name("BNUM")));
aml_append(method,
aml_call2("DVNT", aml_name("PCIU"), aml_int(1) /* Device Check */)
);
aml_append(method,
aml_call2("DVNT", aml_name("PCID"), aml_int(3)/* Eject Request */)
);
}
/* Notify about child bus events in any case */
if (pcihp_bridge_en) {
QLIST_FOREACH(sec, &bus->child, sibling) {
int32_t devfn = sec->parent_dev->devfn;
if (pci_bus_is_root(sec) || pci_bus_is_express(sec)) {
continue;
}
aml_append(method, aml_name("^S%.02X.PCNT", devfn));
}
}
aml_append(parent_scope, method);
qobject_unref(bsel);
}
/**
* build_prt_entry:
* @link_name: link name for PCI route entry
*
* build AML package containing a PCI route entry for @link_name
*/
static Aml *build_prt_entry(const char *link_name)
{
Aml *a_zero = aml_int(0);
Aml *pkg = aml_package(4);
aml_append(pkg, a_zero);
aml_append(pkg, a_zero);
aml_append(pkg, aml_name("%s", link_name));
aml_append(pkg, a_zero);
return pkg;
}
/*
* initialize_route - Initialize the interrupt routing rule
* through a specific LINK:
* if (lnk_idx == idx)
* route using link 'link_name'
*/
static Aml *initialize_route(Aml *route, const char *link_name,
Aml *lnk_idx, int idx)
{
Aml *if_ctx = aml_if(aml_equal(lnk_idx, aml_int(idx)));
Aml *pkg = build_prt_entry(link_name);
aml_append(if_ctx, aml_store(pkg, route));
return if_ctx;
}
/*
* build_prt - Define interrupt rounting rules
*
* Returns an array of 128 routes, one for each device,
* based on device location.
* The main goal is to equaly distribute the interrupts
* over the 4 existing ACPI links (works only for i440fx).
* The hash function is (slot + pin) & 3 -> "LNK[D|A|B|C]".
*
*/
static Aml *build_prt(bool is_pci0_prt)
{
Aml *method, *while_ctx, *pin, *res;
method = aml_method("_PRT", 0, AML_NOTSERIALIZED);
res = aml_local(0);
pin = aml_local(1);
aml_append(method, aml_store(aml_package(128), res));
aml_append(method, aml_store(aml_int(0), pin));
/* while (pin < 128) */
while_ctx = aml_while(aml_lless(pin, aml_int(128)));
{
Aml *slot = aml_local(2);
Aml *lnk_idx = aml_local(3);
Aml *route = aml_local(4);
/* slot = pin >> 2 */
aml_append(while_ctx,
aml_store(aml_shiftright(pin, aml_int(2), NULL), slot));
/* lnk_idx = (slot + pin) & 3 */
aml_append(while_ctx,
aml_store(aml_and(aml_add(pin, slot, NULL), aml_int(3), NULL),
lnk_idx));
/* route[2] = "LNK[D|A|B|C]", selection based on pin % 3 */
aml_append(while_ctx, initialize_route(route, "LNKD", lnk_idx, 0));
if (is_pci0_prt) {
Aml *if_device_1, *if_pin_4, *else_pin_4;
/* device 1 is the power-management device, needs SCI */
if_device_1 = aml_if(aml_equal(lnk_idx, aml_int(1)));
{
if_pin_4 = aml_if(aml_equal(pin, aml_int(4)));
{
aml_append(if_pin_4,
aml_store(build_prt_entry("LNKS"), route));
}
aml_append(if_device_1, if_pin_4);
else_pin_4 = aml_else();
{
aml_append(else_pin_4,
aml_store(build_prt_entry("LNKA"), route));
}
aml_append(if_device_1, else_pin_4);
}
aml_append(while_ctx, if_device_1);
} else {
aml_append(while_ctx, initialize_route(route, "LNKA", lnk_idx, 1));
}
aml_append(while_ctx, initialize_route(route, "LNKB", lnk_idx, 2));
aml_append(while_ctx, initialize_route(route, "LNKC", lnk_idx, 3));
/* route[0] = 0x[slot]FFFF */
aml_append(while_ctx,
aml_store(aml_or(aml_shiftleft(slot, aml_int(16)), aml_int(0xFFFF),
NULL),
aml_index(route, aml_int(0))));
/* route[1] = pin & 3 */
aml_append(while_ctx,
aml_store(aml_and(pin, aml_int(3), NULL),
aml_index(route, aml_int(1))));
/* res[pin] = route */
aml_append(while_ctx, aml_store(route, aml_index(res, pin)));
/* pin++ */
aml_append(while_ctx, aml_increment(pin));
}
aml_append(method, while_ctx);
/* return res*/
aml_append(method, aml_return(res));
return method;
}
typedef struct CrsRangeEntry {
uint64_t base;
uint64_t limit;
} CrsRangeEntry;
static void crs_range_insert(GPtrArray *ranges, uint64_t base, uint64_t limit)
{
CrsRangeEntry *entry;
entry = g_malloc(sizeof(*entry));
entry->base = base;
entry->limit = limit;
g_ptr_array_add(ranges, entry);
}
static void crs_range_free(gpointer data)
{
CrsRangeEntry *entry = (CrsRangeEntry *)data;
g_free(entry);
}
typedef struct CrsRangeSet {
GPtrArray *io_ranges;
GPtrArray *mem_ranges;
GPtrArray *mem_64bit_ranges;
} CrsRangeSet;
static void crs_range_set_init(CrsRangeSet *range_set)
{
range_set->io_ranges = g_ptr_array_new_with_free_func(crs_range_free);
range_set->mem_ranges = g_ptr_array_new_with_free_func(crs_range_free);
range_set->mem_64bit_ranges =
g_ptr_array_new_with_free_func(crs_range_free);
}
static void crs_range_set_free(CrsRangeSet *range_set)
{
g_ptr_array_free(range_set->io_ranges, true);
g_ptr_array_free(range_set->mem_ranges, true);
g_ptr_array_free(range_set->mem_64bit_ranges, true);
}
static gint crs_range_compare(gconstpointer a, gconstpointer b)
{
CrsRangeEntry *entry_a = *(CrsRangeEntry **)a;
CrsRangeEntry *entry_b = *(CrsRangeEntry **)b;
return (int64_t)entry_a->base - (int64_t)entry_b->base;
}
/*
* crs_replace_with_free_ranges - given the 'used' ranges within [start - end]
* interval, computes the 'free' ranges from the same interval.
* Example: If the input array is { [a1 - a2],[b1 - b2] }, the function
* will return { [base - a1], [a2 - b1], [b2 - limit] }.
*/
static void crs_replace_with_free_ranges(GPtrArray *ranges,
uint64_t start, uint64_t end)
{
GPtrArray *free_ranges = g_ptr_array_new();
uint64_t free_base = start;
int i;
g_ptr_array_sort(ranges, crs_range_compare);
for (i = 0; i < ranges->len; i++) {
CrsRangeEntry *used = g_ptr_array_index(ranges, i);
if (free_base < used->base) {
crs_range_insert(free_ranges, free_base, used->base - 1);
}
free_base = used->limit + 1;
}
if (free_base < end) {
crs_range_insert(free_ranges, free_base, end);
}
g_ptr_array_set_size(ranges, 0);
for (i = 0; i < free_ranges->len; i++) {
g_ptr_array_add(ranges, g_ptr_array_index(free_ranges, i));
}
g_ptr_array_free(free_ranges, true);
}
/*
* crs_range_merge - merges adjacent ranges in the given array.
* Array elements are deleted and replaced with the merged ranges.
*/
static void crs_range_merge(GPtrArray *range)
{
GPtrArray *tmp = g_ptr_array_new_with_free_func(crs_range_free);
CrsRangeEntry *entry;
uint64_t range_base, range_limit;
int i;
if (!range->len) {
return;
}
g_ptr_array_sort(range, crs_range_compare);
entry = g_ptr_array_index(range, 0);
range_base = entry->base;
range_limit = entry->limit;
for (i = 1; i < range->len; i++) {
entry = g_ptr_array_index(range, i);
if (entry->base - 1 == range_limit) {
range_limit = entry->limit;
} else {
crs_range_insert(tmp, range_base, range_limit);
range_base = entry->base;
range_limit = entry->limit;
}
}
crs_range_insert(tmp, range_base, range_limit);
g_ptr_array_set_size(range, 0);
for (i = 0; i < tmp->len; i++) {
entry = g_ptr_array_index(tmp, i);
crs_range_insert(range, entry->base, entry->limit);
}
g_ptr_array_free(tmp, true);
}
static Aml *build_crs(PCIHostState *host, CrsRangeSet *range_set)
{
Aml *crs = aml_resource_template();
CrsRangeSet temp_range_set;
CrsRangeEntry *entry;
uint8_t max_bus = pci_bus_num(host->bus);
uint8_t type;
int devfn;
int i;
crs_range_set_init(&temp_range_set);
for (devfn = 0; devfn < ARRAY_SIZE(host->bus->devices); devfn++) {
uint64_t range_base, range_limit;
PCIDevice *dev = host->bus->devices[devfn];
if (!dev) {
continue;
}
for (i = 0; i < PCI_NUM_REGIONS; i++) {
PCIIORegion *r = &dev->io_regions[i];
range_base = r->addr;
range_limit = r->addr + r->size - 1;
/*
* Work-around for old bioses
* that do not support multiple root buses
*/
if (!range_base || range_base > range_limit) {
continue;
}
if (r->type & PCI_BASE_ADDRESS_SPACE_IO) {
crs_range_insert(temp_range_set.io_ranges,
range_base, range_limit);
} else { /* "memory" */
crs_range_insert(temp_range_set.mem_ranges,
range_base, range_limit);
}
}
type = dev->config[PCI_HEADER_TYPE] & ~PCI_HEADER_TYPE_MULTI_FUNCTION;
if (type == PCI_HEADER_TYPE_BRIDGE) {
uint8_t subordinate = dev->config[PCI_SUBORDINATE_BUS];
if (subordinate > max_bus) {
max_bus = subordinate;
}
range_base = pci_bridge_get_base(dev, PCI_BASE_ADDRESS_SPACE_IO);
range_limit = pci_bridge_get_limit(dev, PCI_BASE_ADDRESS_SPACE_IO);
/*
* Work-around for old bioses
* that do not support multiple root buses
*/
if (range_base && range_base <= range_limit) {
crs_range_insert(temp_range_set.io_ranges,
range_base, range_limit);
}
range_base =
pci_bridge_get_base(dev, PCI_BASE_ADDRESS_SPACE_MEMORY);
range_limit =
pci_bridge_get_limit(dev, PCI_BASE_ADDRESS_SPACE_MEMORY);
/*
* Work-around for old bioses
* that do not support multiple root buses
*/
if (range_base && range_base <= range_limit) {
uint64_t length = range_limit - range_base + 1;
if (range_limit <= UINT32_MAX && length <= UINT32_MAX) {
crs_range_insert(temp_range_set.mem_ranges,
range_base, range_limit);
} else {
crs_range_insert(temp_range_set.mem_64bit_ranges,
range_base, range_limit);
}
}
range_base =
pci_bridge_get_base(dev, PCI_BASE_ADDRESS_MEM_PREFETCH);
range_limit =
pci_bridge_get_limit(dev, PCI_BASE_ADDRESS_MEM_PREFETCH);
/*
* Work-around for old bioses
* that do not support multiple root buses
*/
if (range_base && range_base <= range_limit) {
uint64_t length = range_limit - range_base + 1;
if (range_limit <= UINT32_MAX && length <= UINT32_MAX) {
crs_range_insert(temp_range_set.mem_ranges,
range_base, range_limit);
} else {
crs_range_insert(temp_range_set.mem_64bit_ranges,
range_base, range_limit);
}
}
}
}
crs_range_merge(temp_range_set.io_ranges);
for (i = 0; i < temp_range_set.io_ranges->len; i++) {
entry = g_ptr_array_index(temp_range_set.io_ranges, i);
aml_append(crs,
aml_word_io(AML_MIN_FIXED, AML_MAX_FIXED,
AML_POS_DECODE, AML_ENTIRE_RANGE,
0, entry->base, entry->limit, 0,
entry->limit - entry->base + 1));
crs_range_insert(range_set->io_ranges, entry->base, entry->limit);
}
crs_range_merge(temp_range_set.mem_ranges);
for (i = 0; i < temp_range_set.mem_ranges->len; i++) {
entry = g_ptr_array_index(temp_range_set.mem_ranges, i);
aml_append(crs,
aml_dword_memory(AML_POS_DECODE, AML_MIN_FIXED,
AML_MAX_FIXED, AML_NON_CACHEABLE,
AML_READ_WRITE,
0, entry->base, entry->limit, 0,
entry->limit - entry->base + 1));
crs_range_insert(range_set->mem_ranges, entry->base, entry->limit);
}
crs_range_merge(temp_range_set.mem_64bit_ranges);
for (i = 0; i < temp_range_set.mem_64bit_ranges->len; i++) {
entry = g_ptr_array_index(temp_range_set.mem_64bit_ranges, i);
aml_append(crs,
aml_qword_memory(AML_POS_DECODE, AML_MIN_FIXED,
AML_MAX_FIXED, AML_NON_CACHEABLE,
AML_READ_WRITE,
0, entry->base, entry->limit, 0,
entry->limit - entry->base + 1));
crs_range_insert(range_set->mem_64bit_ranges,
entry->base, entry->limit);
}
crs_range_set_free(&temp_range_set);
aml_append(crs,
aml_word_bus_number(AML_MIN_FIXED, AML_MAX_FIXED, AML_POS_DECODE,
0,
pci_bus_num(host->bus),
max_bus,
0,
max_bus - pci_bus_num(host->bus) + 1));
return crs;
}
static void build_hpet_aml(Aml *table)
{
Aml *crs;
Aml *field;
Aml *method;
Aml *if_ctx;
Aml *scope = aml_scope("_SB");
Aml *dev = aml_device("HPET");
Aml *zero = aml_int(0);
Aml *id = aml_local(0);
Aml *period = aml_local(1);
aml_append(dev, aml_name_decl("_HID", aml_eisaid("PNP0103")));
aml_append(dev, aml_name_decl("_UID", zero));
aml_append(dev,
aml_operation_region("HPTM", AML_SYSTEM_MEMORY, aml_int(HPET_BASE),
HPET_LEN));
field = aml_field("HPTM", AML_DWORD_ACC, AML_LOCK, AML_PRESERVE);
aml_append(field, aml_named_field("VEND", 32));
aml_append(field, aml_named_field("PRD", 32));
aml_append(dev, field);
method = aml_method("_STA", 0, AML_NOTSERIALIZED);
aml_append(method, aml_store(aml_name("VEND"), id));
aml_append(method, aml_store(aml_name("PRD"), period));
aml_append(method, aml_shiftright(id, aml_int(16), id));
if_ctx = aml_if(aml_lor(aml_equal(id, zero),
aml_equal(id, aml_int(0xffff))));
{
aml_append(if_ctx, aml_return(zero));
}
aml_append(method, if_ctx);
if_ctx = aml_if(aml_lor(aml_equal(period, zero),
aml_lgreater(period, aml_int(100000000))));
{
aml_append(if_ctx, aml_return(zero));
}
aml_append(method, if_ctx);
aml_append(method, aml_return(aml_int(0x0F)));
aml_append(dev, method);
crs = aml_resource_template();
aml_append(crs, aml_memory32_fixed(HPET_BASE, HPET_LEN, AML_READ_ONLY));
aml_append(dev, aml_name_decl("_CRS", crs));
aml_append(scope, dev);
aml_append(table, scope);
}
static Aml *build_fdinfo_aml(int idx, FloppyDriveType type)
{
Aml *dev, *fdi;
uint8_t maxc, maxh, maxs;
isa_fdc_get_drive_max_chs(type, &maxc, &maxh, &maxs);
dev = aml_device("FLP%c", 'A' + idx);
aml_append(dev, aml_name_decl("_ADR", aml_int(idx)));
fdi = aml_package(16);
aml_append(fdi, aml_int(idx)); /* Drive Number */
aml_append(fdi,
aml_int(cmos_get_fd_drive_type(type))); /* Device Type */
/*
* the values below are the limits of the drive, and are thus independent
* of the inserted media
*/
aml_append(fdi, aml_int(maxc)); /* Maximum Cylinder Number */
aml_append(fdi, aml_int(maxs)); /* Maximum Sector Number */
aml_append(fdi, aml_int(maxh)); /* Maximum Head Number */
/*
* SeaBIOS returns the below values for int 0x13 func 0x08 regardless of
* the drive type, so shall we
*/
aml_append(fdi, aml_int(0xAF)); /* disk_specify_1 */
aml_append(fdi, aml_int(0x02)); /* disk_specify_2 */
aml_append(fdi, aml_int(0x25)); /* disk_motor_wait */
aml_append(fdi, aml_int(0x02)); /* disk_sector_siz */
aml_append(fdi, aml_int(0x12)); /* disk_eot */
aml_append(fdi, aml_int(0x1B)); /* disk_rw_gap */
aml_append(fdi, aml_int(0xFF)); /* disk_dtl */
aml_append(fdi, aml_int(0x6C)); /* disk_formt_gap */
aml_append(fdi, aml_int(0xF6)); /* disk_fill */
aml_append(fdi, aml_int(0x0F)); /* disk_head_sttl */
aml_append(fdi, aml_int(0x08)); /* disk_motor_strt */
aml_append(dev, aml_name_decl("_FDI", fdi));
return dev;
}
static Aml *build_fdc_device_aml(ISADevice *fdc)
{
int i;
Aml *dev;
Aml *crs;
#define ACPI_FDE_MAX_FD 4
uint32_t fde_buf[5] = {
0, 0, 0, 0, /* presence of floppy drives #0 - #3 */
cpu_to_le32(2) /* tape presence (2 == never present) */
};
dev = aml_device("FDC0");
aml_append(dev, aml_name_decl("_HID", aml_eisaid("PNP0700")));
crs = aml_resource_template();
aml_append(crs, aml_io(AML_DECODE16, 0x03F2, 0x03F2, 0x00, 0x04));
aml_append(crs, aml_io(AML_DECODE16, 0x03F7, 0x03F7, 0x00, 0x01));
aml_append(crs, aml_irq_no_flags(6));
aml_append(crs,
aml_dma(AML_COMPATIBILITY, AML_NOTBUSMASTER, AML_TRANSFER8, 2));
aml_append(dev, aml_name_decl("_CRS", crs));
for (i = 0; i < MIN(MAX_FD, ACPI_FDE_MAX_FD); i++) {
FloppyDriveType type = isa_fdc_get_drive_type(fdc, i);
if (type < FLOPPY_DRIVE_TYPE_NONE) {
fde_buf[i] = cpu_to_le32(1); /* drive present */
aml_append(dev, build_fdinfo_aml(i, type));
}
}
aml_append(dev, aml_name_decl("_FDE",
aml_buffer(sizeof(fde_buf), (uint8_t *)fde_buf)));
return dev;
}
static Aml *build_rtc_device_aml(void)
{
Aml *dev;
Aml *crs;
dev = aml_device("RTC");
aml_append(dev, aml_name_decl("_HID", aml_eisaid("PNP0B00")));
crs = aml_resource_template();
aml_append(crs, aml_io(AML_DECODE16, 0x0070, 0x0070, 0x10, 0x02));
aml_append(crs, aml_irq_no_flags(8));
aml_append(crs, aml_io(AML_DECODE16, 0x0072, 0x0072, 0x02, 0x06));
aml_append(dev, aml_name_decl("_CRS", crs));
return dev;
}
static Aml *build_kbd_device_aml(void)
{
Aml *dev;
Aml *crs;
Aml *method;
dev = aml_device("KBD");
aml_append(dev, aml_name_decl("_HID", aml_eisaid("PNP0303")));
method = aml_method("_STA", 0, AML_NOTSERIALIZED);
aml_append(method, aml_return(aml_int(0x0f)));
aml_append(dev, method);
crs = aml_resource_template();
aml_append(crs, aml_io(AML_DECODE16, 0x0060, 0x0060, 0x01, 0x01));
aml_append(crs, aml_io(AML_DECODE16, 0x0064, 0x0064, 0x01, 0x01));
aml_append(crs, aml_irq_no_flags(1));
aml_append(dev, aml_name_decl("_CRS", crs));
return dev;
}
static Aml *build_mouse_device_aml(void)
{
Aml *dev;
Aml *crs;
Aml *method;
dev = aml_device("MOU");
aml_append(dev, aml_name_decl("_HID", aml_eisaid("PNP0F13")));
method = aml_method("_STA", 0, AML_NOTSERIALIZED);
aml_append(method, aml_return(aml_int(0x0f)));
aml_append(dev, method);
crs = aml_resource_template();
aml_append(crs, aml_irq_no_flags(12));
aml_append(dev, aml_name_decl("_CRS", crs));
return dev;
}
static Aml *build_lpt_device_aml(void)
{
Aml *dev;
Aml *crs;
Aml *method;
Aml *if_ctx;
Aml *else_ctx;
Aml *zero = aml_int(0);
Aml *is_present = aml_local(0);
dev = aml_device("LPT");
aml_append(dev, aml_name_decl("_HID", aml_eisaid("PNP0400")));
method = aml_method("_STA", 0, AML_NOTSERIALIZED);
aml_append(method, aml_store(aml_name("LPEN"), is_present));
if_ctx = aml_if(aml_equal(is_present, zero));
{
aml_append(if_ctx, aml_return(aml_int(0x00)));
}
aml_append(method, if_ctx);
else_ctx = aml_else();
{
aml_append(else_ctx, aml_return(aml_int(0x0f)));
}
aml_append(method, else_ctx);
aml_append(dev, method);
crs = aml_resource_template();
aml_append(crs, aml_io(AML_DECODE16, 0x0378, 0x0378, 0x08, 0x08));
aml_append(crs, aml_irq_no_flags(7));
aml_append(dev, aml_name_decl("_CRS", crs));
return dev;
}
static Aml *build_com_device_aml(uint8_t uid)
{
Aml *dev;
Aml *crs;
Aml *method;
Aml *if_ctx;
Aml *else_ctx;
Aml *zero = aml_int(0);
Aml *is_present = aml_local(0);
const char *enabled_field = "CAEN";
uint8_t irq = 4;
uint16_t io_port = 0x03F8;
assert(uid == 1 || uid == 2);
if (uid == 2) {
enabled_field = "CBEN";
irq = 3;
io_port = 0x02F8;
}
dev = aml_device("COM%d", uid);
aml_append(dev, aml_name_decl("_HID", aml_eisaid("PNP0501")));
aml_append(dev, aml_name_decl("_UID", aml_int(uid)));
method = aml_method("_STA", 0, AML_NOTSERIALIZED);
aml_append(method, aml_store(aml_name("%s", enabled_field), is_present));
if_ctx = aml_if(aml_equal(is_present, zero));
{
aml_append(if_ctx, aml_return(aml_int(0x00)));
}
aml_append(method, if_ctx);
else_ctx = aml_else();
{
aml_append(else_ctx, aml_return(aml_int(0x0f)));
}
aml_append(method, else_ctx);
aml_append(dev, method);
crs = aml_resource_template();
aml_append(crs, aml_io(AML_DECODE16, io_port, io_port, 0x00, 0x08));
aml_append(crs, aml_irq_no_flags(irq));
aml_append(dev, aml_name_decl("_CRS", crs));
return dev;
}
static void build_isa_devices_aml(Aml *table)
{
ISADevice *fdc = pc_find_fdc0();
bool ambiguous;
Aml *scope = aml_scope("_SB.PCI0.ISA");
Object *obj = object_resolve_path_type("", TYPE_ISA_BUS, &ambiguous);
aml_append(scope, build_rtc_device_aml());
aml_append(scope, build_kbd_device_aml());
aml_append(scope, build_mouse_device_aml());
if (fdc) {
aml_append(scope, build_fdc_device_aml(fdc));
}
aml_append(scope, build_lpt_device_aml());
aml_append(scope, build_com_device_aml(1));
aml_append(scope, build_com_device_aml(2));
if (ambiguous) {
error_report("Multiple ISA busses, unable to define IPMI ACPI data");
} else if (!obj) {
error_report("No ISA bus, unable to define IPMI ACPI data");
} else {
build_acpi_ipmi_devices(scope, BUS(obj));
}
aml_append(table, scope);
}
static void build_dbg_aml(Aml *table)
{
Aml *field;
Aml *method;
Aml *while_ctx;
Aml *scope = aml_scope("\\");
Aml *buf = aml_local(0);
Aml *len = aml_local(1);
Aml *idx = aml_local(2);
aml_append(scope,
aml_operation_region("DBG", AML_SYSTEM_IO, aml_int(0x0402), 0x01));
field = aml_field("DBG", AML_BYTE_ACC, AML_NOLOCK, AML_PRESERVE);
aml_append(field, aml_named_field("DBGB", 8));
aml_append(scope, field);
method = aml_method("DBUG", 1, AML_NOTSERIALIZED);
aml_append(method, aml_to_hexstring(aml_arg(0), buf));
aml_append(method, aml_to_buffer(buf, buf));
aml_append(method, aml_subtract(aml_sizeof(buf), aml_int(1), len));
aml_append(method, aml_store(aml_int(0), idx));
while_ctx = aml_while(aml_lless(idx, len));
aml_append(while_ctx,
aml_store(aml_derefof(aml_index(buf, idx)), aml_name("DBGB")));
aml_append(while_ctx, aml_increment(idx));
aml_append(method, while_ctx);
aml_append(method, aml_store(aml_int(0x0A), aml_name("DBGB")));
aml_append(scope, method);
aml_append(table, scope);
}
static Aml *build_link_dev(const char *name, uint8_t uid, Aml *reg)
{
Aml *dev;
Aml *crs;
Aml *method;
uint32_t irqs[] = {5, 10, 11};
dev = aml_device("%s", name);
aml_append(dev, aml_name_decl("_HID", aml_eisaid("PNP0C0F")));
aml_append(dev, aml_name_decl("_UID", aml_int(uid)));
crs = aml_resource_template();
aml_append(crs, aml_interrupt(AML_CONSUMER, AML_LEVEL, AML_ACTIVE_HIGH,
AML_SHARED, irqs, ARRAY_SIZE(irqs)));
aml_append(dev, aml_name_decl("_PRS", crs));
method = aml_method("_STA", 0, AML_NOTSERIALIZED);
aml_append(method, aml_return(aml_call1("IQST", reg)));
aml_append(dev, method);
method = aml_method("_DIS", 0, AML_NOTSERIALIZED);
aml_append(method, aml_or(reg, aml_int(0x80), reg));
aml_append(dev, method);
method = aml_method("_CRS", 0, AML_NOTSERIALIZED);
aml_append(method, aml_return(aml_call1("IQCR", reg)));
aml_append(dev, method);
method = aml_method("_SRS", 1, AML_NOTSERIALIZED);
aml_append(method, aml_create_dword_field(aml_arg(0), aml_int(5), "PRRI"));
aml_append(method, aml_store(aml_name("PRRI"), reg));
aml_append(dev, method);
return dev;
}
static Aml *build_gsi_link_dev(const char *name, uint8_t uid, uint8_t gsi)
{
Aml *dev;
Aml *crs;
Aml *method;
uint32_t irqs;
dev = aml_device("%s", name);
aml_append(dev, aml_name_decl("_HID", aml_eisaid("PNP0C0F")));
aml_append(dev, aml_name_decl("_UID", aml_int(uid)));
crs = aml_resource_template();
irqs = gsi;
aml_append(crs, aml_interrupt(AML_CONSUMER, AML_LEVEL, AML_ACTIVE_HIGH,
AML_SHARED, &irqs, 1));
aml_append(dev, aml_name_decl("_PRS", crs));
aml_append(dev, aml_name_decl("_CRS", crs));
/*
* _DIS can be no-op because the interrupt cannot be disabled.
*/
method = aml_method("_DIS", 0, AML_NOTSERIALIZED);
aml_append(dev, method);
method = aml_method("_SRS", 1, AML_NOTSERIALIZED);
aml_append(dev, method);
return dev;
}
/* _CRS method - get current settings */
static Aml *build_iqcr_method(bool is_piix4)
{
Aml *if_ctx;
uint32_t irqs;
Aml *method = aml_method("IQCR", 1, AML_SERIALIZED);
Aml *crs = aml_resource_template();
irqs = 0;
aml_append(crs, aml_interrupt(AML_CONSUMER, AML_LEVEL,
AML_ACTIVE_HIGH, AML_SHARED, &irqs, 1));
aml_append(method, aml_name_decl("PRR0", crs));
aml_append(method,
aml_create_dword_field(aml_name("PRR0"), aml_int(5), "PRRI"));
if (is_piix4) {
if_ctx = aml_if(aml_lless(aml_arg(0), aml_int(0x80)));
aml_append(if_ctx, aml_store(aml_arg(0), aml_name("PRRI")));
aml_append(method, if_ctx);
} else {
aml_append(method,
aml_store(aml_and(aml_arg(0), aml_int(0xF), NULL),
aml_name("PRRI")));
}
aml_append(method, aml_return(aml_name("PRR0")));
return method;
}
/* _STA method - get status */
static Aml *build_irq_status_method(void)
{
Aml *if_ctx;
Aml *method = aml_method("IQST", 1, AML_NOTSERIALIZED);
if_ctx = aml_if(aml_and(aml_int(0x80), aml_arg(0), NULL));
aml_append(if_ctx, aml_return(aml_int(0x09)));
aml_append(method, if_ctx);
aml_append(method, aml_return(aml_int(0x0B)));
return method;
}
static void build_piix4_pci0_int(Aml *table)
{
Aml *dev;
Aml *crs;
Aml *field;
Aml *method;
uint32_t irqs;
Aml *sb_scope = aml_scope("_SB");
Aml *pci0_scope = aml_scope("PCI0");
aml_append(pci0_scope, build_prt(true));
aml_append(sb_scope, pci0_scope);
field = aml_field("PCI0.ISA.P40C", AML_BYTE_ACC, AML_NOLOCK, AML_PRESERVE);
aml_append(field, aml_named_field("PRQ0", 8));
aml_append(field, aml_named_field("PRQ1", 8));
aml_append(field, aml_named_field("PRQ2", 8));
aml_append(field, aml_named_field("PRQ3", 8));
aml_append(sb_scope, field);
aml_append(sb_scope, build_irq_status_method());
aml_append(sb_scope, build_iqcr_method(true));
aml_append(sb_scope, build_link_dev("LNKA", 0, aml_name("PRQ0")));
aml_append(sb_scope, build_link_dev("LNKB", 1, aml_name("PRQ1")));
aml_append(sb_scope, build_link_dev("LNKC", 2, aml_name("PRQ2")));
aml_append(sb_scope, build_link_dev("LNKD", 3, aml_name("PRQ3")));
dev = aml_device("LNKS");
{
aml_append(dev, aml_name_decl("_HID", aml_eisaid("PNP0C0F")));
aml_append(dev, aml_name_decl("_UID", aml_int(4)));
crs = aml_resource_template();
irqs = 9;
aml_append(crs, aml_interrupt(AML_CONSUMER, AML_LEVEL,
AML_ACTIVE_HIGH, AML_SHARED,
&irqs, 1));
aml_append(dev, aml_name_decl("_PRS", crs));
/* The SCI cannot be disabled and is always attached to GSI 9,
* so these are no-ops. We only need this link to override the
* polarity to active high and match the content of the MADT.
*/
method = aml_method("_STA", 0, AML_NOTSERIALIZED);
aml_append(method, aml_return(aml_int(0x0b)));
aml_append(dev, method);
method = aml_method("_DIS", 0, AML_NOTSERIALIZED);
aml_append(dev, method);
method = aml_method("_CRS", 0, AML_NOTSERIALIZED);
aml_append(method, aml_return(aml_name("_PRS")));
aml_append(dev, method);
method = aml_method("_SRS", 1, AML_NOTSERIALIZED);
aml_append(dev, method);
}
aml_append(sb_scope, dev);
aml_append(table, sb_scope);
}
static void append_q35_prt_entry(Aml *ctx, uint32_t nr, const char *name)
{
int i;
int head;
Aml *pkg;
char base = name[3] < 'E' ? 'A' : 'E';
char *s = g_strdup(name);
Aml *a_nr = aml_int((nr << 16) | 0xffff);
assert(strlen(s) == 4);
head = name[3] - base;
for (i = 0; i < 4; i++) {
if (head + i > 3) {
head = i * -1;
}
s[3] = base + head + i;
pkg = aml_package(4);
aml_append(pkg, a_nr);
aml_append(pkg, aml_int(i));
aml_append(pkg, aml_name("%s", s));
aml_append(pkg, aml_int(0));
aml_append(ctx, pkg);
}
g_free(s);
}
static Aml *build_q35_routing_table(const char *str)
{
int i;
Aml *pkg;
char *name = g_strdup_printf("%s ", str);
pkg = aml_package(128);
for (i = 0; i < 0x18; i++) {
name[3] = 'E' + (i & 0x3);
append_q35_prt_entry(pkg, i, name);
}
name[3] = 'E';
append_q35_prt_entry(pkg, 0x18, name);
/* INTA -> PIRQA for slot 25 - 31, see the default value of D<N>IR */
for (i = 0x0019; i < 0x1e; i++) {
name[3] = 'A';
append_q35_prt_entry(pkg, i, name);
}
/* PCIe->PCI bridge. use PIRQ[E-H] */
name[3] = 'E';
append_q35_prt_entry(pkg, 0x1e, name);
name[3] = 'A';
append_q35_prt_entry(pkg, 0x1f, name);
g_free(name);
return pkg;
}
static void build_q35_pci0_int(Aml *table)
{
Aml *field;
Aml *method;
Aml *sb_scope = aml_scope("_SB");
Aml *pci0_scope = aml_scope("PCI0");
/* Zero => PIC mode, One => APIC Mode */
aml_append(table, aml_name_decl("PICF", aml_int(0)));
method = aml_method("_PIC", 1, AML_NOTSERIALIZED);
{
aml_append(method, aml_store(aml_arg(0), aml_name("PICF")));
}
aml_append(table, method);
aml_append(pci0_scope,
aml_name_decl("PRTP", build_q35_routing_table("LNK")));
aml_append(pci0_scope,
aml_name_decl("PRTA", build_q35_routing_table("GSI")));
method = aml_method("_PRT", 0, AML_NOTSERIALIZED);
{
Aml *if_ctx;
Aml *else_ctx;
/* PCI IRQ routing table, example from ACPI 2.0a specification,
section 6.2.8.1 */
/* Note: we provide the same info as the PCI routing
table of the Bochs BIOS */
if_ctx = aml_if(aml_equal(aml_name("PICF"), aml_int(0)));
aml_append(if_ctx, aml_return(aml_name("PRTP")));
aml_append(method, if_ctx);
else_ctx = aml_else();
aml_append(else_ctx, aml_return(aml_name("PRTA")));
aml_append(method, else_ctx);
}
aml_append(pci0_scope, method);
aml_append(sb_scope, pci0_scope);
field = aml_field("PCI0.ISA.PIRQ", AML_BYTE_ACC, AML_NOLOCK, AML_PRESERVE);
aml_append(field, aml_named_field("PRQA", 8));
aml_append(field, aml_named_field("PRQB", 8));
aml_append(field, aml_named_field("PRQC", 8));
aml_append(field, aml_named_field("PRQD", 8));
aml_append(field, aml_reserved_field(0x20));
aml_append(field, aml_named_field("PRQE", 8));
aml_append(field, aml_named_field("PRQF", 8));
aml_append(field, aml_named_field("PRQG", 8));
aml_append(field, aml_named_field("PRQH", 8));
aml_append(sb_scope, field);
aml_append(sb_scope, build_irq_status_method());
aml_append(sb_scope, build_iqcr_method(false));
aml_append(sb_scope, build_link_dev("LNKA", 0, aml_name("PRQA")));
aml_append(sb_scope, build_link_dev("LNKB", 1, aml_name("PRQB")));
aml_append(sb_scope, build_link_dev("LNKC", 2, aml_name("PRQC")));
aml_append(sb_scope, build_link_dev("LNKD", 3, aml_name("PRQD")));
aml_append(sb_scope, build_link_dev("LNKE", 4, aml_name("PRQE")));
aml_append(sb_scope, build_link_dev("LNKF", 5, aml_name("PRQF")));
aml_append(sb_scope, build_link_dev("LNKG", 6, aml_name("PRQG")));
aml_append(sb_scope, build_link_dev("LNKH", 7, aml_name("PRQH")));
aml_append(sb_scope, build_gsi_link_dev("GSIA", 0x10, 0x10));
aml_append(sb_scope, build_gsi_link_dev("GSIB", 0x11, 0x11));
aml_append(sb_scope, build_gsi_link_dev("GSIC", 0x12, 0x12));
aml_append(sb_scope, build_gsi_link_dev("GSID", 0x13, 0x13));
aml_append(sb_scope, build_gsi_link_dev("GSIE", 0x14, 0x14));
aml_append(sb_scope, build_gsi_link_dev("GSIF", 0x15, 0x15));
aml_append(sb_scope, build_gsi_link_dev("GSIG", 0x16, 0x16));
aml_append(sb_scope, build_gsi_link_dev("GSIH", 0x17, 0x17));
aml_append(table, sb_scope);
}
static void build_q35_isa_bridge(Aml *table)
{
Aml *dev;
Aml *scope;
Aml *field;
scope = aml_scope("_SB.PCI0");
dev = aml_device("ISA");
aml_append(dev, aml_name_decl("_ADR", aml_int(0x001F0000)));
/* ICH9 PCI to ISA irq remapping */
aml_append(dev, aml_operation_region("PIRQ", AML_PCI_CONFIG,
aml_int(0x60), 0x0C));
aml_append(dev, aml_operation_region("LPCD", AML_PCI_CONFIG,
aml_int(0x80), 0x02));
field = aml_field("LPCD", AML_ANY_ACC, AML_NOLOCK, AML_PRESERVE);
aml_append(field, aml_named_field("COMA", 3));
aml_append(field, aml_reserved_field(1));
aml_append(field, aml_named_field("COMB", 3));
aml_append(field, aml_reserved_field(1));
aml_append(field, aml_named_field("LPTD", 2));
aml_append(dev, field);
aml_append(dev, aml_operation_region("LPCE", AML_PCI_CONFIG,
aml_int(0x82), 0x02));
/* enable bits */
field = aml_field("LPCE", AML_ANY_ACC, AML_NOLOCK, AML_PRESERVE);
aml_append(field, aml_named_field("CAEN", 1));
aml_append(field, aml_named_field("CBEN", 1));
aml_append(field, aml_named_field("LPEN", 1));
aml_append(dev, field);
aml_append(scope, dev);
aml_append(table, scope);
}
static void build_piix4_pm(Aml *table)
{
Aml *dev;
Aml *scope;
scope = aml_scope("_SB.PCI0");
dev = aml_device("PX13");
aml_append(dev, aml_name_decl("_ADR", aml_int(0x00010003)));
aml_append(dev, aml_operation_region("P13C", AML_PCI_CONFIG,
aml_int(0x00), 0xff));
aml_append(scope, dev);
aml_append(table, scope);
}
static void build_piix4_isa_bridge(Aml *table)
{
Aml *dev;
Aml *scope;
Aml *field;
scope = aml_scope("_SB.PCI0");
dev = aml_device("ISA");
aml_append(dev, aml_name_decl("_ADR", aml_int(0x00010000)));
/* PIIX PCI to ISA irq remapping */
aml_append(dev, aml_operation_region("P40C", AML_PCI_CONFIG,
aml_int(0x60), 0x04));
/* enable bits */
field = aml_field("^PX13.P13C", AML_ANY_ACC, AML_NOLOCK, AML_PRESERVE);
/* Offset(0x5f),, 7, */
aml_append(field, aml_reserved_field(0x2f8));
aml_append(field, aml_reserved_field(7));
aml_append(field, aml_named_field("LPEN", 1));
/* Offset(0x67),, 3, */
aml_append(field, aml_reserved_field(0x38));
aml_append(field, aml_reserved_field(3));
aml_append(field, aml_named_field("CAEN", 1));
aml_append(field, aml_reserved_field(3));
aml_append(field, aml_named_field("CBEN", 1));
aml_append(dev, field);
aml_append(scope, dev);
aml_append(table, scope);
}
static void build_piix4_pci_hotplug(Aml *table)
{
Aml *scope;
Aml *field;
Aml *method;
scope = aml_scope("_SB.PCI0");
aml_append(scope,
aml_operation_region("PCST", AML_SYSTEM_IO, aml_int(0xae00), 0x08));
field = aml_field("PCST", AML_DWORD_ACC, AML_NOLOCK, AML_WRITE_AS_ZEROS);
aml_append(field, aml_named_field("PCIU", 32));
aml_append(field, aml_named_field("PCID", 32));
aml_append(scope, field);
aml_append(scope,
aml_operation_region("SEJ", AML_SYSTEM_IO, aml_int(0xae08), 0x04));
field = aml_field("SEJ", AML_DWORD_ACC, AML_NOLOCK, AML_WRITE_AS_ZEROS);
aml_append(field, aml_named_field("B0EJ", 32));
aml_append(scope, field);
aml_append(scope,
aml_operation_region("BNMR", AML_SYSTEM_IO, aml_int(0xae10), 0x04));
field = aml_field("BNMR", AML_DWORD_ACC, AML_NOLOCK, AML_WRITE_AS_ZEROS);
aml_append(field, aml_named_field("BNUM", 32));
aml_append(scope, field);
aml_append(scope, aml_mutex("BLCK", 0));
method = aml_method("PCEJ", 2, AML_NOTSERIALIZED);
aml_append(method, aml_acquire(aml_name("BLCK"), 0xFFFF));
aml_append(method, aml_store(aml_arg(0), aml_name("BNUM")));
aml_append(method,
aml_store(aml_shiftleft(aml_int(1), aml_arg(1)), aml_name("B0EJ")));
aml_append(method, aml_release(aml_name("BLCK")));
aml_append(method, aml_return(aml_int(0)));
aml_append(scope, method);
aml_append(table, scope);
}
static Aml *build_q35_osc_method(void)
{
Aml *if_ctx;
Aml *if_ctx2;
Aml *else_ctx;
Aml *method;
Aml *a_cwd1 = aml_name("CDW1");
Aml *a_ctrl = aml_local(0);
method = aml_method("_OSC", 4, AML_NOTSERIALIZED);
aml_append(method, aml_create_dword_field(aml_arg(3), aml_int(0), "CDW1"));
if_ctx = aml_if(aml_equal(
aml_arg(0), aml_touuid("33DB4D5B-1FF7-401C-9657-7441C03DD766")));
aml_append(if_ctx, aml_create_dword_field(aml_arg(3), aml_int(4), "CDW2"));
aml_append(if_ctx, aml_create_dword_field(aml_arg(3), aml_int(8), "CDW3"));
aml_append(if_ctx, aml_store(aml_name("CDW3"), a_ctrl));
/*
* Always allow native PME, AER (no dependencies)
* Allow SHPC (PCI bridges can have SHPC controller)
*/
aml_append(if_ctx, aml_and(a_ctrl, aml_int(0x1F), a_ctrl));
if_ctx2 = aml_if(aml_lnot(aml_equal(aml_arg(1), aml_int(1))));
/* Unknown revision */
aml_append(if_ctx2, aml_or(a_cwd1, aml_int(0x08), a_cwd1));
aml_append(if_ctx, if_ctx2);
if_ctx2 = aml_if(aml_lnot(aml_equal(aml_name("CDW3"), a_ctrl)));
/* Capabilities bits were masked */
aml_append(if_ctx2, aml_or(a_cwd1, aml_int(0x10), a_cwd1));
aml_append(if_ctx, if_ctx2);
/* Update DWORD3 in the buffer */
aml_append(if_ctx, aml_store(a_ctrl, aml_name("CDW3")));
aml_append(method, if_ctx);
else_ctx = aml_else();
/* Unrecognized UUID */
aml_append(else_ctx, aml_or(a_cwd1, aml_int(4), a_cwd1));
aml_append(method, else_ctx);
aml_append(method, aml_return(aml_arg(3)));
return method;
}
static void
build_dsdt(GArray *table_data, BIOSLinker *linker,
AcpiPmInfo *pm, AcpiMiscInfo *misc,
Range *pci_hole, Range *pci_hole64, MachineState *machine)
{
CrsRangeEntry *entry;
Aml *dsdt, *sb_scope, *scope, *dev, *method, *field, *pkg, *crs;
CrsRangeSet crs_range_set;
PCMachineState *pcms = PC_MACHINE(machine);
PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(machine);
uint32_t nr_mem = machine->ram_slots;
int root_bus_limit = 0xFF;
PCIBus *bus = NULL;
int i;
dsdt = init_aml_allocator();
/* Reserve space for header */
acpi_data_push(dsdt->buf, sizeof(AcpiTableHeader));
build_dbg_aml(dsdt);
if (misc->is_piix4) {
sb_scope = aml_scope("_SB");
dev = aml_device("PCI0");
aml_append(dev, aml_name_decl("_HID", aml_eisaid("PNP0A03")));
aml_append(dev, aml_name_decl("_ADR", aml_int(0)));
aml_append(dev, aml_name_decl("_UID", aml_int(1)));
aml_append(sb_scope, dev);
aml_append(dsdt, sb_scope);
build_hpet_aml(dsdt);
build_piix4_pm(dsdt);
build_piix4_isa_bridge(dsdt);
build_isa_devices_aml(dsdt);
build_piix4_pci_hotplug(dsdt);
build_piix4_pci0_int(dsdt);
} else {
sb_scope = aml_scope("_SB");
dev = aml_device("PCI0");
aml_append(dev, aml_name_decl("_HID", aml_eisaid("PNP0A08")));
aml_append(dev, aml_name_decl("_CID", aml_eisaid("PNP0A03")));
aml_append(dev, aml_name_decl("_ADR", aml_int(0)));
aml_append(dev, aml_name_decl("_UID", aml_int(1)));
aml_append(dev, build_q35_osc_method());
aml_append(sb_scope, dev);
aml_append(dsdt, sb_scope);
build_hpet_aml(dsdt);
build_q35_isa_bridge(dsdt);
build_isa_devices_aml(dsdt);
build_q35_pci0_int(dsdt);
}
if (pcmc->legacy_cpu_hotplug) {
build_legacy_cpu_hotplug_aml(dsdt, machine, pm->cpu_hp_io_base);
} else {
CPUHotplugFeatures opts = {
.apci_1_compatible = true, .has_legacy_cphp = true
};
build_cpus_aml(dsdt, machine, opts, pm->cpu_hp_io_base,
"\\_SB.PCI0", "\\_GPE._E02");
}
build_memory_hotplug_aml(dsdt, nr_mem, "\\_SB.PCI0", "\\_GPE._E03");
scope = aml_scope("_GPE");
{
aml_append(scope, aml_name_decl("_HID", aml_string("ACPI0006")));
if (misc->is_piix4) {
method = aml_method("_E01", 0, AML_NOTSERIALIZED);
aml_append(method,
aml_acquire(aml_name("\\_SB.PCI0.BLCK"), 0xFFFF));
aml_append(method, aml_call0("\\_SB.PCI0.PCNT"));
aml_append(method, aml_release(aml_name("\\_SB.PCI0.BLCK")));
aml_append(scope, method);
}
if (pcms->acpi_nvdimm_state.is_enabled) {
method = aml_method("_E04", 0, AML_NOTSERIALIZED);
aml_append(method, aml_notify(aml_name("\\_SB.NVDR"),
aml_int(0x80)));
aml_append(scope, method);
}
}
aml_append(dsdt, scope);
crs_range_set_init(&crs_range_set);
bus = PC_MACHINE(machine)->bus;
if (bus) {
QLIST_FOREACH(bus, &bus->child, sibling) {
uint8_t bus_num = pci_bus_num(bus);
uint8_t numa_node = pci_bus_numa_node(bus);
/* look only for expander root buses */
if (!pci_bus_is_root(bus)) {
continue;
}
if (bus_num < root_bus_limit) {
root_bus_limit = bus_num - 1;
}
scope = aml_scope("\\_SB");
dev = aml_device("PC%.02X", bus_num);
aml_append(dev, aml_name_decl("_UID", aml_int(bus_num)));
aml_append(dev, aml_name_decl("_HID", aml_eisaid("PNP0A03")));
aml_append(dev, aml_name_decl("_BBN", aml_int(bus_num)));
if (pci_bus_is_express(bus)) {
aml_append(dev, build_q35_osc_method());
}
if (numa_node != NUMA_NODE_UNASSIGNED) {
aml_append(dev, aml_name_decl("_PXM", aml_int(numa_node)));
}
aml_append(dev, build_prt(false));
crs = build_crs(PCI_HOST_BRIDGE(BUS(bus)->parent), &crs_range_set);
aml_append(dev, aml_name_decl("_CRS", crs));
aml_append(scope, dev);
aml_append(dsdt, scope);
}
}
scope = aml_scope("\\_SB.PCI0");
/* build PCI0._CRS */
crs = aml_resource_template();
aml_append(crs,
aml_word_bus_number(AML_MIN_FIXED, AML_MAX_FIXED, AML_POS_DECODE,
0x0000, 0x0, root_bus_limit,
0x0000, root_bus_limit + 1));
aml_append(crs, aml_io(AML_DECODE16, 0x0CF8, 0x0CF8, 0x01, 0x08));
aml_append(crs,
aml_word_io(AML_MIN_FIXED, AML_MAX_FIXED,
AML_POS_DECODE, AML_ENTIRE_RANGE,
0x0000, 0x0000, 0x0CF7, 0x0000, 0x0CF8));
crs_replace_with_free_ranges(crs_range_set.io_ranges, 0x0D00, 0xFFFF);
for (i = 0; i < crs_range_set.io_ranges->len; i++) {
entry = g_ptr_array_index(crs_range_set.io_ranges, i);
aml_append(crs,
aml_word_io(AML_MIN_FIXED, AML_MAX_FIXED,
AML_POS_DECODE, AML_ENTIRE_RANGE,
0x0000, entry->base, entry->limit,
0x0000, entry->limit - entry->base + 1));
}
aml_append(crs,
aml_dword_memory(AML_POS_DECODE, AML_MIN_FIXED, AML_MAX_FIXED,
AML_CACHEABLE, AML_READ_WRITE,
0, 0x000A0000, 0x000BFFFF, 0, 0x00020000));
crs_replace_with_free_ranges(crs_range_set.mem_ranges,
range_lob(pci_hole),
range_upb(pci_hole));
for (i = 0; i < crs_range_set.mem_ranges->len; i++) {
entry = g_ptr_array_index(crs_range_set.mem_ranges, i);
aml_append(crs,
aml_dword_memory(AML_POS_DECODE, AML_MIN_FIXED, AML_MAX_FIXED,
AML_NON_CACHEABLE, AML_READ_WRITE,
0, entry->base, entry->limit,
0, entry->limit - entry->base + 1));
}
if (!range_is_empty(pci_hole64)) {
crs_replace_with_free_ranges(crs_range_set.mem_64bit_ranges,
range_lob(pci_hole64),
range_upb(pci_hole64));
for (i = 0; i < crs_range_set.mem_64bit_ranges->len; i++) {
entry = g_ptr_array_index(crs_range_set.mem_64bit_ranges, i);
aml_append(crs,
aml_qword_memory(AML_POS_DECODE, AML_MIN_FIXED,
AML_MAX_FIXED,
AML_CACHEABLE, AML_READ_WRITE,
0, entry->base, entry->limit,
0, entry->limit - entry->base + 1));
}
}
if (TPM_IS_TIS(tpm_find())) {
aml_append(crs, aml_memory32_fixed(TPM_TIS_ADDR_BASE,
TPM_TIS_ADDR_SIZE, AML_READ_WRITE));
}
aml_append(scope, aml_name_decl("_CRS", crs));
/* reserve GPE0 block resources */
dev = aml_device("GPE0");
aml_append(dev, aml_name_decl("_HID", aml_string("PNP0A06")));
aml_append(dev, aml_name_decl("_UID", aml_string("GPE0 resources")));
/* device present, functioning, decoding, not shown in UI */
aml_append(dev, aml_name_decl("_STA", aml_int(0xB)));
crs = aml_resource_template();
aml_append(crs,
aml_io(
AML_DECODE16,
pm->fadt.gpe0_blk.address,
pm->fadt.gpe0_blk.address,
1,
pm->fadt.gpe0_blk.bit_width / 8)
);
aml_append(dev, aml_name_decl("_CRS", crs));
aml_append(scope, dev);
crs_range_set_free(&crs_range_set);
/* reserve PCIHP resources */
if (pm->pcihp_io_len) {
dev = aml_device("PHPR");
aml_append(dev, aml_name_decl("_HID", aml_string("PNP0A06")));
aml_append(dev,
aml_name_decl("_UID", aml_string("PCI Hotplug resources")));
/* device present, functioning, decoding, not shown in UI */
aml_append(dev, aml_name_decl("_STA", aml_int(0xB)));
crs = aml_resource_template();
aml_append(crs,
aml_io(AML_DECODE16, pm->pcihp_io_base, pm->pcihp_io_base, 1,
pm->pcihp_io_len)
);
aml_append(dev, aml_name_decl("_CRS", crs));
aml_append(scope, dev);
}
aml_append(dsdt, scope);
/* create S3_ / S4_ / S5_ packages if necessary */
scope = aml_scope("\\");
if (!pm->s3_disabled) {
pkg = aml_package(4);
aml_append(pkg, aml_int(1)); /* PM1a_CNT.SLP_TYP */
aml_append(pkg, aml_int(1)); /* PM1b_CNT.SLP_TYP, FIXME: not impl. */
aml_append(pkg, aml_int(0)); /* reserved */
aml_append(pkg, aml_int(0)); /* reserved */
aml_append(scope, aml_name_decl("_S3", pkg));
}
if (!pm->s4_disabled) {
pkg = aml_package(4);
aml_append(pkg, aml_int(pm->s4_val)); /* PM1a_CNT.SLP_TYP */
/* PM1b_CNT.SLP_TYP, FIXME: not impl. */
aml_append(pkg, aml_int(pm->s4_val));
aml_append(pkg, aml_int(0)); /* reserved */
aml_append(pkg, aml_int(0)); /* reserved */
aml_append(scope, aml_name_decl("_S4", pkg));
}
pkg = aml_package(4);
aml_append(pkg, aml_int(0)); /* PM1a_CNT.SLP_TYP */
aml_append(pkg, aml_int(0)); /* PM1b_CNT.SLP_TYP not impl. */
aml_append(pkg, aml_int(0)); /* reserved */
aml_append(pkg, aml_int(0)); /* reserved */
aml_append(scope, aml_name_decl("_S5", pkg));
aml_append(dsdt, scope);
/* create fw_cfg node, unconditionally */
{
/* when using port i/o, the 8-bit data register *always* overlaps
* with half of the 16-bit control register. Hence, the total size
* of the i/o region used is FW_CFG_CTL_SIZE; when using DMA, the
* DMA control register is located at FW_CFG_DMA_IO_BASE + 4 */
uint8_t io_size = object_property_get_bool(OBJECT(pcms->fw_cfg),
"dma_enabled", NULL) ?
ROUND_UP(FW_CFG_CTL_SIZE, 4) + sizeof(dma_addr_t) :
FW_CFG_CTL_SIZE;
scope = aml_scope("\\_SB.PCI0");
dev = aml_device("FWCF");
aml_append(dev, aml_name_decl("_HID", aml_string("QEMU0002")));
/* device present, functioning, decoding, not shown in UI */
aml_append(dev, aml_name_decl("_STA", aml_int(0xB)));
crs = aml_resource_template();
aml_append(crs,
aml_io(AML_DECODE16, FW_CFG_IO_BASE, FW_CFG_IO_BASE, 0x01, io_size)
);
aml_append(dev, aml_name_decl("_CRS", crs));
aml_append(scope, dev);
aml_append(dsdt, scope);
}
if (misc->applesmc_io_base) {
scope = aml_scope("\\_SB.PCI0.ISA");
dev = aml_device("SMC");
aml_append(dev, aml_name_decl("_HID", aml_eisaid("APP0001")));
/* device present, functioning, decoding, not shown in UI */
aml_append(dev, aml_name_decl("_STA", aml_int(0xB)));
crs = aml_resource_template();
aml_append(crs,
aml_io(AML_DECODE16, misc->applesmc_io_base, misc->applesmc_io_base,
0x01, APPLESMC_MAX_DATA_LENGTH)
);
aml_append(crs, aml_irq_no_flags(6));
aml_append(dev, aml_name_decl("_CRS", crs));
aml_append(scope, dev);
aml_append(dsdt, scope);
}
if (misc->pvpanic_port) {
scope = aml_scope("\\_SB.PCI0.ISA");
dev = aml_device("PEVT");
aml_append(dev, aml_name_decl("_HID", aml_string("QEMU0001")));
crs = aml_resource_template();
aml_append(crs,
aml_io(AML_DECODE16, misc->pvpanic_port, misc->pvpanic_port, 1, 1)
);
aml_append(dev, aml_name_decl("_CRS", crs));
aml_append(dev, aml_operation_region("PEOR", AML_SYSTEM_IO,
aml_int(misc->pvpanic_port), 1));
field = aml_field("PEOR", AML_BYTE_ACC, AML_NOLOCK, AML_PRESERVE);
aml_append(field, aml_named_field("PEPT", 8));
aml_append(dev, field);
/* device present, functioning, decoding, shown in UI */
aml_append(dev, aml_name_decl("_STA", aml_int(0xF)));
method = aml_method("RDPT", 0, AML_NOTSERIALIZED);
aml_append(method, aml_store(aml_name("PEPT"), aml_local(0)));
aml_append(method, aml_return(aml_local(0)));
aml_append(dev, method);
method = aml_method("WRPT", 1, AML_NOTSERIALIZED);
aml_append(method, aml_store(aml_arg(0), aml_name("PEPT")));
aml_append(dev, method);
aml_append(scope, dev);
aml_append(dsdt, scope);
}
sb_scope = aml_scope("\\_SB");
{
Object *pci_host;
PCIBus *bus = NULL;
pci_host = acpi_get_i386_pci_host();
if (pci_host) {
bus = PCI_HOST_BRIDGE(pci_host)->bus;
}
if (bus) {
Aml *scope = aml_scope("PCI0");
/* Scan all PCI buses. Generate tables to support hotplug. */
build_append_pci_bus_devices(scope, bus, pm->pcihp_bridge_en);
if (TPM_IS_TIS(tpm_find())) {
dev = aml_device("ISA.TPM");
aml_append(dev, aml_name_decl("_HID", aml_eisaid("PNP0C31")));
aml_append(dev, aml_name_decl("_STA", aml_int(0xF)));
crs = aml_resource_template();
aml_append(crs, aml_memory32_fixed(TPM_TIS_ADDR_BASE,
TPM_TIS_ADDR_SIZE, AML_READ_WRITE));
/*
FIXME: TPM_TIS_IRQ=5 conflicts with PNP0C0F irqs,
Rewrite to take IRQ from TPM device model and
fix default IRQ value there to use some unused IRQ
*/
/* aml_append(crs, aml_irq_no_flags(TPM_TIS_IRQ)); */
aml_append(dev, aml_name_decl("_CRS", crs));
aml_append(scope, dev);
}
aml_append(sb_scope, scope);
}
}
if (TPM_IS_CRB(tpm_find())) {
dev = aml_device("TPM");
aml_append(dev, aml_name_decl("_HID", aml_string("MSFT0101")));
crs = aml_resource_template();
aml_append(crs, aml_memory32_fixed(TPM_CRB_ADDR_BASE,
TPM_CRB_ADDR_SIZE, AML_READ_WRITE));
aml_append(dev, aml_name_decl("_CRS", crs));
method = aml_method("_STA", 0, AML_NOTSERIALIZED);
aml_append(method, aml_return(aml_int(0x0f)));
aml_append(dev, method);
aml_append(sb_scope, dev);
}
aml_append(dsdt, sb_scope);
/* copy AML table into ACPI tables blob and patch header there */
g_array_append_vals(table_data, dsdt->buf->data, dsdt->buf->len);
build_header(linker, table_data,
(void *)(table_data->data + table_data->len - dsdt->buf->len),
"DSDT", dsdt->buf->len, 1, NULL, NULL);
free_aml_allocator();
}
static void
build_hpet(GArray *table_data, BIOSLinker *linker)
{
Acpi20Hpet *hpet;
hpet = acpi_data_push(table_data, sizeof(*hpet));
/* Note timer_block_id value must be kept in sync with value advertised by
* emulated hpet
*/
hpet->timer_block_id = cpu_to_le32(0x8086a201);
hpet->addr.address = cpu_to_le64(HPET_BASE);
build_header(linker, table_data,
(void *)hpet, "HPET", sizeof(*hpet), 1, NULL, NULL);
}
static void
build_tpm_tcpa(GArray *table_data, BIOSLinker *linker, GArray *tcpalog)
{
Acpi20Tcpa *tcpa = acpi_data_push(table_data, sizeof *tcpa);
unsigned log_addr_size = sizeof(tcpa->log_area_start_address);
unsigned log_addr_offset =
(char *)&tcpa->log_area_start_address - table_data->data;
tcpa->platform_class = cpu_to_le16(TPM_TCPA_ACPI_CLASS_CLIENT);
tcpa->log_area_minimum_length = cpu_to_le32(TPM_LOG_AREA_MINIMUM_SIZE);
acpi_data_push(tcpalog, le32_to_cpu(tcpa->log_area_minimum_length));
bios_linker_loader_alloc(linker, ACPI_BUILD_TPMLOG_FILE, tcpalog, 1,
false /* high memory */);
/* log area start address to be filled by Guest linker */
bios_linker_loader_add_pointer(linker,
ACPI_BUILD_TABLE_FILE, log_addr_offset, log_addr_size,
ACPI_BUILD_TPMLOG_FILE, 0);
build_header(linker, table_data,
(void *)tcpa, "TCPA", sizeof(*tcpa), 2, NULL, NULL);
}
static void
build_tpm2(GArray *table_data, BIOSLinker *linker, GArray *tcpalog)
{
Acpi20TPM2 *tpm2_ptr = acpi_data_push(table_data, sizeof *tpm2_ptr);
unsigned log_addr_size = sizeof(tpm2_ptr->log_area_start_address);
unsigned log_addr_offset =
(char *)&tpm2_ptr->log_area_start_address - table_data->data;
tpm2_ptr->platform_class = cpu_to_le16(TPM2_ACPI_CLASS_CLIENT);
if (TPM_IS_TIS(tpm_find())) {
tpm2_ptr->control_area_address = cpu_to_le64(0);
tpm2_ptr->start_method = cpu_to_le32(TPM2_START_METHOD_MMIO);
} else if (TPM_IS_CRB(tpm_find())) {
tpm2_ptr->control_area_address = cpu_to_le64(TPM_CRB_ADDR_CTRL);
tpm2_ptr->start_method = cpu_to_le32(TPM2_START_METHOD_CRB);
} else {
g_warn_if_reached();
}
tpm2_ptr->log_area_minimum_length =
cpu_to_le32(TPM_LOG_AREA_MINIMUM_SIZE);
/* log area start address to be filled by Guest linker */
bios_linker_loader_add_pointer(linker, ACPI_BUILD_TABLE_FILE,
log_addr_offset, log_addr_size,
ACPI_BUILD_TPMLOG_FILE, 0);
build_header(linker, table_data,
(void *)tpm2_ptr, "TPM2", sizeof(*tpm2_ptr), 4, NULL, NULL);
}
#define HOLE_640K_START (640 * 1024)
#define HOLE_640K_END (1024 * 1024)
static void build_srat_hotpluggable_memory(GArray *table_data, uint64_t base,
uint64_t len, int default_node)
{
MemoryDeviceInfoList *info_list = qmp_memory_device_list();
MemoryDeviceInfoList *info;
MemoryDeviceInfo *mi;
PCDIMMDeviceInfo *di;
uint64_t end = base + len, cur, size;
bool is_nvdimm;
AcpiSratMemoryAffinity *numamem;
MemoryAffinityFlags flags;
for (cur = base, info = info_list;
cur < end;
cur += size, info = info->next) {
numamem = acpi_data_push(table_data, sizeof *numamem);
if (!info) {
build_srat_memory(numamem, cur, end - cur, default_node,
MEM_AFFINITY_HOTPLUGGABLE | MEM_AFFINITY_ENABLED);
break;
}
mi = info->value;
is_nvdimm = (mi->type == MEMORY_DEVICE_INFO_KIND_NVDIMM);
di = !is_nvdimm ? mi->u.dimm.data : mi->u.nvdimm.data;
if (cur < di->addr) {
build_srat_memory(numamem, cur, di->addr - cur, default_node,
MEM_AFFINITY_HOTPLUGGABLE | MEM_AFFINITY_ENABLED);
numamem = acpi_data_push(table_data, sizeof *numamem);
}
size = di->size;
flags = MEM_AFFINITY_ENABLED;
if (di->hotpluggable) {
flags |= MEM_AFFINITY_HOTPLUGGABLE;
}
if (is_nvdimm) {
flags |= MEM_AFFINITY_NON_VOLATILE;
}
build_srat_memory(numamem, di->addr, size, di->node, flags);
}
qapi_free_MemoryDeviceInfoList(info_list);
}
static void
build_srat(GArray *table_data, BIOSLinker *linker, MachineState *machine)
{
AcpiSystemResourceAffinityTable *srat;
AcpiSratMemoryAffinity *numamem;
int i;
int srat_start, numa_start, slots;
uint64_t mem_len, mem_base, next_base;
MachineClass *mc = MACHINE_GET_CLASS(machine);
const CPUArchIdList *apic_ids = mc->possible_cpu_arch_ids(machine);
PCMachineState *pcms = PC_MACHINE(machine);
ram_addr_t hotplugabble_address_space_size =
object_property_get_int(OBJECT(pcms), PC_MACHINE_DEVMEM_REGION_SIZE,
NULL);
srat_start = table_data->len;
srat = acpi_data_push(table_data, sizeof *srat);
srat->reserved1 = cpu_to_le32(1);
for (i = 0; i < apic_ids->len; i++) {
int node_id = apic_ids->cpus[i].props.node_id;
uint32_t apic_id = apic_ids->cpus[i].arch_id;
if (apic_id < 255) {
AcpiSratProcessorAffinity *core;
core = acpi_data_push(table_data, sizeof *core);
core->type = ACPI_SRAT_PROCESSOR_APIC;
core->length = sizeof(*core);
core->local_apic_id = apic_id;
core->proximity_lo = node_id;
memset(core->proximity_hi, 0, 3);
core->local_sapic_eid = 0;
core->flags = cpu_to_le32(1);
} else {
AcpiSratProcessorX2ApicAffinity *core;
core = acpi_data_push(table_data, sizeof *core);
core->type = ACPI_SRAT_PROCESSOR_x2APIC;
core->length = sizeof(*core);
core->x2apic_id = cpu_to_le32(apic_id);
core->proximity_domain = cpu_to_le32(node_id);
core->flags = cpu_to_le32(1);
}
}
/* the memory map is a bit tricky, it contains at least one hole
* from 640k-1M and possibly another one from 3.5G-4G.
*/
next_base = 0;
numa_start = table_data->len;
for (i = 1; i < pcms->numa_nodes + 1; ++i) {
mem_base = next_base;
mem_len = pcms->node_mem[i - 1];
next_base = mem_base + mem_len;
/* Cut out the 640K hole */
if (mem_base <= HOLE_640K_START &&
next_base > HOLE_640K_START) {
mem_len -= next_base - HOLE_640K_START;
if (mem_len > 0) {
numamem = acpi_data_push(table_data, sizeof *numamem);
build_srat_memory(numamem, mem_base, mem_len, i - 1,
MEM_AFFINITY_ENABLED);
}
/* Check for the rare case: 640K < RAM < 1M */
if (next_base <= HOLE_640K_END) {
next_base = HOLE_640K_END;
continue;
}
mem_base = HOLE_640K_END;
mem_len = next_base - HOLE_640K_END;
}
/* Cut out the ACPI_PCI hole */
if (mem_base <= pcms->below_4g_mem_size &&
next_base > pcms->below_4g_mem_size) {
mem_len -= next_base - pcms->below_4g_mem_size;
if (mem_len > 0) {
numamem = acpi_data_push(table_data, sizeof *numamem);
build_srat_memory(numamem, mem_base, mem_len, i - 1,
MEM_AFFINITY_ENABLED);
}
mem_base = 1ULL << 32;
mem_len = next_base - pcms->below_4g_mem_size;
next_base = mem_base + mem_len;
}
numamem = acpi_data_push(table_data, sizeof *numamem);
build_srat_memory(numamem, mem_base, mem_len, i - 1,
MEM_AFFINITY_ENABLED);
}
slots = (table_data->len - numa_start) / sizeof *numamem;
for (; slots < pcms->numa_nodes + 2; slots++) {
numamem = acpi_data_push(table_data, sizeof *numamem);
build_srat_memory(numamem, 0, 0, 0, MEM_AFFINITY_NOFLAGS);
}
/*
* Entry is required for Windows to enable memory hotplug in OS
* and for Linux to enable SWIOTLB when booted with less than
* 4G of RAM. Windows works better if the entry sets proximity
* to the highest NUMA node in the machine.
* Memory devices may override proximity set by this entry,
* providing _PXM method if necessary.
*/
if (hotplugabble_address_space_size) {
build_srat_hotpluggable_memory(table_data, machine->device_memory->base,
hotplugabble_address_space_size,
pcms->numa_nodes - 1);
}
build_header(linker, table_data,
(void *)(table_data->data + srat_start),
"SRAT",
table_data->len - srat_start, 1, NULL, NULL);
}
static void
build_mcfg_q35(GArray *table_data, BIOSLinker *linker, AcpiMcfgInfo *info)
{
AcpiTableMcfg *mcfg;
const char *sig;
int len = sizeof(*mcfg) + 1 * sizeof(mcfg->allocation[0]);
mcfg = acpi_data_push(table_data, len);
mcfg->allocation[0].address = cpu_to_le64(info->mcfg_base);
/* Only a single allocation so no need to play with segments */
mcfg->allocation[0].pci_segment = cpu_to_le16(0);
mcfg->allocation[0].start_bus_number = 0;
mcfg->allocation[0].end_bus_number = PCIE_MMCFG_BUS(info->mcfg_size - 1);
/* MCFG is used for ECAM which can be enabled or disabled by guest.
* To avoid table size changes (which create migration issues),
* always create the table even if there are no allocations,
* but set the signature to a reserved value in this case.
* ACPI spec requires OSPMs to ignore such tables.
*/
if (info->mcfg_base == PCIE_BASE_ADDR_UNMAPPED) {
/* Reserved signature: ignored by OSPM */
sig = "QEMU";
} else {
sig = "MCFG";
}
build_header(linker, table_data, (void *)mcfg, sig, len, 1, NULL, NULL);
}
/*
* VT-d spec 8.1 DMA Remapping Reporting Structure
* (version Oct. 2014 or later)
*/
static void
build_dmar_q35(GArray *table_data, BIOSLinker *linker)
{
int dmar_start = table_data->len;
AcpiTableDmar *dmar;
AcpiDmarHardwareUnit *drhd;
AcpiDmarRootPortATS *atsr;
uint8_t dmar_flags = 0;
X86IOMMUState *iommu = x86_iommu_get_default();
AcpiDmarDeviceScope *scope = NULL;
/* Root complex IOAPIC use one path[0] only */
size_t ioapic_scope_size = sizeof(*scope) + sizeof(scope->path[0]);
IntelIOMMUState *intel_iommu = INTEL_IOMMU_DEVICE(iommu);
assert(iommu);
if (iommu->intr_supported) {
dmar_flags |= 0x1; /* Flags: 0x1: INT_REMAP */
}
dmar = acpi_data_push(table_data, sizeof(*dmar));
dmar->host_address_width = intel_iommu->aw_bits - 1;
dmar->flags = dmar_flags;
/* DMAR Remapping Hardware Unit Definition structure */
drhd = acpi_data_push(table_data, sizeof(*drhd) + ioapic_scope_size);
drhd->type = cpu_to_le16(ACPI_DMAR_TYPE_HARDWARE_UNIT);
drhd->length = cpu_to_le16(sizeof(*drhd) + ioapic_scope_size);
drhd->flags = ACPI_DMAR_INCLUDE_PCI_ALL;
drhd->pci_segment = cpu_to_le16(0);
drhd->address = cpu_to_le64(Q35_HOST_BRIDGE_IOMMU_ADDR);
/* Scope definition for the root-complex IOAPIC. See VT-d spec
* 8.3.1 (version Oct. 2014 or later). */
scope = &drhd->scope[0];
scope->entry_type = 0x03; /* Type: 0x03 for IOAPIC */
scope->length = ioapic_scope_size;
scope->enumeration_id = ACPI_BUILD_IOAPIC_ID;
scope->bus = Q35_PSEUDO_BUS_PLATFORM;
scope->path[0].device = PCI_SLOT(Q35_PSEUDO_DEVFN_IOAPIC);
scope->path[0].function = PCI_FUNC(Q35_PSEUDO_DEVFN_IOAPIC);
if (iommu->dt_supported) {
atsr = acpi_data_push(table_data, sizeof(*atsr));
atsr->type = cpu_to_le16(ACPI_DMAR_TYPE_ATSR);
atsr->length = cpu_to_le16(sizeof(*atsr));
atsr->flags = ACPI_DMAR_ATSR_ALL_PORTS;
atsr->pci_segment = cpu_to_le16(0);
}
build_header(linker, table_data, (void *)(table_data->data + dmar_start),
"DMAR", table_data->len - dmar_start, 1, NULL, NULL);
}
/*
* IVRS table as specified in AMD IOMMU Specification v2.62, Section 5.2
* accessible here http://support.amd.com/TechDocs/48882_IOMMU.pdf
*/
static void
build_amd_iommu(GArray *table_data, BIOSLinker *linker)
{
int iommu_start = table_data->len;
AMDVIState *s = AMD_IOMMU_DEVICE(x86_iommu_get_default());
/* IVRS header */
acpi_data_push(table_data, sizeof(AcpiTableHeader));
/* IVinfo - IO virtualization information common to all
* IOMMU units in a system
*/
build_append_int_noprefix(table_data, 40UL << 8/* PASize */, 4);
/* reserved */
build_append_int_noprefix(table_data, 0, 8);
/* IVHD definition - type 10h */
build_append_int_noprefix(table_data, 0x10, 1);
/* virtualization flags */
build_append_int_noprefix(table_data,
(1UL << 0) | /* HtTunEn */
(1UL << 4) | /* iotblSup */
(1UL << 6) | /* PrefSup */
(1UL << 7), /* PPRSup */
1);
/* IVHD length */
build_append_int_noprefix(table_data, 0x24, 2);
/* DeviceID */
build_append_int_noprefix(table_data, s->devid, 2);
/* Capability offset */
build_append_int_noprefix(table_data, s->capab_offset, 2);
/* IOMMU base address */
build_append_int_noprefix(table_data, s->mmio.addr, 8);
/* PCI Segment Group */
build_append_int_noprefix(table_data, 0, 2);
/* IOMMU info */
build_append_int_noprefix(table_data, 0, 2);
/* IOMMU Feature Reporting */
build_append_int_noprefix(table_data,
(48UL << 30) | /* HATS */
(48UL << 28) | /* GATS */
(1UL << 2), /* GTSup */
4);
/*
* Type 1 device entry reporting all devices
* These are 4-byte device entries currently reporting the range of
* Refer to Spec - Table 95:IVHD Device Entry Type Codes(4-byte)
*/
build_append_int_noprefix(table_data, 0x0000001, 4);
build_header(linker, table_data, (void *)(table_data->data + iommu_start),
"IVRS", table_data->len - iommu_start, 1, NULL, NULL);
}
static GArray *
build_rsdp(GArray *rsdp_table, BIOSLinker *linker, unsigned rsdt_tbl_offset)
{
AcpiRsdpDescriptor *rsdp = acpi_data_push(rsdp_table, sizeof *rsdp);
unsigned rsdt_pa_size = sizeof(rsdp->rsdt_physical_address);
unsigned rsdt_pa_offset =
(char *)&rsdp->rsdt_physical_address - rsdp_table->data;
bios_linker_loader_alloc(linker, ACPI_BUILD_RSDP_FILE, rsdp_table, 16,
true /* fseg memory */);
memcpy(&rsdp->signature, "RSD PTR ", 8);
memcpy(rsdp->oem_id, ACPI_BUILD_APPNAME6, 6);
/* Address to be filled by Guest linker */
bios_linker_loader_add_pointer(linker,
ACPI_BUILD_RSDP_FILE, rsdt_pa_offset, rsdt_pa_size,
ACPI_BUILD_TABLE_FILE, rsdt_tbl_offset);
/* Checksum to be filled by Guest linker */
bios_linker_loader_add_checksum(linker, ACPI_BUILD_RSDP_FILE,
(char *)rsdp - rsdp_table->data, sizeof *rsdp,
(char *)&rsdp->checksum - rsdp_table->data);
return rsdp_table;
}
typedef
struct AcpiBuildState {
/* Copy of table in RAM (for patching). */
MemoryRegion *table_mr;
/* Is table patched? */
uint8_t patched;
void *rsdp;
MemoryRegion *rsdp_mr;
MemoryRegion *linker_mr;
} AcpiBuildState;
static bool acpi_get_mcfg(AcpiMcfgInfo *mcfg)
{
Object *pci_host;
QObject *o;
pci_host = acpi_get_i386_pci_host();
g_assert(pci_host);
o = object_property_get_qobject(pci_host, PCIE_HOST_MCFG_BASE, NULL);
if (!o) {
return false;
}
mcfg->mcfg_base = qnum_get_uint(qobject_to(QNum, o));
qobject_unref(o);
o = object_property_get_qobject(pci_host, PCIE_HOST_MCFG_SIZE, NULL);
assert(o);
mcfg->mcfg_size = qnum_get_uint(qobject_to(QNum, o));
qobject_unref(o);
return true;
}
static
void acpi_build(AcpiBuildTables *tables, MachineState *machine)
{
PCMachineState *pcms = PC_MACHINE(machine);
PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
GArray *table_offsets;
unsigned facs, dsdt, rsdt, fadt;
AcpiPmInfo pm;
AcpiMiscInfo misc;
AcpiMcfgInfo mcfg;
Range pci_hole, pci_hole64;
uint8_t *u;
size_t aml_len = 0;
GArray *tables_blob = tables->table_data;
AcpiSlicOem slic_oem = { .id = NULL, .table_id = NULL };
Object *vmgenid_dev;
acpi_get_pm_info(&pm);
acpi_get_misc_info(&misc);
acpi_get_pci_holes(&pci_hole, &pci_hole64);
acpi_get_slic_oem(&slic_oem);
table_offsets = g_array_new(false, true /* clear */,
sizeof(uint32_t));
ACPI_BUILD_DPRINTF("init ACPI tables\n");
bios_linker_loader_alloc(tables->linker,
ACPI_BUILD_TABLE_FILE, tables_blob,
64 /* Ensure FACS is aligned */,
false /* high memory */);
/*
* FACS is pointed to by FADT.
* We place it first since it's the only table that has alignment
* requirements.
*/
facs = tables_blob->len;
build_facs(tables_blob, tables->linker);
/* DSDT is pointed to by FADT */
dsdt = tables_blob->len;
build_dsdt(tables_blob, tables->linker, &pm, &misc,
&pci_hole, &pci_hole64, machine);
/* Count the size of the DSDT and SSDT, we will need it for legacy
* sizing of ACPI tables.
*/
aml_len += tables_blob->len - dsdt;
/* ACPI tables pointed to by RSDT */
fadt = tables_blob->len;
acpi_add_table(table_offsets, tables_blob);
pm.fadt.facs_tbl_offset = &facs;
pm.fadt.dsdt_tbl_offset = &dsdt;
pm.fadt.xdsdt_tbl_offset = &dsdt;
build_fadt(tables_blob, tables->linker, &pm.fadt,
slic_oem.id, slic_oem.table_id);
aml_len += tables_blob->len - fadt;
acpi_add_table(table_offsets, tables_blob);
build_madt(tables_blob, tables->linker, pcms);
vmgenid_dev = find_vmgenid_dev();
if (vmgenid_dev) {
acpi_add_table(table_offsets, tables_blob);
vmgenid_build_acpi(VMGENID(vmgenid_dev), tables_blob,
tables->vmgenid, tables->linker);
}
if (misc.has_hpet) {
acpi_add_table(table_offsets, tables_blob);
build_hpet(tables_blob, tables->linker);
}
if (misc.tpm_version != TPM_VERSION_UNSPEC) {
acpi_add_table(table_offsets, tables_blob);
build_tpm_tcpa(tables_blob, tables->linker, tables->tcpalog);
if (misc.tpm_version == TPM_VERSION_2_0) {
acpi_add_table(table_offsets, tables_blob);
build_tpm2(tables_blob, tables->linker, tables->tcpalog);
}
}
if (pcms->numa_nodes) {
acpi_add_table(table_offsets, tables_blob);
build_srat(tables_blob, tables->linker, machine);
if (have_numa_distance) {
acpi_add_table(table_offsets, tables_blob);
build_slit(tables_blob, tables->linker);
}
}
if (acpi_get_mcfg(&mcfg)) {
acpi_add_table(table_offsets, tables_blob);
build_mcfg_q35(tables_blob, tables->linker, &mcfg);
}
if (x86_iommu_get_default()) {
IommuType IOMMUType = x86_iommu_get_type();
if (IOMMUType == TYPE_AMD) {
acpi_add_table(table_offsets, tables_blob);
build_amd_iommu(tables_blob, tables->linker);
} else if (IOMMUType == TYPE_INTEL) {
acpi_add_table(table_offsets, tables_blob);
build_dmar_q35(tables_blob, tables->linker);
}
}
if (pcms->acpi_nvdimm_state.is_enabled) {
nvdimm_build_acpi(table_offsets, tables_blob, tables->linker,
&pcms->acpi_nvdimm_state, machine->ram_slots);
}
/* Add tables supplied by user (if any) */
for (u = acpi_table_first(); u; u = acpi_table_next(u)) {
unsigned len = acpi_table_len(u);
acpi_add_table(table_offsets, tables_blob);
g_array_append_vals(tables_blob, u, len);
}
/* RSDT is pointed to by RSDP */
rsdt = tables_blob->len;
build_rsdt(tables_blob, tables->linker, table_offsets,
slic_oem.id, slic_oem.table_id);
/* RSDP is in FSEG memory, so allocate it separately */
build_rsdp(tables->rsdp, tables->linker, rsdt);
/* We'll expose it all to Guest so we want to reduce
* chance of size changes.
*
* We used to align the tables to 4k, but of course this would
* too simple to be enough. 4k turned out to be too small an
* alignment very soon, and in fact it is almost impossible to
* keep the table size stable for all (max_cpus, max_memory_slots)
* combinations. So the table size is always 64k for pc-i440fx-2.1
* and we give an error if the table grows beyond that limit.
*
* We still have the problem of migrating from "-M pc-i440fx-2.0". For
* that, we exploit the fact that QEMU 2.1 generates _smaller_ tables
* than 2.0 and we can always pad the smaller tables with zeros. We can
* then use the exact size of the 2.0 tables.
*
* All this is for PIIX4, since QEMU 2.0 didn't support Q35 migration.
*/
if (pcmc->legacy_acpi_table_size) {
/* Subtracting aml_len gives the size of fixed tables. Then add the
* size of the PIIX4 DSDT/SSDT in QEMU 2.0.
*/
int legacy_aml_len =
pcmc->legacy_acpi_table_size +
ACPI_BUILD_LEGACY_CPU_AML_SIZE * pcms->apic_id_limit;
int legacy_table_size =
ROUND_UP(tables_blob->len - aml_len + legacy_aml_len,
ACPI_BUILD_ALIGN_SIZE);
if (tables_blob->len > legacy_table_size) {
/* Should happen only with PCI bridges and -M pc-i440fx-2.0. */
warn_report("ACPI table size %u exceeds %d bytes,"
" migration may not work",
tables_blob->len, legacy_table_size);
error_printf("Try removing CPUs, NUMA nodes, memory slots"
" or PCI bridges.");
}
g_array_set_size(tables_blob, legacy_table_size);
} else {
/* Make sure we have a buffer in case we need to resize the tables. */
if (tables_blob->len > ACPI_BUILD_TABLE_SIZE / 2) {
/* As of QEMU 2.1, this fires with 160 VCPUs and 255 memory slots. */
warn_report("ACPI table size %u exceeds %d bytes,"
" migration may not work",
tables_blob->len, ACPI_BUILD_TABLE_SIZE / 2);
error_printf("Try removing CPUs, NUMA nodes, memory slots"
" or PCI bridges.");
}
acpi_align_size(tables_blob, ACPI_BUILD_TABLE_SIZE);
}
acpi_align_size(tables->linker->cmd_blob, ACPI_BUILD_ALIGN_SIZE);
/* Cleanup memory that's no longer used. */
g_array_free(table_offsets, true);
}
static void acpi_ram_update(MemoryRegion *mr, GArray *data)
{
uint32_t size = acpi_data_len(data);
/* Make sure RAM size is correct - in case it got changed e.g. by migration */
memory_region_ram_resize(mr, size, &error_abort);
memcpy(memory_region_get_ram_ptr(mr), data->data, size);
memory_region_set_dirty(mr, 0, size);
}
static void acpi_build_update(void *build_opaque)
{
AcpiBuildState *build_state = build_opaque;
AcpiBuildTables tables;
/* No state to update or already patched? Nothing to do. */
if (!build_state || build_state->patched) {
return;
}
build_state->patched = 1;
acpi_build_tables_init(&tables);
acpi_build(&tables, MACHINE(qdev_get_machine()));
acpi_ram_update(build_state->table_mr, tables.table_data);
if (build_state->rsdp) {
memcpy(build_state->rsdp, tables.rsdp->data, acpi_data_len(tables.rsdp));
} else {
acpi_ram_update(build_state->rsdp_mr, tables.rsdp);
}
acpi_ram_update(build_state->linker_mr, tables.linker->cmd_blob);
acpi_build_tables_cleanup(&tables, true);
}
static void acpi_build_reset(void *build_opaque)
{
AcpiBuildState *build_state = build_opaque;
build_state->patched = 0;
}
static MemoryRegion *acpi_add_rom_blob(AcpiBuildState *build_state,
GArray *blob, const char *name,
uint64_t max_size)
{
return rom_add_blob(name, blob->data, acpi_data_len(blob), max_size, -1,
name, acpi_build_update, build_state, NULL, true);
}
static const VMStateDescription vmstate_acpi_build = {
.name = "acpi_build",
.version_id = 1,
.minimum_version_id = 1,
.fields = (VMStateField[]) {
VMSTATE_UINT8(patched, AcpiBuildState),
VMSTATE_END_OF_LIST()
},
};
void acpi_setup(void)
{
PCMachineState *pcms = PC_MACHINE(qdev_get_machine());
PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
AcpiBuildTables tables;
AcpiBuildState *build_state;
Object *vmgenid_dev;
if (!pcms->fw_cfg) {
ACPI_BUILD_DPRINTF("No fw cfg. Bailing out.\n");
return;
}
if (!pcms->acpi_build_enabled) {
ACPI_BUILD_DPRINTF("ACPI build disabled. Bailing out.\n");
return;
}
if (!acpi_enabled) {
ACPI_BUILD_DPRINTF("ACPI disabled. Bailing out.\n");
return;
}
build_state = g_malloc0(sizeof *build_state);
acpi_build_tables_init(&tables);
acpi_build(&tables, MACHINE(pcms));
/* Now expose it all to Guest */
build_state->table_mr = acpi_add_rom_blob(build_state, tables.table_data,
ACPI_BUILD_TABLE_FILE,
ACPI_BUILD_TABLE_MAX_SIZE);
assert(build_state->table_mr != NULL);
build_state->linker_mr =
acpi_add_rom_blob(build_state, tables.linker->cmd_blob,
"etc/table-loader", 0);
fw_cfg_add_file(pcms->fw_cfg, ACPI_BUILD_TPMLOG_FILE,
tables.tcpalog->data, acpi_data_len(tables.tcpalog));
vmgenid_dev = find_vmgenid_dev();
if (vmgenid_dev) {
vmgenid_add_fw_cfg(VMGENID(vmgenid_dev), pcms->fw_cfg,
tables.vmgenid);
}
if (!pcmc->rsdp_in_ram) {
/*
* Keep for compatibility with old machine types.
* Though RSDP is small, its contents isn't immutable, so
* we'll update it along with the rest of tables on guest access.
*/
uint32_t rsdp_size = acpi_data_len(tables.rsdp);
build_state->rsdp = g_memdup(tables.rsdp->data, rsdp_size);
fw_cfg_add_file_callback(pcms->fw_cfg, ACPI_BUILD_RSDP_FILE,
acpi_build_update, NULL, build_state,
build_state->rsdp, rsdp_size, true);
build_state->rsdp_mr = NULL;
} else {
build_state->rsdp = NULL;
build_state->rsdp_mr = acpi_add_rom_blob(build_state, tables.rsdp,
ACPI_BUILD_RSDP_FILE, 0);
}
qemu_register_reset(acpi_build_reset, build_state);
acpi_build_reset(build_state);
vmstate_register(NULL, 0, &vmstate_acpi_build, build_state);
/* Cleanup tables but don't free the memory: we track it
* in build_state.
*/
acpi_build_tables_cleanup(&tables, false);
}