qemu-e2k/include/io/channel.h
Markus Armbruster 2a6a4076e1 Clean up ill-advised or unusual header guards
Cleaned up with scripts/clean-header-guards.pl.

Signed-off-by: Markus Armbruster <armbru@redhat.com>
Reviewed-by: Richard Henderson <rth@twiddle.net>
2016-07-12 16:20:46 +02:00

506 lines
16 KiB
C

/*
* QEMU I/O channels
*
* Copyright (c) 2015 Red Hat, Inc.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*
*/
#ifndef QIO_CHANNEL_H
#define QIO_CHANNEL_H
#include "qemu-common.h"
#include "qom/object.h"
#define TYPE_QIO_CHANNEL "qio-channel"
#define QIO_CHANNEL(obj) \
OBJECT_CHECK(QIOChannel, (obj), TYPE_QIO_CHANNEL)
#define QIO_CHANNEL_CLASS(klass) \
OBJECT_CLASS_CHECK(QIOChannelClass, klass, TYPE_QIO_CHANNEL)
#define QIO_CHANNEL_GET_CLASS(obj) \
OBJECT_GET_CLASS(QIOChannelClass, obj, TYPE_QIO_CHANNEL)
typedef struct QIOChannel QIOChannel;
typedef struct QIOChannelClass QIOChannelClass;
#define QIO_CHANNEL_ERR_BLOCK -2
typedef enum QIOChannelFeature QIOChannelFeature;
enum QIOChannelFeature {
QIO_CHANNEL_FEATURE_FD_PASS = (1 << 0),
QIO_CHANNEL_FEATURE_SHUTDOWN = (1 << 1),
QIO_CHANNEL_FEATURE_LISTEN = (1 << 2),
};
typedef enum QIOChannelShutdown QIOChannelShutdown;
enum QIOChannelShutdown {
QIO_CHANNEL_SHUTDOWN_BOTH,
QIO_CHANNEL_SHUTDOWN_READ,
QIO_CHANNEL_SHUTDOWN_WRITE,
};
typedef gboolean (*QIOChannelFunc)(QIOChannel *ioc,
GIOCondition condition,
gpointer data);
/**
* QIOChannel:
*
* The QIOChannel defines the core API for a generic I/O channel
* class hierarchy. It is inspired by GIOChannel, but has the
* following differences
*
* - Use QOM to properly support arbitrary subclassing
* - Support use of iovecs for efficient I/O with multiple blocks
* - None of the character set translation, binary data exclusively
* - Direct support for QEMU Error object reporting
* - File descriptor passing
*
* This base class is abstract so cannot be instantiated. There
* will be subclasses for dealing with sockets, files, and higher
* level protocols such as TLS, WebSocket, etc.
*/
struct QIOChannel {
Object parent;
unsigned int features; /* bitmask of QIOChannelFeatures */
#ifdef _WIN32
HANDLE event; /* For use with GSource on Win32 */
#endif
};
/**
* QIOChannelClass:
*
* This class defines the contract that all subclasses
* must follow to provide specific channel implementations.
* The first five callbacks are mandatory to support, others
* provide additional optional features.
*
* Consult the corresponding public API docs for a description
* of the semantics of each callback
*/
struct QIOChannelClass {
ObjectClass parent;
/* Mandatory callbacks */
ssize_t (*io_writev)(QIOChannel *ioc,
const struct iovec *iov,
size_t niov,
int *fds,
size_t nfds,
Error **errp);
ssize_t (*io_readv)(QIOChannel *ioc,
const struct iovec *iov,
size_t niov,
int **fds,
size_t *nfds,
Error **errp);
int (*io_close)(QIOChannel *ioc,
Error **errp);
GSource * (*io_create_watch)(QIOChannel *ioc,
GIOCondition condition);
int (*io_set_blocking)(QIOChannel *ioc,
bool enabled,
Error **errp);
/* Optional callbacks */
int (*io_shutdown)(QIOChannel *ioc,
QIOChannelShutdown how,
Error **errp);
void (*io_set_cork)(QIOChannel *ioc,
bool enabled);
void (*io_set_delay)(QIOChannel *ioc,
bool enabled);
off_t (*io_seek)(QIOChannel *ioc,
off_t offset,
int whence,
Error **errp);
};
/* General I/O handling functions */
/**
* qio_channel_has_feature:
* @ioc: the channel object
* @feature: the feature to check support of
*
* Determine whether the channel implementation supports
* the optional feature named in @feature.
*
* Returns: true if supported, false otherwise.
*/
bool qio_channel_has_feature(QIOChannel *ioc,
QIOChannelFeature feature);
/**
* qio_channel_readv_full:
* @ioc: the channel object
* @iov: the array of memory regions to read data into
* @niov: the length of the @iov array
* @fds: pointer to an array that will received file handles
* @nfds: pointer filled with number of elements in @fds on return
* @errp: pointer to a NULL-initialized error object
*
* Read data from the IO channel, storing it in the
* memory regions referenced by @iov. Each element
* in the @iov will be fully populated with data
* before the next one is used. The @niov parameter
* specifies the total number of elements in @iov.
*
* It is not required for all @iov to be filled with
* data. If the channel is in blocking mode, at least
* one byte of data will be read, but no more is
* guaranteed. If the channel is non-blocking and no
* data is available, it will return QIO_CHANNEL_ERR_BLOCK
*
* If the channel has passed any file descriptors,
* the @fds array pointer will be allocated and
* the elements filled with the received file
* descriptors. The @nfds pointer will be updated
* to indicate the size of the @fds array that
* was allocated. It is the callers responsibility
* to call close() on each file descriptor and to
* call g_free() on the array pointer in @fds.
*
* It is an error to pass a non-NULL @fds parameter
* unless qio_channel_has_feature() returns a true
* value for the QIO_CHANNEL_FEATURE_FD_PASS constant.
*
* Returns: the number of bytes read, or -1 on error,
* or QIO_CHANNEL_ERR_BLOCK if no data is available
* and the channel is non-blocking
*/
ssize_t qio_channel_readv_full(QIOChannel *ioc,
const struct iovec *iov,
size_t niov,
int **fds,
size_t *nfds,
Error **errp);
/**
* qio_channel_writev_full:
* @ioc: the channel object
* @iov: the array of memory regions to write data from
* @niov: the length of the @iov array
* @fds: an array of file handles to send
* @nfds: number of file handles in @fds
* @errp: pointer to a NULL-initialized error object
*
* Write data to the IO channel, reading it from the
* memory regions referenced by @iov. Each element
* in the @iov will be fully sent, before the next
* one is used. The @niov parameter specifies the
* total number of elements in @iov.
*
* It is not required for all @iov data to be fully
* sent. If the channel is in blocking mode, at least
* one byte of data will be sent, but no more is
* guaranteed. If the channel is non-blocking and no
* data can be sent, it will return QIO_CHANNEL_ERR_BLOCK
*
* If there are file descriptors to send, the @fds
* array should be non-NULL and provide the handles.
* All file descriptors will be sent if at least one
* byte of data was sent.
*
* It is an error to pass a non-NULL @fds parameter
* unless qio_channel_has_feature() returns a true
* value for the QIO_CHANNEL_FEATURE_FD_PASS constant.
*
* Returns: the number of bytes sent, or -1 on error,
* or QIO_CHANNEL_ERR_BLOCK if no data is can be sent
* and the channel is non-blocking
*/
ssize_t qio_channel_writev_full(QIOChannel *ioc,
const struct iovec *iov,
size_t niov,
int *fds,
size_t nfds,
Error **errp);
/**
* qio_channel_readv:
* @ioc: the channel object
* @iov: the array of memory regions to read data into
* @niov: the length of the @iov array
* @errp: pointer to a NULL-initialized error object
*
* Behaves as qio_channel_readv_full() but does not support
* receiving of file handles.
*/
ssize_t qio_channel_readv(QIOChannel *ioc,
const struct iovec *iov,
size_t niov,
Error **errp);
/**
* qio_channel_writev:
* @ioc: the channel object
* @iov: the array of memory regions to write data from
* @niov: the length of the @iov array
* @errp: pointer to a NULL-initialized error object
*
* Behaves as qio_channel_writev_full() but does not support
* sending of file handles.
*/
ssize_t qio_channel_writev(QIOChannel *ioc,
const struct iovec *iov,
size_t niov,
Error **errp);
/**
* qio_channel_readv:
* @ioc: the channel object
* @buf: the memory region to read data into
* @buflen: the length of @buf
* @errp: pointer to a NULL-initialized error object
*
* Behaves as qio_channel_readv_full() but does not support
* receiving of file handles, and only supports reading into
* a single memory region.
*/
ssize_t qio_channel_read(QIOChannel *ioc,
char *buf,
size_t buflen,
Error **errp);
/**
* qio_channel_writev:
* @ioc: the channel object
* @buf: the memory regions to send data from
* @buflen: the length of @buf
* @errp: pointer to a NULL-initialized error object
*
* Behaves as qio_channel_writev_full() but does not support
* sending of file handles, and only supports writing from a
* single memory region.
*/
ssize_t qio_channel_write(QIOChannel *ioc,
const char *buf,
size_t buflen,
Error **errp);
/**
* qio_channel_set_blocking:
* @ioc: the channel object
* @enabled: the blocking flag state
* @errp: pointer to a NULL-initialized error object
*
* If @enabled is true, then the channel is put into
* blocking mode, otherwise it will be non-blocking.
*
* In non-blocking mode, read/write operations may
* return QIO_CHANNEL_ERR_BLOCK if they would otherwise
* block on I/O
*/
int qio_channel_set_blocking(QIOChannel *ioc,
bool enabled,
Error **errp);
/**
* qio_channel_close:
* @ioc: the channel object
* @errp: pointer to a NULL-initialized error object
*
* Close the channel, flushing any pending I/O
*
* Returns: 0 on success, -1 on error
*/
int qio_channel_close(QIOChannel *ioc,
Error **errp);
/**
* qio_channel_shutdown:
* @ioc: the channel object
* @how: the direction to shutdown
* @errp: pointer to a NULL-initialized error object
*
* Shutdowns transmission and/or receiving of data
* without closing the underlying transport.
*
* Not all implementations will support this facility,
* so may report an error. To avoid errors, the
* caller may check for the feature flag
* QIO_CHANNEL_FEATURE_SHUTDOWN prior to calling
* this method.
*
* Returns: 0 on success, -1 on error
*/
int qio_channel_shutdown(QIOChannel *ioc,
QIOChannelShutdown how,
Error **errp);
/**
* qio_channel_set_delay:
* @ioc: the channel object
* @enabled: the new flag state
*
* Controls whether the underlying transport is
* permitted to delay writes in order to merge
* small packets. If @enabled is true, then the
* writes may be delayed in order to opportunistically
* merge small packets into larger ones. If @enabled
* is false, writes are dispatched immediately with
* no delay.
*
* When @enabled is false, applications may wish to
* use the qio_channel_set_cork() method to explicitly
* control write merging.
*
* On channels which are backed by a socket, this
* API corresponds to the inverse of TCP_NODELAY flag,
* controlling whether the Nagle algorithm is active.
*
* This setting is merely a hint, so implementations are
* free to ignore this without it being considered an
* error.
*/
void qio_channel_set_delay(QIOChannel *ioc,
bool enabled);
/**
* qio_channel_set_cork:
* @ioc: the channel object
* @enabled: the new flag state
*
* Controls whether the underlying transport is
* permitted to dispatch data that is written.
* If @enabled is true, then any data written will
* be queued in local buffers until @enabled is
* set to false once again.
*
* This feature is typically used when the automatic
* write coalescing facility is disabled via the
* qio_channel_set_delay() method.
*
* On channels which are backed by a socket, this
* API corresponds to the TCP_CORK flag.
*
* This setting is merely a hint, so implementations are
* free to ignore this without it being considered an
* error.
*/
void qio_channel_set_cork(QIOChannel *ioc,
bool enabled);
/**
* qio_channel_seek:
* @ioc: the channel object
* @offset: the position to seek to, relative to @whence
* @whence: one of the (POSIX) SEEK_* constants listed below
* @errp: pointer to a NULL-initialized error object
*
* Moves the current I/O position within the channel
* @ioc, to be @offset. The value of @offset is
* interpreted relative to @whence:
*
* SEEK_SET - the position is set to @offset bytes
* SEEK_CUR - the position is moved by @offset bytes
* SEEK_END - the position is set to end of the file plus @offset bytes
*
* Not all implementations will support this facility,
* so may report an error.
*
* Returns: the new position on success, (off_t)-1 on failure
*/
off_t qio_channel_io_seek(QIOChannel *ioc,
off_t offset,
int whence,
Error **errp);
/**
* qio_channel_create_watch:
* @ioc: the channel object
* @condition: the I/O condition to monitor
*
* Create a new main loop source that is used to watch
* for the I/O condition @condition. Typically the
* qio_channel_add_watch() method would be used instead
* of this, since it directly attaches a callback to
* the source
*
* Returns: the new main loop source.
*/
GSource *qio_channel_create_watch(QIOChannel *ioc,
GIOCondition condition);
/**
* qio_channel_add_watch:
* @ioc: the channel object
* @condition: the I/O condition to monitor
* @func: callback to invoke when the source becomes ready
* @user_data: opaque data to pass to @func
* @notify: callback to free @user_data
*
* Create a new main loop source that is used to watch
* for the I/O condition @condition. The callback @func
* will be registered against the source, to be invoked
* when the source becomes ready. The optional @user_data
* will be passed to @func when it is invoked. The @notify
* callback will be used to free @user_data when the
* watch is deleted
*
* The returned source ID can be used with g_source_remove()
* to remove and free the source when no longer required.
* Alternatively the @func callback can return a FALSE
* value.
*
* Returns: the source ID
*/
guint qio_channel_add_watch(QIOChannel *ioc,
GIOCondition condition,
QIOChannelFunc func,
gpointer user_data,
GDestroyNotify notify);
/**
* qio_channel_yield:
* @ioc: the channel object
* @condition: the I/O condition to wait for
*
* Yields execution from the current coroutine until
* the condition indicated by @condition becomes
* available.
*
* This must only be called from coroutine context
*/
void qio_channel_yield(QIOChannel *ioc,
GIOCondition condition);
/**
* qio_channel_wait:
* @ioc: the channel object
* @condition: the I/O condition to wait for
*
* Block execution from the current thread until
* the condition indicated by @condition becomes
* available.
*
* This will enter a nested event loop to perform
* the wait.
*/
void qio_channel_wait(QIOChannel *ioc,
GIOCondition condition);
#endif /* QIO_CHANNEL_H */