e928907105
Given several different concepts are suggested for investigation, let's not confuse e.g. ulimit's -R with what was actually intended. Signed-off-by: Andrew Jeffery <andrew@aj.id.au> Reviewed-by: Michael Tokarev <mjt@tls.msk.ru> Signed-off-by: Michael Tokarev <mjt@tls.msk.ru>
4510 lines
138 KiB
C
4510 lines
138 KiB
C
/* This is the Linux kernel elf-loading code, ported into user space */
|
|
#include "qemu/osdep.h"
|
|
#include <sys/param.h>
|
|
|
|
#include <sys/resource.h>
|
|
#include <sys/shm.h>
|
|
|
|
#include "qemu.h"
|
|
#include "user-internals.h"
|
|
#include "signal-common.h"
|
|
#include "loader.h"
|
|
#include "user-mmap.h"
|
|
#include "disas/disas.h"
|
|
#include "qemu/bitops.h"
|
|
#include "qemu/path.h"
|
|
#include "qemu/queue.h"
|
|
#include "qemu/guest-random.h"
|
|
#include "qemu/units.h"
|
|
#include "qemu/selfmap.h"
|
|
#include "qemu/lockable.h"
|
|
#include "qapi/error.h"
|
|
#include "qemu/error-report.h"
|
|
#include "target_signal.h"
|
|
#include "accel/tcg/debuginfo.h"
|
|
|
|
#ifdef _ARCH_PPC64
|
|
#undef ARCH_DLINFO
|
|
#undef ELF_PLATFORM
|
|
#undef ELF_HWCAP
|
|
#undef ELF_HWCAP2
|
|
#undef ELF_CLASS
|
|
#undef ELF_DATA
|
|
#undef ELF_ARCH
|
|
#endif
|
|
|
|
#define ELF_OSABI ELFOSABI_SYSV
|
|
|
|
/* from personality.h */
|
|
|
|
/*
|
|
* Flags for bug emulation.
|
|
*
|
|
* These occupy the top three bytes.
|
|
*/
|
|
enum {
|
|
ADDR_NO_RANDOMIZE = 0x0040000, /* disable randomization of VA space */
|
|
FDPIC_FUNCPTRS = 0x0080000, /* userspace function ptrs point to
|
|
descriptors (signal handling) */
|
|
MMAP_PAGE_ZERO = 0x0100000,
|
|
ADDR_COMPAT_LAYOUT = 0x0200000,
|
|
READ_IMPLIES_EXEC = 0x0400000,
|
|
ADDR_LIMIT_32BIT = 0x0800000,
|
|
SHORT_INODE = 0x1000000,
|
|
WHOLE_SECONDS = 0x2000000,
|
|
STICKY_TIMEOUTS = 0x4000000,
|
|
ADDR_LIMIT_3GB = 0x8000000,
|
|
};
|
|
|
|
/*
|
|
* Personality types.
|
|
*
|
|
* These go in the low byte. Avoid using the top bit, it will
|
|
* conflict with error returns.
|
|
*/
|
|
enum {
|
|
PER_LINUX = 0x0000,
|
|
PER_LINUX_32BIT = 0x0000 | ADDR_LIMIT_32BIT,
|
|
PER_LINUX_FDPIC = 0x0000 | FDPIC_FUNCPTRS,
|
|
PER_SVR4 = 0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
|
|
PER_SVR3 = 0x0002 | STICKY_TIMEOUTS | SHORT_INODE,
|
|
PER_SCOSVR3 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE,
|
|
PER_OSR5 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS,
|
|
PER_WYSEV386 = 0x0004 | STICKY_TIMEOUTS | SHORT_INODE,
|
|
PER_ISCR4 = 0x0005 | STICKY_TIMEOUTS,
|
|
PER_BSD = 0x0006,
|
|
PER_SUNOS = 0x0006 | STICKY_TIMEOUTS,
|
|
PER_XENIX = 0x0007 | STICKY_TIMEOUTS | SHORT_INODE,
|
|
PER_LINUX32 = 0x0008,
|
|
PER_LINUX32_3GB = 0x0008 | ADDR_LIMIT_3GB,
|
|
PER_IRIX32 = 0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */
|
|
PER_IRIXN32 = 0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */
|
|
PER_IRIX64 = 0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */
|
|
PER_RISCOS = 0x000c,
|
|
PER_SOLARIS = 0x000d | STICKY_TIMEOUTS,
|
|
PER_UW7 = 0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
|
|
PER_OSF4 = 0x000f, /* OSF/1 v4 */
|
|
PER_HPUX = 0x0010,
|
|
PER_MASK = 0x00ff,
|
|
};
|
|
|
|
/*
|
|
* Return the base personality without flags.
|
|
*/
|
|
#define personality(pers) (pers & PER_MASK)
|
|
|
|
int info_is_fdpic(struct image_info *info)
|
|
{
|
|
return info->personality == PER_LINUX_FDPIC;
|
|
}
|
|
|
|
/* this flag is uneffective under linux too, should be deleted */
|
|
#ifndef MAP_DENYWRITE
|
|
#define MAP_DENYWRITE 0
|
|
#endif
|
|
|
|
/* should probably go in elf.h */
|
|
#ifndef ELIBBAD
|
|
#define ELIBBAD 80
|
|
#endif
|
|
|
|
#if TARGET_BIG_ENDIAN
|
|
#define ELF_DATA ELFDATA2MSB
|
|
#else
|
|
#define ELF_DATA ELFDATA2LSB
|
|
#endif
|
|
|
|
#ifdef TARGET_ABI_MIPSN32
|
|
typedef abi_ullong target_elf_greg_t;
|
|
#define tswapreg(ptr) tswap64(ptr)
|
|
#else
|
|
typedef abi_ulong target_elf_greg_t;
|
|
#define tswapreg(ptr) tswapal(ptr)
|
|
#endif
|
|
|
|
#ifdef USE_UID16
|
|
typedef abi_ushort target_uid_t;
|
|
typedef abi_ushort target_gid_t;
|
|
#else
|
|
typedef abi_uint target_uid_t;
|
|
typedef abi_uint target_gid_t;
|
|
#endif
|
|
typedef abi_int target_pid_t;
|
|
|
|
#ifdef TARGET_I386
|
|
|
|
#define ELF_HWCAP get_elf_hwcap()
|
|
|
|
static uint32_t get_elf_hwcap(void)
|
|
{
|
|
X86CPU *cpu = X86_CPU(thread_cpu);
|
|
|
|
return cpu->env.features[FEAT_1_EDX];
|
|
}
|
|
|
|
#ifdef TARGET_X86_64
|
|
#define ELF_START_MMAP 0x2aaaaab000ULL
|
|
|
|
#define ELF_CLASS ELFCLASS64
|
|
#define ELF_ARCH EM_X86_64
|
|
|
|
#define ELF_PLATFORM "x86_64"
|
|
|
|
static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
|
|
{
|
|
regs->rax = 0;
|
|
regs->rsp = infop->start_stack;
|
|
regs->rip = infop->entry;
|
|
}
|
|
|
|
#define ELF_NREG 27
|
|
typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
|
|
|
|
/*
|
|
* Note that ELF_NREG should be 29 as there should be place for
|
|
* TRAPNO and ERR "registers" as well but linux doesn't dump
|
|
* those.
|
|
*
|
|
* See linux kernel: arch/x86/include/asm/elf.h
|
|
*/
|
|
static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
|
|
{
|
|
(*regs)[0] = tswapreg(env->regs[15]);
|
|
(*regs)[1] = tswapreg(env->regs[14]);
|
|
(*regs)[2] = tswapreg(env->regs[13]);
|
|
(*regs)[3] = tswapreg(env->regs[12]);
|
|
(*regs)[4] = tswapreg(env->regs[R_EBP]);
|
|
(*regs)[5] = tswapreg(env->regs[R_EBX]);
|
|
(*regs)[6] = tswapreg(env->regs[11]);
|
|
(*regs)[7] = tswapreg(env->regs[10]);
|
|
(*regs)[8] = tswapreg(env->regs[9]);
|
|
(*regs)[9] = tswapreg(env->regs[8]);
|
|
(*regs)[10] = tswapreg(env->regs[R_EAX]);
|
|
(*regs)[11] = tswapreg(env->regs[R_ECX]);
|
|
(*regs)[12] = tswapreg(env->regs[R_EDX]);
|
|
(*regs)[13] = tswapreg(env->regs[R_ESI]);
|
|
(*regs)[14] = tswapreg(env->regs[R_EDI]);
|
|
(*regs)[15] = tswapreg(env->regs[R_EAX]); /* XXX */
|
|
(*regs)[16] = tswapreg(env->eip);
|
|
(*regs)[17] = tswapreg(env->segs[R_CS].selector & 0xffff);
|
|
(*regs)[18] = tswapreg(env->eflags);
|
|
(*regs)[19] = tswapreg(env->regs[R_ESP]);
|
|
(*regs)[20] = tswapreg(env->segs[R_SS].selector & 0xffff);
|
|
(*regs)[21] = tswapreg(env->segs[R_FS].selector & 0xffff);
|
|
(*regs)[22] = tswapreg(env->segs[R_GS].selector & 0xffff);
|
|
(*regs)[23] = tswapreg(env->segs[R_DS].selector & 0xffff);
|
|
(*regs)[24] = tswapreg(env->segs[R_ES].selector & 0xffff);
|
|
(*regs)[25] = tswapreg(env->segs[R_FS].selector & 0xffff);
|
|
(*regs)[26] = tswapreg(env->segs[R_GS].selector & 0xffff);
|
|
}
|
|
|
|
#if ULONG_MAX > UINT32_MAX
|
|
#define INIT_GUEST_COMMPAGE
|
|
static bool init_guest_commpage(void)
|
|
{
|
|
/*
|
|
* The vsyscall page is at a high negative address aka kernel space,
|
|
* which means that we cannot actually allocate it with target_mmap.
|
|
* We still should be able to use page_set_flags, unless the user
|
|
* has specified -R reserved_va, which would trigger an assert().
|
|
*/
|
|
if (reserved_va != 0 &&
|
|
TARGET_VSYSCALL_PAGE + TARGET_PAGE_SIZE - 1 > reserved_va) {
|
|
error_report("Cannot allocate vsyscall page");
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
page_set_flags(TARGET_VSYSCALL_PAGE,
|
|
TARGET_VSYSCALL_PAGE | ~TARGET_PAGE_MASK,
|
|
PAGE_EXEC | PAGE_VALID);
|
|
return true;
|
|
}
|
|
#endif
|
|
#else
|
|
|
|
#define ELF_START_MMAP 0x80000000
|
|
|
|
/*
|
|
* This is used to ensure we don't load something for the wrong architecture.
|
|
*/
|
|
#define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
|
|
|
|
/*
|
|
* These are used to set parameters in the core dumps.
|
|
*/
|
|
#define ELF_CLASS ELFCLASS32
|
|
#define ELF_ARCH EM_386
|
|
|
|
#define ELF_PLATFORM get_elf_platform()
|
|
#define EXSTACK_DEFAULT true
|
|
|
|
static const char *get_elf_platform(void)
|
|
{
|
|
static char elf_platform[] = "i386";
|
|
int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL);
|
|
if (family > 6) {
|
|
family = 6;
|
|
}
|
|
if (family >= 3) {
|
|
elf_platform[1] = '0' + family;
|
|
}
|
|
return elf_platform;
|
|
}
|
|
|
|
static inline void init_thread(struct target_pt_regs *regs,
|
|
struct image_info *infop)
|
|
{
|
|
regs->esp = infop->start_stack;
|
|
regs->eip = infop->entry;
|
|
|
|
/* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program
|
|
starts %edx contains a pointer to a function which might be
|
|
registered using `atexit'. This provides a mean for the
|
|
dynamic linker to call DT_FINI functions for shared libraries
|
|
that have been loaded before the code runs.
|
|
|
|
A value of 0 tells we have no such handler. */
|
|
regs->edx = 0;
|
|
}
|
|
|
|
#define ELF_NREG 17
|
|
typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
|
|
|
|
/*
|
|
* Note that ELF_NREG should be 19 as there should be place for
|
|
* TRAPNO and ERR "registers" as well but linux doesn't dump
|
|
* those.
|
|
*
|
|
* See linux kernel: arch/x86/include/asm/elf.h
|
|
*/
|
|
static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
|
|
{
|
|
(*regs)[0] = tswapreg(env->regs[R_EBX]);
|
|
(*regs)[1] = tswapreg(env->regs[R_ECX]);
|
|
(*regs)[2] = tswapreg(env->regs[R_EDX]);
|
|
(*regs)[3] = tswapreg(env->regs[R_ESI]);
|
|
(*regs)[4] = tswapreg(env->regs[R_EDI]);
|
|
(*regs)[5] = tswapreg(env->regs[R_EBP]);
|
|
(*regs)[6] = tswapreg(env->regs[R_EAX]);
|
|
(*regs)[7] = tswapreg(env->segs[R_DS].selector & 0xffff);
|
|
(*regs)[8] = tswapreg(env->segs[R_ES].selector & 0xffff);
|
|
(*regs)[9] = tswapreg(env->segs[R_FS].selector & 0xffff);
|
|
(*regs)[10] = tswapreg(env->segs[R_GS].selector & 0xffff);
|
|
(*regs)[11] = tswapreg(env->regs[R_EAX]); /* XXX */
|
|
(*regs)[12] = tswapreg(env->eip);
|
|
(*regs)[13] = tswapreg(env->segs[R_CS].selector & 0xffff);
|
|
(*regs)[14] = tswapreg(env->eflags);
|
|
(*regs)[15] = tswapreg(env->regs[R_ESP]);
|
|
(*regs)[16] = tswapreg(env->segs[R_SS].selector & 0xffff);
|
|
}
|
|
#endif
|
|
|
|
#define USE_ELF_CORE_DUMP
|
|
#define ELF_EXEC_PAGESIZE 4096
|
|
|
|
#endif
|
|
|
|
#ifdef TARGET_ARM
|
|
|
|
#ifndef TARGET_AARCH64
|
|
/* 32 bit ARM definitions */
|
|
|
|
#define ELF_START_MMAP 0x80000000
|
|
|
|
#define ELF_ARCH EM_ARM
|
|
#define ELF_CLASS ELFCLASS32
|
|
#define EXSTACK_DEFAULT true
|
|
|
|
static inline void init_thread(struct target_pt_regs *regs,
|
|
struct image_info *infop)
|
|
{
|
|
abi_long stack = infop->start_stack;
|
|
memset(regs, 0, sizeof(*regs));
|
|
|
|
regs->uregs[16] = ARM_CPU_MODE_USR;
|
|
if (infop->entry & 1) {
|
|
regs->uregs[16] |= CPSR_T;
|
|
}
|
|
regs->uregs[15] = infop->entry & 0xfffffffe;
|
|
regs->uregs[13] = infop->start_stack;
|
|
/* FIXME - what to for failure of get_user()? */
|
|
get_user_ual(regs->uregs[2], stack + 8); /* envp */
|
|
get_user_ual(regs->uregs[1], stack + 4); /* envp */
|
|
/* XXX: it seems that r0 is zeroed after ! */
|
|
regs->uregs[0] = 0;
|
|
/* For uClinux PIC binaries. */
|
|
/* XXX: Linux does this only on ARM with no MMU (do we care ?) */
|
|
regs->uregs[10] = infop->start_data;
|
|
|
|
/* Support ARM FDPIC. */
|
|
if (info_is_fdpic(infop)) {
|
|
/* As described in the ABI document, r7 points to the loadmap info
|
|
* prepared by the kernel. If an interpreter is needed, r8 points
|
|
* to the interpreter loadmap and r9 points to the interpreter
|
|
* PT_DYNAMIC info. If no interpreter is needed, r8 is zero, and
|
|
* r9 points to the main program PT_DYNAMIC info.
|
|
*/
|
|
regs->uregs[7] = infop->loadmap_addr;
|
|
if (infop->interpreter_loadmap_addr) {
|
|
/* Executable is dynamically loaded. */
|
|
regs->uregs[8] = infop->interpreter_loadmap_addr;
|
|
regs->uregs[9] = infop->interpreter_pt_dynamic_addr;
|
|
} else {
|
|
regs->uregs[8] = 0;
|
|
regs->uregs[9] = infop->pt_dynamic_addr;
|
|
}
|
|
}
|
|
}
|
|
|
|
#define ELF_NREG 18
|
|
typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
|
|
|
|
static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env)
|
|
{
|
|
(*regs)[0] = tswapreg(env->regs[0]);
|
|
(*regs)[1] = tswapreg(env->regs[1]);
|
|
(*regs)[2] = tswapreg(env->regs[2]);
|
|
(*regs)[3] = tswapreg(env->regs[3]);
|
|
(*regs)[4] = tswapreg(env->regs[4]);
|
|
(*regs)[5] = tswapreg(env->regs[5]);
|
|
(*regs)[6] = tswapreg(env->regs[6]);
|
|
(*regs)[7] = tswapreg(env->regs[7]);
|
|
(*regs)[8] = tswapreg(env->regs[8]);
|
|
(*regs)[9] = tswapreg(env->regs[9]);
|
|
(*regs)[10] = tswapreg(env->regs[10]);
|
|
(*regs)[11] = tswapreg(env->regs[11]);
|
|
(*regs)[12] = tswapreg(env->regs[12]);
|
|
(*regs)[13] = tswapreg(env->regs[13]);
|
|
(*regs)[14] = tswapreg(env->regs[14]);
|
|
(*regs)[15] = tswapreg(env->regs[15]);
|
|
|
|
(*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env));
|
|
(*regs)[17] = tswapreg(env->regs[0]); /* XXX */
|
|
}
|
|
|
|
#define USE_ELF_CORE_DUMP
|
|
#define ELF_EXEC_PAGESIZE 4096
|
|
|
|
enum
|
|
{
|
|
ARM_HWCAP_ARM_SWP = 1 << 0,
|
|
ARM_HWCAP_ARM_HALF = 1 << 1,
|
|
ARM_HWCAP_ARM_THUMB = 1 << 2,
|
|
ARM_HWCAP_ARM_26BIT = 1 << 3,
|
|
ARM_HWCAP_ARM_FAST_MULT = 1 << 4,
|
|
ARM_HWCAP_ARM_FPA = 1 << 5,
|
|
ARM_HWCAP_ARM_VFP = 1 << 6,
|
|
ARM_HWCAP_ARM_EDSP = 1 << 7,
|
|
ARM_HWCAP_ARM_JAVA = 1 << 8,
|
|
ARM_HWCAP_ARM_IWMMXT = 1 << 9,
|
|
ARM_HWCAP_ARM_CRUNCH = 1 << 10,
|
|
ARM_HWCAP_ARM_THUMBEE = 1 << 11,
|
|
ARM_HWCAP_ARM_NEON = 1 << 12,
|
|
ARM_HWCAP_ARM_VFPv3 = 1 << 13,
|
|
ARM_HWCAP_ARM_VFPv3D16 = 1 << 14,
|
|
ARM_HWCAP_ARM_TLS = 1 << 15,
|
|
ARM_HWCAP_ARM_VFPv4 = 1 << 16,
|
|
ARM_HWCAP_ARM_IDIVA = 1 << 17,
|
|
ARM_HWCAP_ARM_IDIVT = 1 << 18,
|
|
ARM_HWCAP_ARM_VFPD32 = 1 << 19,
|
|
ARM_HWCAP_ARM_LPAE = 1 << 20,
|
|
ARM_HWCAP_ARM_EVTSTRM = 1 << 21,
|
|
};
|
|
|
|
enum {
|
|
ARM_HWCAP2_ARM_AES = 1 << 0,
|
|
ARM_HWCAP2_ARM_PMULL = 1 << 1,
|
|
ARM_HWCAP2_ARM_SHA1 = 1 << 2,
|
|
ARM_HWCAP2_ARM_SHA2 = 1 << 3,
|
|
ARM_HWCAP2_ARM_CRC32 = 1 << 4,
|
|
};
|
|
|
|
/* The commpage only exists for 32 bit kernels */
|
|
|
|
#define HI_COMMPAGE (intptr_t)0xffff0f00u
|
|
|
|
static bool init_guest_commpage(void)
|
|
{
|
|
abi_ptr commpage = HI_COMMPAGE & -qemu_host_page_size;
|
|
void *want = g2h_untagged(commpage);
|
|
void *addr = mmap(want, qemu_host_page_size, PROT_READ | PROT_WRITE,
|
|
MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED, -1, 0);
|
|
|
|
if (addr == MAP_FAILED) {
|
|
perror("Allocating guest commpage");
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
if (addr != want) {
|
|
return false;
|
|
}
|
|
|
|
/* Set kernel helper versions; rest of page is 0. */
|
|
__put_user(5, (uint32_t *)g2h_untagged(0xffff0ffcu));
|
|
|
|
if (mprotect(addr, qemu_host_page_size, PROT_READ)) {
|
|
perror("Protecting guest commpage");
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
|
|
page_set_flags(commpage, commpage | ~qemu_host_page_mask,
|
|
PAGE_READ | PAGE_EXEC | PAGE_VALID);
|
|
return true;
|
|
}
|
|
|
|
#define ELF_HWCAP get_elf_hwcap()
|
|
#define ELF_HWCAP2 get_elf_hwcap2()
|
|
|
|
static uint32_t get_elf_hwcap(void)
|
|
{
|
|
ARMCPU *cpu = ARM_CPU(thread_cpu);
|
|
uint32_t hwcaps = 0;
|
|
|
|
hwcaps |= ARM_HWCAP_ARM_SWP;
|
|
hwcaps |= ARM_HWCAP_ARM_HALF;
|
|
hwcaps |= ARM_HWCAP_ARM_THUMB;
|
|
hwcaps |= ARM_HWCAP_ARM_FAST_MULT;
|
|
|
|
/* probe for the extra features */
|
|
#define GET_FEATURE(feat, hwcap) \
|
|
do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
|
|
|
|
#define GET_FEATURE_ID(feat, hwcap) \
|
|
do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
|
|
|
|
/* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */
|
|
GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP);
|
|
GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT);
|
|
GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE);
|
|
GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON);
|
|
GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS);
|
|
GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE);
|
|
GET_FEATURE_ID(aa32_arm_div, ARM_HWCAP_ARM_IDIVA);
|
|
GET_FEATURE_ID(aa32_thumb_div, ARM_HWCAP_ARM_IDIVT);
|
|
GET_FEATURE_ID(aa32_vfp, ARM_HWCAP_ARM_VFP);
|
|
|
|
if (cpu_isar_feature(aa32_fpsp_v3, cpu) ||
|
|
cpu_isar_feature(aa32_fpdp_v3, cpu)) {
|
|
hwcaps |= ARM_HWCAP_ARM_VFPv3;
|
|
if (cpu_isar_feature(aa32_simd_r32, cpu)) {
|
|
hwcaps |= ARM_HWCAP_ARM_VFPD32;
|
|
} else {
|
|
hwcaps |= ARM_HWCAP_ARM_VFPv3D16;
|
|
}
|
|
}
|
|
GET_FEATURE_ID(aa32_simdfmac, ARM_HWCAP_ARM_VFPv4);
|
|
|
|
return hwcaps;
|
|
}
|
|
|
|
static uint32_t get_elf_hwcap2(void)
|
|
{
|
|
ARMCPU *cpu = ARM_CPU(thread_cpu);
|
|
uint32_t hwcaps = 0;
|
|
|
|
GET_FEATURE_ID(aa32_aes, ARM_HWCAP2_ARM_AES);
|
|
GET_FEATURE_ID(aa32_pmull, ARM_HWCAP2_ARM_PMULL);
|
|
GET_FEATURE_ID(aa32_sha1, ARM_HWCAP2_ARM_SHA1);
|
|
GET_FEATURE_ID(aa32_sha2, ARM_HWCAP2_ARM_SHA2);
|
|
GET_FEATURE_ID(aa32_crc32, ARM_HWCAP2_ARM_CRC32);
|
|
return hwcaps;
|
|
}
|
|
|
|
#undef GET_FEATURE
|
|
#undef GET_FEATURE_ID
|
|
|
|
#define ELF_PLATFORM get_elf_platform()
|
|
|
|
static const char *get_elf_platform(void)
|
|
{
|
|
CPUARMState *env = thread_cpu->env_ptr;
|
|
|
|
#if TARGET_BIG_ENDIAN
|
|
# define END "b"
|
|
#else
|
|
# define END "l"
|
|
#endif
|
|
|
|
if (arm_feature(env, ARM_FEATURE_V8)) {
|
|
return "v8" END;
|
|
} else if (arm_feature(env, ARM_FEATURE_V7)) {
|
|
if (arm_feature(env, ARM_FEATURE_M)) {
|
|
return "v7m" END;
|
|
} else {
|
|
return "v7" END;
|
|
}
|
|
} else if (arm_feature(env, ARM_FEATURE_V6)) {
|
|
return "v6" END;
|
|
} else if (arm_feature(env, ARM_FEATURE_V5)) {
|
|
return "v5" END;
|
|
} else {
|
|
return "v4" END;
|
|
}
|
|
|
|
#undef END
|
|
}
|
|
|
|
#else
|
|
/* 64 bit ARM definitions */
|
|
#define ELF_START_MMAP 0x80000000
|
|
|
|
#define ELF_ARCH EM_AARCH64
|
|
#define ELF_CLASS ELFCLASS64
|
|
#if TARGET_BIG_ENDIAN
|
|
# define ELF_PLATFORM "aarch64_be"
|
|
#else
|
|
# define ELF_PLATFORM "aarch64"
|
|
#endif
|
|
|
|
static inline void init_thread(struct target_pt_regs *regs,
|
|
struct image_info *infop)
|
|
{
|
|
abi_long stack = infop->start_stack;
|
|
memset(regs, 0, sizeof(*regs));
|
|
|
|
regs->pc = infop->entry & ~0x3ULL;
|
|
regs->sp = stack;
|
|
}
|
|
|
|
#define ELF_NREG 34
|
|
typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
|
|
|
|
static void elf_core_copy_regs(target_elf_gregset_t *regs,
|
|
const CPUARMState *env)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < 32; i++) {
|
|
(*regs)[i] = tswapreg(env->xregs[i]);
|
|
}
|
|
(*regs)[32] = tswapreg(env->pc);
|
|
(*regs)[33] = tswapreg(pstate_read((CPUARMState *)env));
|
|
}
|
|
|
|
#define USE_ELF_CORE_DUMP
|
|
#define ELF_EXEC_PAGESIZE 4096
|
|
|
|
enum {
|
|
ARM_HWCAP_A64_FP = 1 << 0,
|
|
ARM_HWCAP_A64_ASIMD = 1 << 1,
|
|
ARM_HWCAP_A64_EVTSTRM = 1 << 2,
|
|
ARM_HWCAP_A64_AES = 1 << 3,
|
|
ARM_HWCAP_A64_PMULL = 1 << 4,
|
|
ARM_HWCAP_A64_SHA1 = 1 << 5,
|
|
ARM_HWCAP_A64_SHA2 = 1 << 6,
|
|
ARM_HWCAP_A64_CRC32 = 1 << 7,
|
|
ARM_HWCAP_A64_ATOMICS = 1 << 8,
|
|
ARM_HWCAP_A64_FPHP = 1 << 9,
|
|
ARM_HWCAP_A64_ASIMDHP = 1 << 10,
|
|
ARM_HWCAP_A64_CPUID = 1 << 11,
|
|
ARM_HWCAP_A64_ASIMDRDM = 1 << 12,
|
|
ARM_HWCAP_A64_JSCVT = 1 << 13,
|
|
ARM_HWCAP_A64_FCMA = 1 << 14,
|
|
ARM_HWCAP_A64_LRCPC = 1 << 15,
|
|
ARM_HWCAP_A64_DCPOP = 1 << 16,
|
|
ARM_HWCAP_A64_SHA3 = 1 << 17,
|
|
ARM_HWCAP_A64_SM3 = 1 << 18,
|
|
ARM_HWCAP_A64_SM4 = 1 << 19,
|
|
ARM_HWCAP_A64_ASIMDDP = 1 << 20,
|
|
ARM_HWCAP_A64_SHA512 = 1 << 21,
|
|
ARM_HWCAP_A64_SVE = 1 << 22,
|
|
ARM_HWCAP_A64_ASIMDFHM = 1 << 23,
|
|
ARM_HWCAP_A64_DIT = 1 << 24,
|
|
ARM_HWCAP_A64_USCAT = 1 << 25,
|
|
ARM_HWCAP_A64_ILRCPC = 1 << 26,
|
|
ARM_HWCAP_A64_FLAGM = 1 << 27,
|
|
ARM_HWCAP_A64_SSBS = 1 << 28,
|
|
ARM_HWCAP_A64_SB = 1 << 29,
|
|
ARM_HWCAP_A64_PACA = 1 << 30,
|
|
ARM_HWCAP_A64_PACG = 1UL << 31,
|
|
|
|
ARM_HWCAP2_A64_DCPODP = 1 << 0,
|
|
ARM_HWCAP2_A64_SVE2 = 1 << 1,
|
|
ARM_HWCAP2_A64_SVEAES = 1 << 2,
|
|
ARM_HWCAP2_A64_SVEPMULL = 1 << 3,
|
|
ARM_HWCAP2_A64_SVEBITPERM = 1 << 4,
|
|
ARM_HWCAP2_A64_SVESHA3 = 1 << 5,
|
|
ARM_HWCAP2_A64_SVESM4 = 1 << 6,
|
|
ARM_HWCAP2_A64_FLAGM2 = 1 << 7,
|
|
ARM_HWCAP2_A64_FRINT = 1 << 8,
|
|
ARM_HWCAP2_A64_SVEI8MM = 1 << 9,
|
|
ARM_HWCAP2_A64_SVEF32MM = 1 << 10,
|
|
ARM_HWCAP2_A64_SVEF64MM = 1 << 11,
|
|
ARM_HWCAP2_A64_SVEBF16 = 1 << 12,
|
|
ARM_HWCAP2_A64_I8MM = 1 << 13,
|
|
ARM_HWCAP2_A64_BF16 = 1 << 14,
|
|
ARM_HWCAP2_A64_DGH = 1 << 15,
|
|
ARM_HWCAP2_A64_RNG = 1 << 16,
|
|
ARM_HWCAP2_A64_BTI = 1 << 17,
|
|
ARM_HWCAP2_A64_MTE = 1 << 18,
|
|
ARM_HWCAP2_A64_ECV = 1 << 19,
|
|
ARM_HWCAP2_A64_AFP = 1 << 20,
|
|
ARM_HWCAP2_A64_RPRES = 1 << 21,
|
|
ARM_HWCAP2_A64_MTE3 = 1 << 22,
|
|
ARM_HWCAP2_A64_SME = 1 << 23,
|
|
ARM_HWCAP2_A64_SME_I16I64 = 1 << 24,
|
|
ARM_HWCAP2_A64_SME_F64F64 = 1 << 25,
|
|
ARM_HWCAP2_A64_SME_I8I32 = 1 << 26,
|
|
ARM_HWCAP2_A64_SME_F16F32 = 1 << 27,
|
|
ARM_HWCAP2_A64_SME_B16F32 = 1 << 28,
|
|
ARM_HWCAP2_A64_SME_F32F32 = 1 << 29,
|
|
ARM_HWCAP2_A64_SME_FA64 = 1 << 30,
|
|
};
|
|
|
|
#define ELF_HWCAP get_elf_hwcap()
|
|
#define ELF_HWCAP2 get_elf_hwcap2()
|
|
|
|
#define GET_FEATURE_ID(feat, hwcap) \
|
|
do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
|
|
|
|
static uint32_t get_elf_hwcap(void)
|
|
{
|
|
ARMCPU *cpu = ARM_CPU(thread_cpu);
|
|
uint32_t hwcaps = 0;
|
|
|
|
hwcaps |= ARM_HWCAP_A64_FP;
|
|
hwcaps |= ARM_HWCAP_A64_ASIMD;
|
|
hwcaps |= ARM_HWCAP_A64_CPUID;
|
|
|
|
/* probe for the extra features */
|
|
|
|
GET_FEATURE_ID(aa64_aes, ARM_HWCAP_A64_AES);
|
|
GET_FEATURE_ID(aa64_pmull, ARM_HWCAP_A64_PMULL);
|
|
GET_FEATURE_ID(aa64_sha1, ARM_HWCAP_A64_SHA1);
|
|
GET_FEATURE_ID(aa64_sha256, ARM_HWCAP_A64_SHA2);
|
|
GET_FEATURE_ID(aa64_sha512, ARM_HWCAP_A64_SHA512);
|
|
GET_FEATURE_ID(aa64_crc32, ARM_HWCAP_A64_CRC32);
|
|
GET_FEATURE_ID(aa64_sha3, ARM_HWCAP_A64_SHA3);
|
|
GET_FEATURE_ID(aa64_sm3, ARM_HWCAP_A64_SM3);
|
|
GET_FEATURE_ID(aa64_sm4, ARM_HWCAP_A64_SM4);
|
|
GET_FEATURE_ID(aa64_fp16, ARM_HWCAP_A64_FPHP | ARM_HWCAP_A64_ASIMDHP);
|
|
GET_FEATURE_ID(aa64_atomics, ARM_HWCAP_A64_ATOMICS);
|
|
GET_FEATURE_ID(aa64_rdm, ARM_HWCAP_A64_ASIMDRDM);
|
|
GET_FEATURE_ID(aa64_dp, ARM_HWCAP_A64_ASIMDDP);
|
|
GET_FEATURE_ID(aa64_fcma, ARM_HWCAP_A64_FCMA);
|
|
GET_FEATURE_ID(aa64_sve, ARM_HWCAP_A64_SVE);
|
|
GET_FEATURE_ID(aa64_pauth, ARM_HWCAP_A64_PACA | ARM_HWCAP_A64_PACG);
|
|
GET_FEATURE_ID(aa64_fhm, ARM_HWCAP_A64_ASIMDFHM);
|
|
GET_FEATURE_ID(aa64_jscvt, ARM_HWCAP_A64_JSCVT);
|
|
GET_FEATURE_ID(aa64_sb, ARM_HWCAP_A64_SB);
|
|
GET_FEATURE_ID(aa64_condm_4, ARM_HWCAP_A64_FLAGM);
|
|
GET_FEATURE_ID(aa64_dcpop, ARM_HWCAP_A64_DCPOP);
|
|
GET_FEATURE_ID(aa64_rcpc_8_3, ARM_HWCAP_A64_LRCPC);
|
|
GET_FEATURE_ID(aa64_rcpc_8_4, ARM_HWCAP_A64_ILRCPC);
|
|
|
|
return hwcaps;
|
|
}
|
|
|
|
static uint32_t get_elf_hwcap2(void)
|
|
{
|
|
ARMCPU *cpu = ARM_CPU(thread_cpu);
|
|
uint32_t hwcaps = 0;
|
|
|
|
GET_FEATURE_ID(aa64_dcpodp, ARM_HWCAP2_A64_DCPODP);
|
|
GET_FEATURE_ID(aa64_sve2, ARM_HWCAP2_A64_SVE2);
|
|
GET_FEATURE_ID(aa64_sve2_aes, ARM_HWCAP2_A64_SVEAES);
|
|
GET_FEATURE_ID(aa64_sve2_pmull128, ARM_HWCAP2_A64_SVEPMULL);
|
|
GET_FEATURE_ID(aa64_sve2_bitperm, ARM_HWCAP2_A64_SVEBITPERM);
|
|
GET_FEATURE_ID(aa64_sve2_sha3, ARM_HWCAP2_A64_SVESHA3);
|
|
GET_FEATURE_ID(aa64_sve2_sm4, ARM_HWCAP2_A64_SVESM4);
|
|
GET_FEATURE_ID(aa64_condm_5, ARM_HWCAP2_A64_FLAGM2);
|
|
GET_FEATURE_ID(aa64_frint, ARM_HWCAP2_A64_FRINT);
|
|
GET_FEATURE_ID(aa64_sve_i8mm, ARM_HWCAP2_A64_SVEI8MM);
|
|
GET_FEATURE_ID(aa64_sve_f32mm, ARM_HWCAP2_A64_SVEF32MM);
|
|
GET_FEATURE_ID(aa64_sve_f64mm, ARM_HWCAP2_A64_SVEF64MM);
|
|
GET_FEATURE_ID(aa64_sve_bf16, ARM_HWCAP2_A64_SVEBF16);
|
|
GET_FEATURE_ID(aa64_i8mm, ARM_HWCAP2_A64_I8MM);
|
|
GET_FEATURE_ID(aa64_bf16, ARM_HWCAP2_A64_BF16);
|
|
GET_FEATURE_ID(aa64_rndr, ARM_HWCAP2_A64_RNG);
|
|
GET_FEATURE_ID(aa64_bti, ARM_HWCAP2_A64_BTI);
|
|
GET_FEATURE_ID(aa64_mte, ARM_HWCAP2_A64_MTE);
|
|
GET_FEATURE_ID(aa64_sme, (ARM_HWCAP2_A64_SME |
|
|
ARM_HWCAP2_A64_SME_F32F32 |
|
|
ARM_HWCAP2_A64_SME_B16F32 |
|
|
ARM_HWCAP2_A64_SME_F16F32 |
|
|
ARM_HWCAP2_A64_SME_I8I32));
|
|
GET_FEATURE_ID(aa64_sme_f64f64, ARM_HWCAP2_A64_SME_F64F64);
|
|
GET_FEATURE_ID(aa64_sme_i16i64, ARM_HWCAP2_A64_SME_I16I64);
|
|
GET_FEATURE_ID(aa64_sme_fa64, ARM_HWCAP2_A64_SME_FA64);
|
|
|
|
return hwcaps;
|
|
}
|
|
|
|
#undef GET_FEATURE_ID
|
|
|
|
#endif /* not TARGET_AARCH64 */
|
|
#endif /* TARGET_ARM */
|
|
|
|
#ifdef TARGET_SPARC
|
|
#ifdef TARGET_SPARC64
|
|
|
|
#define ELF_START_MMAP 0x80000000
|
|
#define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
|
|
| HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9)
|
|
#ifndef TARGET_ABI32
|
|
#define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS )
|
|
#else
|
|
#define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC )
|
|
#endif
|
|
|
|
#define ELF_CLASS ELFCLASS64
|
|
#define ELF_ARCH EM_SPARCV9
|
|
#else
|
|
#define ELF_START_MMAP 0x80000000
|
|
#define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
|
|
| HWCAP_SPARC_MULDIV)
|
|
#define ELF_CLASS ELFCLASS32
|
|
#define ELF_ARCH EM_SPARC
|
|
#endif /* TARGET_SPARC64 */
|
|
|
|
static inline void init_thread(struct target_pt_regs *regs,
|
|
struct image_info *infop)
|
|
{
|
|
/* Note that target_cpu_copy_regs does not read psr/tstate. */
|
|
regs->pc = infop->entry;
|
|
regs->npc = regs->pc + 4;
|
|
regs->y = 0;
|
|
regs->u_regs[14] = (infop->start_stack - 16 * sizeof(abi_ulong)
|
|
- TARGET_STACK_BIAS);
|
|
}
|
|
#endif /* TARGET_SPARC */
|
|
|
|
#ifdef TARGET_PPC
|
|
|
|
#define ELF_MACHINE PPC_ELF_MACHINE
|
|
#define ELF_START_MMAP 0x80000000
|
|
|
|
#if defined(TARGET_PPC64)
|
|
|
|
#define elf_check_arch(x) ( (x) == EM_PPC64 )
|
|
|
|
#define ELF_CLASS ELFCLASS64
|
|
|
|
#else
|
|
|
|
#define ELF_CLASS ELFCLASS32
|
|
#define EXSTACK_DEFAULT true
|
|
|
|
#endif
|
|
|
|
#define ELF_ARCH EM_PPC
|
|
|
|
/* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP).
|
|
See arch/powerpc/include/asm/cputable.h. */
|
|
enum {
|
|
QEMU_PPC_FEATURE_32 = 0x80000000,
|
|
QEMU_PPC_FEATURE_64 = 0x40000000,
|
|
QEMU_PPC_FEATURE_601_INSTR = 0x20000000,
|
|
QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000,
|
|
QEMU_PPC_FEATURE_HAS_FPU = 0x08000000,
|
|
QEMU_PPC_FEATURE_HAS_MMU = 0x04000000,
|
|
QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000,
|
|
QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000,
|
|
QEMU_PPC_FEATURE_HAS_SPE = 0x00800000,
|
|
QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000,
|
|
QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000,
|
|
QEMU_PPC_FEATURE_NO_TB = 0x00100000,
|
|
QEMU_PPC_FEATURE_POWER4 = 0x00080000,
|
|
QEMU_PPC_FEATURE_POWER5 = 0x00040000,
|
|
QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000,
|
|
QEMU_PPC_FEATURE_CELL = 0x00010000,
|
|
QEMU_PPC_FEATURE_BOOKE = 0x00008000,
|
|
QEMU_PPC_FEATURE_SMT = 0x00004000,
|
|
QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000,
|
|
QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000,
|
|
QEMU_PPC_FEATURE_PA6T = 0x00000800,
|
|
QEMU_PPC_FEATURE_HAS_DFP = 0x00000400,
|
|
QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200,
|
|
QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100,
|
|
QEMU_PPC_FEATURE_HAS_VSX = 0x00000080,
|
|
QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040,
|
|
|
|
QEMU_PPC_FEATURE_TRUE_LE = 0x00000002,
|
|
QEMU_PPC_FEATURE_PPC_LE = 0x00000001,
|
|
|
|
/* Feature definitions in AT_HWCAP2. */
|
|
QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */
|
|
QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */
|
|
QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */
|
|
QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */
|
|
QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */
|
|
QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */
|
|
QEMU_PPC_FEATURE2_VEC_CRYPTO = 0x02000000,
|
|
QEMU_PPC_FEATURE2_HTM_NOSC = 0x01000000,
|
|
QEMU_PPC_FEATURE2_ARCH_3_00 = 0x00800000, /* ISA 3.00 */
|
|
QEMU_PPC_FEATURE2_HAS_IEEE128 = 0x00400000, /* VSX IEEE Bin Float 128-bit */
|
|
QEMU_PPC_FEATURE2_DARN = 0x00200000, /* darn random number insn */
|
|
QEMU_PPC_FEATURE2_SCV = 0x00100000, /* scv syscall */
|
|
QEMU_PPC_FEATURE2_HTM_NO_SUSPEND = 0x00080000, /* TM w/o suspended state */
|
|
QEMU_PPC_FEATURE2_ARCH_3_1 = 0x00040000, /* ISA 3.1 */
|
|
QEMU_PPC_FEATURE2_MMA = 0x00020000, /* Matrix-Multiply Assist */
|
|
};
|
|
|
|
#define ELF_HWCAP get_elf_hwcap()
|
|
|
|
static uint32_t get_elf_hwcap(void)
|
|
{
|
|
PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
|
|
uint32_t features = 0;
|
|
|
|
/* We don't have to be terribly complete here; the high points are
|
|
Altivec/FP/SPE support. Anything else is just a bonus. */
|
|
#define GET_FEATURE(flag, feature) \
|
|
do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
|
|
#define GET_FEATURE2(flags, feature) \
|
|
do { \
|
|
if ((cpu->env.insns_flags2 & flags) == flags) { \
|
|
features |= feature; \
|
|
} \
|
|
} while (0)
|
|
GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64);
|
|
GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU);
|
|
GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC);
|
|
GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE);
|
|
GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE);
|
|
GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE);
|
|
GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE);
|
|
GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC);
|
|
GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP);
|
|
GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX);
|
|
GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 |
|
|
PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206),
|
|
QEMU_PPC_FEATURE_ARCH_2_06);
|
|
#undef GET_FEATURE
|
|
#undef GET_FEATURE2
|
|
|
|
return features;
|
|
}
|
|
|
|
#define ELF_HWCAP2 get_elf_hwcap2()
|
|
|
|
static uint32_t get_elf_hwcap2(void)
|
|
{
|
|
PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
|
|
uint32_t features = 0;
|
|
|
|
#define GET_FEATURE(flag, feature) \
|
|
do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
|
|
#define GET_FEATURE2(flag, feature) \
|
|
do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0)
|
|
|
|
GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL);
|
|
GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR);
|
|
GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 |
|
|
PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07 |
|
|
QEMU_PPC_FEATURE2_VEC_CRYPTO);
|
|
GET_FEATURE2(PPC2_ISA300, QEMU_PPC_FEATURE2_ARCH_3_00 |
|
|
QEMU_PPC_FEATURE2_DARN | QEMU_PPC_FEATURE2_HAS_IEEE128);
|
|
GET_FEATURE2(PPC2_ISA310, QEMU_PPC_FEATURE2_ARCH_3_1 |
|
|
QEMU_PPC_FEATURE2_MMA);
|
|
|
|
#undef GET_FEATURE
|
|
#undef GET_FEATURE2
|
|
|
|
return features;
|
|
}
|
|
|
|
/*
|
|
* The requirements here are:
|
|
* - keep the final alignment of sp (sp & 0xf)
|
|
* - make sure the 32-bit value at the first 16 byte aligned position of
|
|
* AUXV is greater than 16 for glibc compatibility.
|
|
* AT_IGNOREPPC is used for that.
|
|
* - for compatibility with glibc ARCH_DLINFO must always be defined on PPC,
|
|
* even if DLINFO_ARCH_ITEMS goes to zero or is undefined.
|
|
*/
|
|
#define DLINFO_ARCH_ITEMS 5
|
|
#define ARCH_DLINFO \
|
|
do { \
|
|
PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); \
|
|
/* \
|
|
* Handle glibc compatibility: these magic entries must \
|
|
* be at the lowest addresses in the final auxv. \
|
|
*/ \
|
|
NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
|
|
NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
|
|
NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \
|
|
NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \
|
|
NEW_AUX_ENT(AT_UCACHEBSIZE, 0); \
|
|
} while (0)
|
|
|
|
static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop)
|
|
{
|
|
_regs->gpr[1] = infop->start_stack;
|
|
#if defined(TARGET_PPC64)
|
|
if (get_ppc64_abi(infop) < 2) {
|
|
uint64_t val;
|
|
get_user_u64(val, infop->entry + 8);
|
|
_regs->gpr[2] = val + infop->load_bias;
|
|
get_user_u64(val, infop->entry);
|
|
infop->entry = val + infop->load_bias;
|
|
} else {
|
|
_regs->gpr[12] = infop->entry; /* r12 set to global entry address */
|
|
}
|
|
#endif
|
|
_regs->nip = infop->entry;
|
|
}
|
|
|
|
/* See linux kernel: arch/powerpc/include/asm/elf.h. */
|
|
#define ELF_NREG 48
|
|
typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
|
|
|
|
static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env)
|
|
{
|
|
int i;
|
|
target_ulong ccr = 0;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(env->gpr); i++) {
|
|
(*regs)[i] = tswapreg(env->gpr[i]);
|
|
}
|
|
|
|
(*regs)[32] = tswapreg(env->nip);
|
|
(*regs)[33] = tswapreg(env->msr);
|
|
(*regs)[35] = tswapreg(env->ctr);
|
|
(*regs)[36] = tswapreg(env->lr);
|
|
(*regs)[37] = tswapreg(cpu_read_xer(env));
|
|
|
|
ccr = ppc_get_cr(env);
|
|
(*regs)[38] = tswapreg(ccr);
|
|
}
|
|
|
|
#define USE_ELF_CORE_DUMP
|
|
#define ELF_EXEC_PAGESIZE 4096
|
|
|
|
#endif
|
|
|
|
#ifdef TARGET_LOONGARCH64
|
|
|
|
#define ELF_START_MMAP 0x80000000
|
|
|
|
#define ELF_CLASS ELFCLASS64
|
|
#define ELF_ARCH EM_LOONGARCH
|
|
#define EXSTACK_DEFAULT true
|
|
|
|
#define elf_check_arch(x) ((x) == EM_LOONGARCH)
|
|
|
|
static inline void init_thread(struct target_pt_regs *regs,
|
|
struct image_info *infop)
|
|
{
|
|
/*Set crmd PG,DA = 1,0 */
|
|
regs->csr.crmd = 2 << 3;
|
|
regs->csr.era = infop->entry;
|
|
regs->regs[3] = infop->start_stack;
|
|
}
|
|
|
|
/* See linux kernel: arch/loongarch/include/asm/elf.h */
|
|
#define ELF_NREG 45
|
|
typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
|
|
|
|
enum {
|
|
TARGET_EF_R0 = 0,
|
|
TARGET_EF_CSR_ERA = TARGET_EF_R0 + 33,
|
|
TARGET_EF_CSR_BADV = TARGET_EF_R0 + 34,
|
|
};
|
|
|
|
static void elf_core_copy_regs(target_elf_gregset_t *regs,
|
|
const CPULoongArchState *env)
|
|
{
|
|
int i;
|
|
|
|
(*regs)[TARGET_EF_R0] = 0;
|
|
|
|
for (i = 1; i < ARRAY_SIZE(env->gpr); i++) {
|
|
(*regs)[TARGET_EF_R0 + i] = tswapreg(env->gpr[i]);
|
|
}
|
|
|
|
(*regs)[TARGET_EF_CSR_ERA] = tswapreg(env->pc);
|
|
(*regs)[TARGET_EF_CSR_BADV] = tswapreg(env->CSR_BADV);
|
|
}
|
|
|
|
#define USE_ELF_CORE_DUMP
|
|
#define ELF_EXEC_PAGESIZE 4096
|
|
|
|
#define ELF_HWCAP get_elf_hwcap()
|
|
|
|
/* See arch/loongarch/include/uapi/asm/hwcap.h */
|
|
enum {
|
|
HWCAP_LOONGARCH_CPUCFG = (1 << 0),
|
|
HWCAP_LOONGARCH_LAM = (1 << 1),
|
|
HWCAP_LOONGARCH_UAL = (1 << 2),
|
|
HWCAP_LOONGARCH_FPU = (1 << 3),
|
|
HWCAP_LOONGARCH_LSX = (1 << 4),
|
|
HWCAP_LOONGARCH_LASX = (1 << 5),
|
|
HWCAP_LOONGARCH_CRC32 = (1 << 6),
|
|
HWCAP_LOONGARCH_COMPLEX = (1 << 7),
|
|
HWCAP_LOONGARCH_CRYPTO = (1 << 8),
|
|
HWCAP_LOONGARCH_LVZ = (1 << 9),
|
|
HWCAP_LOONGARCH_LBT_X86 = (1 << 10),
|
|
HWCAP_LOONGARCH_LBT_ARM = (1 << 11),
|
|
HWCAP_LOONGARCH_LBT_MIPS = (1 << 12),
|
|
};
|
|
|
|
static uint32_t get_elf_hwcap(void)
|
|
{
|
|
LoongArchCPU *cpu = LOONGARCH_CPU(thread_cpu);
|
|
uint32_t hwcaps = 0;
|
|
|
|
hwcaps |= HWCAP_LOONGARCH_CRC32;
|
|
|
|
if (FIELD_EX32(cpu->env.cpucfg[1], CPUCFG1, UAL)) {
|
|
hwcaps |= HWCAP_LOONGARCH_UAL;
|
|
}
|
|
|
|
if (FIELD_EX32(cpu->env.cpucfg[2], CPUCFG2, FP)) {
|
|
hwcaps |= HWCAP_LOONGARCH_FPU;
|
|
}
|
|
|
|
if (FIELD_EX32(cpu->env.cpucfg[2], CPUCFG2, LAM)) {
|
|
hwcaps |= HWCAP_LOONGARCH_LAM;
|
|
}
|
|
|
|
return hwcaps;
|
|
}
|
|
|
|
#define ELF_PLATFORM "loongarch"
|
|
|
|
#endif /* TARGET_LOONGARCH64 */
|
|
|
|
#ifdef TARGET_MIPS
|
|
|
|
#define ELF_START_MMAP 0x80000000
|
|
|
|
#ifdef TARGET_MIPS64
|
|
#define ELF_CLASS ELFCLASS64
|
|
#else
|
|
#define ELF_CLASS ELFCLASS32
|
|
#endif
|
|
#define ELF_ARCH EM_MIPS
|
|
#define EXSTACK_DEFAULT true
|
|
|
|
#ifdef TARGET_ABI_MIPSN32
|
|
#define elf_check_abi(x) ((x) & EF_MIPS_ABI2)
|
|
#else
|
|
#define elf_check_abi(x) (!((x) & EF_MIPS_ABI2))
|
|
#endif
|
|
|
|
#define ELF_BASE_PLATFORM get_elf_base_platform()
|
|
|
|
#define MATCH_PLATFORM_INSN(_flags, _base_platform) \
|
|
do { if ((cpu->env.insn_flags & (_flags)) == _flags) \
|
|
{ return _base_platform; } } while (0)
|
|
|
|
static const char *get_elf_base_platform(void)
|
|
{
|
|
MIPSCPU *cpu = MIPS_CPU(thread_cpu);
|
|
|
|
/* 64 bit ISAs goes first */
|
|
MATCH_PLATFORM_INSN(CPU_MIPS64R6, "mips64r6");
|
|
MATCH_PLATFORM_INSN(CPU_MIPS64R5, "mips64r5");
|
|
MATCH_PLATFORM_INSN(CPU_MIPS64R2, "mips64r2");
|
|
MATCH_PLATFORM_INSN(CPU_MIPS64R1, "mips64");
|
|
MATCH_PLATFORM_INSN(CPU_MIPS5, "mips5");
|
|
MATCH_PLATFORM_INSN(CPU_MIPS4, "mips4");
|
|
MATCH_PLATFORM_INSN(CPU_MIPS3, "mips3");
|
|
|
|
/* 32 bit ISAs */
|
|
MATCH_PLATFORM_INSN(CPU_MIPS32R6, "mips32r6");
|
|
MATCH_PLATFORM_INSN(CPU_MIPS32R5, "mips32r5");
|
|
MATCH_PLATFORM_INSN(CPU_MIPS32R2, "mips32r2");
|
|
MATCH_PLATFORM_INSN(CPU_MIPS32R1, "mips32");
|
|
MATCH_PLATFORM_INSN(CPU_MIPS2, "mips2");
|
|
|
|
/* Fallback */
|
|
return "mips";
|
|
}
|
|
#undef MATCH_PLATFORM_INSN
|
|
|
|
static inline void init_thread(struct target_pt_regs *regs,
|
|
struct image_info *infop)
|
|
{
|
|
regs->cp0_status = 2 << CP0St_KSU;
|
|
regs->cp0_epc = infop->entry;
|
|
regs->regs[29] = infop->start_stack;
|
|
}
|
|
|
|
/* See linux kernel: arch/mips/include/asm/elf.h. */
|
|
#define ELF_NREG 45
|
|
typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
|
|
|
|
/* See linux kernel: arch/mips/include/asm/reg.h. */
|
|
enum {
|
|
#ifdef TARGET_MIPS64
|
|
TARGET_EF_R0 = 0,
|
|
#else
|
|
TARGET_EF_R0 = 6,
|
|
#endif
|
|
TARGET_EF_R26 = TARGET_EF_R0 + 26,
|
|
TARGET_EF_R27 = TARGET_EF_R0 + 27,
|
|
TARGET_EF_LO = TARGET_EF_R0 + 32,
|
|
TARGET_EF_HI = TARGET_EF_R0 + 33,
|
|
TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34,
|
|
TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35,
|
|
TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36,
|
|
TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37
|
|
};
|
|
|
|
/* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
|
|
static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < TARGET_EF_R0; i++) {
|
|
(*regs)[i] = 0;
|
|
}
|
|
(*regs)[TARGET_EF_R0] = 0;
|
|
|
|
for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) {
|
|
(*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]);
|
|
}
|
|
|
|
(*regs)[TARGET_EF_R26] = 0;
|
|
(*regs)[TARGET_EF_R27] = 0;
|
|
(*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]);
|
|
(*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]);
|
|
(*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC);
|
|
(*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr);
|
|
(*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status);
|
|
(*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause);
|
|
}
|
|
|
|
#define USE_ELF_CORE_DUMP
|
|
#define ELF_EXEC_PAGESIZE 4096
|
|
|
|
/* See arch/mips/include/uapi/asm/hwcap.h. */
|
|
enum {
|
|
HWCAP_MIPS_R6 = (1 << 0),
|
|
HWCAP_MIPS_MSA = (1 << 1),
|
|
HWCAP_MIPS_CRC32 = (1 << 2),
|
|
HWCAP_MIPS_MIPS16 = (1 << 3),
|
|
HWCAP_MIPS_MDMX = (1 << 4),
|
|
HWCAP_MIPS_MIPS3D = (1 << 5),
|
|
HWCAP_MIPS_SMARTMIPS = (1 << 6),
|
|
HWCAP_MIPS_DSP = (1 << 7),
|
|
HWCAP_MIPS_DSP2 = (1 << 8),
|
|
HWCAP_MIPS_DSP3 = (1 << 9),
|
|
HWCAP_MIPS_MIPS16E2 = (1 << 10),
|
|
HWCAP_LOONGSON_MMI = (1 << 11),
|
|
HWCAP_LOONGSON_EXT = (1 << 12),
|
|
HWCAP_LOONGSON_EXT2 = (1 << 13),
|
|
HWCAP_LOONGSON_CPUCFG = (1 << 14),
|
|
};
|
|
|
|
#define ELF_HWCAP get_elf_hwcap()
|
|
|
|
#define GET_FEATURE_INSN(_flag, _hwcap) \
|
|
do { if (cpu->env.insn_flags & (_flag)) { hwcaps |= _hwcap; } } while (0)
|
|
|
|
#define GET_FEATURE_REG_SET(_reg, _mask, _hwcap) \
|
|
do { if (cpu->env._reg & (_mask)) { hwcaps |= _hwcap; } } while (0)
|
|
|
|
#define GET_FEATURE_REG_EQU(_reg, _start, _length, _val, _hwcap) \
|
|
do { \
|
|
if (extract32(cpu->env._reg, (_start), (_length)) == (_val)) { \
|
|
hwcaps |= _hwcap; \
|
|
} \
|
|
} while (0)
|
|
|
|
static uint32_t get_elf_hwcap(void)
|
|
{
|
|
MIPSCPU *cpu = MIPS_CPU(thread_cpu);
|
|
uint32_t hwcaps = 0;
|
|
|
|
GET_FEATURE_REG_EQU(CP0_Config0, CP0C0_AR, CP0C0_AR_LENGTH,
|
|
2, HWCAP_MIPS_R6);
|
|
GET_FEATURE_REG_SET(CP0_Config3, 1 << CP0C3_MSAP, HWCAP_MIPS_MSA);
|
|
GET_FEATURE_INSN(ASE_LMMI, HWCAP_LOONGSON_MMI);
|
|
GET_FEATURE_INSN(ASE_LEXT, HWCAP_LOONGSON_EXT);
|
|
|
|
return hwcaps;
|
|
}
|
|
|
|
#undef GET_FEATURE_REG_EQU
|
|
#undef GET_FEATURE_REG_SET
|
|
#undef GET_FEATURE_INSN
|
|
|
|
#endif /* TARGET_MIPS */
|
|
|
|
#ifdef TARGET_MICROBLAZE
|
|
|
|
#define ELF_START_MMAP 0x80000000
|
|
|
|
#define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD)
|
|
|
|
#define ELF_CLASS ELFCLASS32
|
|
#define ELF_ARCH EM_MICROBLAZE
|
|
|
|
static inline void init_thread(struct target_pt_regs *regs,
|
|
struct image_info *infop)
|
|
{
|
|
regs->pc = infop->entry;
|
|
regs->r1 = infop->start_stack;
|
|
|
|
}
|
|
|
|
#define ELF_EXEC_PAGESIZE 4096
|
|
|
|
#define USE_ELF_CORE_DUMP
|
|
#define ELF_NREG 38
|
|
typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
|
|
|
|
/* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
|
|
static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env)
|
|
{
|
|
int i, pos = 0;
|
|
|
|
for (i = 0; i < 32; i++) {
|
|
(*regs)[pos++] = tswapreg(env->regs[i]);
|
|
}
|
|
|
|
(*regs)[pos++] = tswapreg(env->pc);
|
|
(*regs)[pos++] = tswapreg(mb_cpu_read_msr(env));
|
|
(*regs)[pos++] = 0;
|
|
(*regs)[pos++] = tswapreg(env->ear);
|
|
(*regs)[pos++] = 0;
|
|
(*regs)[pos++] = tswapreg(env->esr);
|
|
}
|
|
|
|
#endif /* TARGET_MICROBLAZE */
|
|
|
|
#ifdef TARGET_NIOS2
|
|
|
|
#define ELF_START_MMAP 0x80000000
|
|
|
|
#define elf_check_arch(x) ((x) == EM_ALTERA_NIOS2)
|
|
|
|
#define ELF_CLASS ELFCLASS32
|
|
#define ELF_ARCH EM_ALTERA_NIOS2
|
|
|
|
static void init_thread(struct target_pt_regs *regs, struct image_info *infop)
|
|
{
|
|
regs->ea = infop->entry;
|
|
regs->sp = infop->start_stack;
|
|
}
|
|
|
|
#define LO_COMMPAGE TARGET_PAGE_SIZE
|
|
|
|
static bool init_guest_commpage(void)
|
|
{
|
|
static const uint8_t kuser_page[4 + 2 * 64] = {
|
|
/* __kuser_helper_version */
|
|
[0x00] = 0x02, 0x00, 0x00, 0x00,
|
|
|
|
/* __kuser_cmpxchg */
|
|
[0x04] = 0x3a, 0x6c, 0x3b, 0x00, /* trap 16 */
|
|
0x3a, 0x28, 0x00, 0xf8, /* ret */
|
|
|
|
/* __kuser_sigtramp */
|
|
[0x44] = 0xc4, 0x22, 0x80, 0x00, /* movi r2, __NR_rt_sigreturn */
|
|
0x3a, 0x68, 0x3b, 0x00, /* trap 0 */
|
|
};
|
|
|
|
void *want = g2h_untagged(LO_COMMPAGE & -qemu_host_page_size);
|
|
void *addr = mmap(want, qemu_host_page_size, PROT_READ | PROT_WRITE,
|
|
MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED, -1, 0);
|
|
|
|
if (addr == MAP_FAILED) {
|
|
perror("Allocating guest commpage");
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
if (addr != want) {
|
|
return false;
|
|
}
|
|
|
|
memcpy(addr, kuser_page, sizeof(kuser_page));
|
|
|
|
if (mprotect(addr, qemu_host_page_size, PROT_READ)) {
|
|
perror("Protecting guest commpage");
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
|
|
page_set_flags(LO_COMMPAGE, LO_COMMPAGE | ~TARGET_PAGE_MASK,
|
|
PAGE_READ | PAGE_EXEC | PAGE_VALID);
|
|
return true;
|
|
}
|
|
|
|
#define ELF_EXEC_PAGESIZE 4096
|
|
|
|
#define USE_ELF_CORE_DUMP
|
|
#define ELF_NREG 49
|
|
typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
|
|
|
|
/* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
|
|
static void elf_core_copy_regs(target_elf_gregset_t *regs,
|
|
const CPUNios2State *env)
|
|
{
|
|
int i;
|
|
|
|
(*regs)[0] = -1;
|
|
for (i = 1; i < 8; i++) /* r0-r7 */
|
|
(*regs)[i] = tswapreg(env->regs[i + 7]);
|
|
|
|
for (i = 8; i < 16; i++) /* r8-r15 */
|
|
(*regs)[i] = tswapreg(env->regs[i - 8]);
|
|
|
|
for (i = 16; i < 24; i++) /* r16-r23 */
|
|
(*regs)[i] = tswapreg(env->regs[i + 7]);
|
|
(*regs)[24] = -1; /* R_ET */
|
|
(*regs)[25] = -1; /* R_BT */
|
|
(*regs)[26] = tswapreg(env->regs[R_GP]);
|
|
(*regs)[27] = tswapreg(env->regs[R_SP]);
|
|
(*regs)[28] = tswapreg(env->regs[R_FP]);
|
|
(*regs)[29] = tswapreg(env->regs[R_EA]);
|
|
(*regs)[30] = -1; /* R_SSTATUS */
|
|
(*regs)[31] = tswapreg(env->regs[R_RA]);
|
|
|
|
(*regs)[32] = tswapreg(env->pc);
|
|
|
|
(*regs)[33] = -1; /* R_STATUS */
|
|
(*regs)[34] = tswapreg(env->regs[CR_ESTATUS]);
|
|
|
|
for (i = 35; i < 49; i++) /* ... */
|
|
(*regs)[i] = -1;
|
|
}
|
|
|
|
#endif /* TARGET_NIOS2 */
|
|
|
|
#ifdef TARGET_OPENRISC
|
|
|
|
#define ELF_START_MMAP 0x08000000
|
|
|
|
#define ELF_ARCH EM_OPENRISC
|
|
#define ELF_CLASS ELFCLASS32
|
|
#define ELF_DATA ELFDATA2MSB
|
|
|
|
static inline void init_thread(struct target_pt_regs *regs,
|
|
struct image_info *infop)
|
|
{
|
|
regs->pc = infop->entry;
|
|
regs->gpr[1] = infop->start_stack;
|
|
}
|
|
|
|
#define USE_ELF_CORE_DUMP
|
|
#define ELF_EXEC_PAGESIZE 8192
|
|
|
|
/* See linux kernel arch/openrisc/include/asm/elf.h. */
|
|
#define ELF_NREG 34 /* gprs and pc, sr */
|
|
typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
|
|
|
|
static void elf_core_copy_regs(target_elf_gregset_t *regs,
|
|
const CPUOpenRISCState *env)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < 32; i++) {
|
|
(*regs)[i] = tswapreg(cpu_get_gpr(env, i));
|
|
}
|
|
(*regs)[32] = tswapreg(env->pc);
|
|
(*regs)[33] = tswapreg(cpu_get_sr(env));
|
|
}
|
|
#define ELF_HWCAP 0
|
|
#define ELF_PLATFORM NULL
|
|
|
|
#endif /* TARGET_OPENRISC */
|
|
|
|
#ifdef TARGET_SH4
|
|
|
|
#define ELF_START_MMAP 0x80000000
|
|
|
|
#define ELF_CLASS ELFCLASS32
|
|
#define ELF_ARCH EM_SH
|
|
|
|
static inline void init_thread(struct target_pt_regs *regs,
|
|
struct image_info *infop)
|
|
{
|
|
/* Check other registers XXXXX */
|
|
regs->pc = infop->entry;
|
|
regs->regs[15] = infop->start_stack;
|
|
}
|
|
|
|
/* See linux kernel: arch/sh/include/asm/elf.h. */
|
|
#define ELF_NREG 23
|
|
typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
|
|
|
|
/* See linux kernel: arch/sh/include/asm/ptrace.h. */
|
|
enum {
|
|
TARGET_REG_PC = 16,
|
|
TARGET_REG_PR = 17,
|
|
TARGET_REG_SR = 18,
|
|
TARGET_REG_GBR = 19,
|
|
TARGET_REG_MACH = 20,
|
|
TARGET_REG_MACL = 21,
|
|
TARGET_REG_SYSCALL = 22
|
|
};
|
|
|
|
static inline void elf_core_copy_regs(target_elf_gregset_t *regs,
|
|
const CPUSH4State *env)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < 16; i++) {
|
|
(*regs)[i] = tswapreg(env->gregs[i]);
|
|
}
|
|
|
|
(*regs)[TARGET_REG_PC] = tswapreg(env->pc);
|
|
(*regs)[TARGET_REG_PR] = tswapreg(env->pr);
|
|
(*regs)[TARGET_REG_SR] = tswapreg(env->sr);
|
|
(*regs)[TARGET_REG_GBR] = tswapreg(env->gbr);
|
|
(*regs)[TARGET_REG_MACH] = tswapreg(env->mach);
|
|
(*regs)[TARGET_REG_MACL] = tswapreg(env->macl);
|
|
(*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */
|
|
}
|
|
|
|
#define USE_ELF_CORE_DUMP
|
|
#define ELF_EXEC_PAGESIZE 4096
|
|
|
|
enum {
|
|
SH_CPU_HAS_FPU = 0x0001, /* Hardware FPU support */
|
|
SH_CPU_HAS_P2_FLUSH_BUG = 0x0002, /* Need to flush the cache in P2 area */
|
|
SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */
|
|
SH_CPU_HAS_DSP = 0x0008, /* SH-DSP: DSP support */
|
|
SH_CPU_HAS_PERF_COUNTER = 0x0010, /* Hardware performance counters */
|
|
SH_CPU_HAS_PTEA = 0x0020, /* PTEA register */
|
|
SH_CPU_HAS_LLSC = 0x0040, /* movli.l/movco.l */
|
|
SH_CPU_HAS_L2_CACHE = 0x0080, /* Secondary cache / URAM */
|
|
SH_CPU_HAS_OP32 = 0x0100, /* 32-bit instruction support */
|
|
SH_CPU_HAS_PTEAEX = 0x0200, /* PTE ASID Extension support */
|
|
};
|
|
|
|
#define ELF_HWCAP get_elf_hwcap()
|
|
|
|
static uint32_t get_elf_hwcap(void)
|
|
{
|
|
SuperHCPU *cpu = SUPERH_CPU(thread_cpu);
|
|
uint32_t hwcap = 0;
|
|
|
|
hwcap |= SH_CPU_HAS_FPU;
|
|
|
|
if (cpu->env.features & SH_FEATURE_SH4A) {
|
|
hwcap |= SH_CPU_HAS_LLSC;
|
|
}
|
|
|
|
return hwcap;
|
|
}
|
|
|
|
#endif
|
|
|
|
#ifdef TARGET_CRIS
|
|
|
|
#define ELF_START_MMAP 0x80000000
|
|
|
|
#define ELF_CLASS ELFCLASS32
|
|
#define ELF_ARCH EM_CRIS
|
|
|
|
static inline void init_thread(struct target_pt_regs *regs,
|
|
struct image_info *infop)
|
|
{
|
|
regs->erp = infop->entry;
|
|
}
|
|
|
|
#define ELF_EXEC_PAGESIZE 8192
|
|
|
|
#endif
|
|
|
|
#ifdef TARGET_M68K
|
|
|
|
#define ELF_START_MMAP 0x80000000
|
|
|
|
#define ELF_CLASS ELFCLASS32
|
|
#define ELF_ARCH EM_68K
|
|
|
|
/* ??? Does this need to do anything?
|
|
#define ELF_PLAT_INIT(_r) */
|
|
|
|
static inline void init_thread(struct target_pt_regs *regs,
|
|
struct image_info *infop)
|
|
{
|
|
regs->usp = infop->start_stack;
|
|
regs->sr = 0;
|
|
regs->pc = infop->entry;
|
|
}
|
|
|
|
/* See linux kernel: arch/m68k/include/asm/elf.h. */
|
|
#define ELF_NREG 20
|
|
typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
|
|
|
|
static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env)
|
|
{
|
|
(*regs)[0] = tswapreg(env->dregs[1]);
|
|
(*regs)[1] = tswapreg(env->dregs[2]);
|
|
(*regs)[2] = tswapreg(env->dregs[3]);
|
|
(*regs)[3] = tswapreg(env->dregs[4]);
|
|
(*regs)[4] = tswapreg(env->dregs[5]);
|
|
(*regs)[5] = tswapreg(env->dregs[6]);
|
|
(*regs)[6] = tswapreg(env->dregs[7]);
|
|
(*regs)[7] = tswapreg(env->aregs[0]);
|
|
(*regs)[8] = tswapreg(env->aregs[1]);
|
|
(*regs)[9] = tswapreg(env->aregs[2]);
|
|
(*regs)[10] = tswapreg(env->aregs[3]);
|
|
(*regs)[11] = tswapreg(env->aregs[4]);
|
|
(*regs)[12] = tswapreg(env->aregs[5]);
|
|
(*regs)[13] = tswapreg(env->aregs[6]);
|
|
(*regs)[14] = tswapreg(env->dregs[0]);
|
|
(*regs)[15] = tswapreg(env->aregs[7]);
|
|
(*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */
|
|
(*regs)[17] = tswapreg(env->sr);
|
|
(*regs)[18] = tswapreg(env->pc);
|
|
(*regs)[19] = 0; /* FIXME: regs->format | regs->vector */
|
|
}
|
|
|
|
#define USE_ELF_CORE_DUMP
|
|
#define ELF_EXEC_PAGESIZE 8192
|
|
|
|
#endif
|
|
|
|
#ifdef TARGET_ALPHA
|
|
|
|
#define ELF_START_MMAP (0x30000000000ULL)
|
|
|
|
#define ELF_CLASS ELFCLASS64
|
|
#define ELF_ARCH EM_ALPHA
|
|
|
|
static inline void init_thread(struct target_pt_regs *regs,
|
|
struct image_info *infop)
|
|
{
|
|
regs->pc = infop->entry;
|
|
regs->ps = 8;
|
|
regs->usp = infop->start_stack;
|
|
}
|
|
|
|
#define ELF_EXEC_PAGESIZE 8192
|
|
|
|
#endif /* TARGET_ALPHA */
|
|
|
|
#ifdef TARGET_S390X
|
|
|
|
#define ELF_START_MMAP (0x20000000000ULL)
|
|
|
|
#define ELF_CLASS ELFCLASS64
|
|
#define ELF_DATA ELFDATA2MSB
|
|
#define ELF_ARCH EM_S390
|
|
|
|
#include "elf.h"
|
|
|
|
#define ELF_HWCAP get_elf_hwcap()
|
|
|
|
#define GET_FEATURE(_feat, _hwcap) \
|
|
do { if (s390_has_feat(_feat)) { hwcap |= _hwcap; } } while (0)
|
|
|
|
uint32_t get_elf_hwcap(void)
|
|
{
|
|
/*
|
|
* Let's assume we always have esan3 and zarch.
|
|
* 31-bit processes can use 64-bit registers (high gprs).
|
|
*/
|
|
uint32_t hwcap = HWCAP_S390_ESAN3 | HWCAP_S390_ZARCH | HWCAP_S390_HIGH_GPRS;
|
|
|
|
GET_FEATURE(S390_FEAT_STFLE, HWCAP_S390_STFLE);
|
|
GET_FEATURE(S390_FEAT_MSA, HWCAP_S390_MSA);
|
|
GET_FEATURE(S390_FEAT_LONG_DISPLACEMENT, HWCAP_S390_LDISP);
|
|
GET_FEATURE(S390_FEAT_EXTENDED_IMMEDIATE, HWCAP_S390_EIMM);
|
|
if (s390_has_feat(S390_FEAT_EXTENDED_TRANSLATION_3) &&
|
|
s390_has_feat(S390_FEAT_ETF3_ENH)) {
|
|
hwcap |= HWCAP_S390_ETF3EH;
|
|
}
|
|
GET_FEATURE(S390_FEAT_VECTOR, HWCAP_S390_VXRS);
|
|
GET_FEATURE(S390_FEAT_VECTOR_ENH, HWCAP_S390_VXRS_EXT);
|
|
|
|
return hwcap;
|
|
}
|
|
|
|
const char *elf_hwcap_str(uint32_t bit)
|
|
{
|
|
static const char *hwcap_str[] = {
|
|
[HWCAP_S390_ESAN3] = "esan3",
|
|
[HWCAP_S390_ZARCH] = "zarch",
|
|
[HWCAP_S390_STFLE] = "stfle",
|
|
[HWCAP_S390_MSA] = "msa",
|
|
[HWCAP_S390_LDISP] = "ldisp",
|
|
[HWCAP_S390_EIMM] = "eimm",
|
|
[HWCAP_S390_DFP] = "dfp",
|
|
[HWCAP_S390_HPAGE] = "edat",
|
|
[HWCAP_S390_ETF3EH] = "etf3eh",
|
|
[HWCAP_S390_HIGH_GPRS] = "highgprs",
|
|
[HWCAP_S390_TE] = "te",
|
|
[HWCAP_S390_VXRS] = "vx",
|
|
[HWCAP_S390_VXRS_BCD] = "vxd",
|
|
[HWCAP_S390_VXRS_EXT] = "vxe",
|
|
[HWCAP_S390_GS] = "gs",
|
|
[HWCAP_S390_VXRS_EXT2] = "vxe2",
|
|
[HWCAP_S390_VXRS_PDE] = "vxp",
|
|
[HWCAP_S390_SORT] = "sort",
|
|
[HWCAP_S390_DFLT] = "dflt",
|
|
};
|
|
|
|
return bit < ARRAY_SIZE(hwcap_str) ? hwcap_str[bit] : NULL;
|
|
}
|
|
|
|
static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
|
|
{
|
|
regs->psw.addr = infop->entry;
|
|
regs->psw.mask = PSW_MASK_64 | PSW_MASK_32;
|
|
regs->gprs[15] = infop->start_stack;
|
|
}
|
|
|
|
/* See linux kernel: arch/s390/include/uapi/asm/ptrace.h (s390_regs). */
|
|
#define ELF_NREG 27
|
|
typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
|
|
|
|
enum {
|
|
TARGET_REG_PSWM = 0,
|
|
TARGET_REG_PSWA = 1,
|
|
TARGET_REG_GPRS = 2,
|
|
TARGET_REG_ARS = 18,
|
|
TARGET_REG_ORIG_R2 = 26,
|
|
};
|
|
|
|
static void elf_core_copy_regs(target_elf_gregset_t *regs,
|
|
const CPUS390XState *env)
|
|
{
|
|
int i;
|
|
uint32_t *aregs;
|
|
|
|
(*regs)[TARGET_REG_PSWM] = tswapreg(env->psw.mask);
|
|
(*regs)[TARGET_REG_PSWA] = tswapreg(env->psw.addr);
|
|
for (i = 0; i < 16; i++) {
|
|
(*regs)[TARGET_REG_GPRS + i] = tswapreg(env->regs[i]);
|
|
}
|
|
aregs = (uint32_t *)&((*regs)[TARGET_REG_ARS]);
|
|
for (i = 0; i < 16; i++) {
|
|
aregs[i] = tswap32(env->aregs[i]);
|
|
}
|
|
(*regs)[TARGET_REG_ORIG_R2] = 0;
|
|
}
|
|
|
|
#define USE_ELF_CORE_DUMP
|
|
#define ELF_EXEC_PAGESIZE 4096
|
|
|
|
#endif /* TARGET_S390X */
|
|
|
|
#ifdef TARGET_RISCV
|
|
|
|
#define ELF_START_MMAP 0x80000000
|
|
#define ELF_ARCH EM_RISCV
|
|
|
|
#ifdef TARGET_RISCV32
|
|
#define ELF_CLASS ELFCLASS32
|
|
#else
|
|
#define ELF_CLASS ELFCLASS64
|
|
#endif
|
|
|
|
#define ELF_HWCAP get_elf_hwcap()
|
|
|
|
static uint32_t get_elf_hwcap(void)
|
|
{
|
|
#define MISA_BIT(EXT) (1 << (EXT - 'A'))
|
|
RISCVCPU *cpu = RISCV_CPU(thread_cpu);
|
|
uint32_t mask = MISA_BIT('I') | MISA_BIT('M') | MISA_BIT('A')
|
|
| MISA_BIT('F') | MISA_BIT('D') | MISA_BIT('C');
|
|
|
|
return cpu->env.misa_ext & mask;
|
|
#undef MISA_BIT
|
|
}
|
|
|
|
static inline void init_thread(struct target_pt_regs *regs,
|
|
struct image_info *infop)
|
|
{
|
|
regs->sepc = infop->entry;
|
|
regs->sp = infop->start_stack;
|
|
}
|
|
|
|
#define ELF_EXEC_PAGESIZE 4096
|
|
|
|
#endif /* TARGET_RISCV */
|
|
|
|
#ifdef TARGET_HPPA
|
|
|
|
#define ELF_START_MMAP 0x80000000
|
|
#define ELF_CLASS ELFCLASS32
|
|
#define ELF_ARCH EM_PARISC
|
|
#define ELF_PLATFORM "PARISC"
|
|
#define STACK_GROWS_DOWN 0
|
|
#define STACK_ALIGNMENT 64
|
|
|
|
static inline void init_thread(struct target_pt_regs *regs,
|
|
struct image_info *infop)
|
|
{
|
|
regs->iaoq[0] = infop->entry;
|
|
regs->iaoq[1] = infop->entry + 4;
|
|
regs->gr[23] = 0;
|
|
regs->gr[24] = infop->argv;
|
|
regs->gr[25] = infop->argc;
|
|
/* The top-of-stack contains a linkage buffer. */
|
|
regs->gr[30] = infop->start_stack + 64;
|
|
regs->gr[31] = infop->entry;
|
|
}
|
|
|
|
#define LO_COMMPAGE 0
|
|
|
|
static bool init_guest_commpage(void)
|
|
{
|
|
void *want = g2h_untagged(LO_COMMPAGE);
|
|
void *addr = mmap(want, qemu_host_page_size, PROT_NONE,
|
|
MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED, -1, 0);
|
|
|
|
if (addr == MAP_FAILED) {
|
|
perror("Allocating guest commpage");
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
if (addr != want) {
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* On Linux, page zero is normally marked execute only + gateway.
|
|
* Normal read or write is supposed to fail (thus PROT_NONE above),
|
|
* but specific offsets have kernel code mapped to raise permissions
|
|
* and implement syscalls. Here, simply mark the page executable.
|
|
* Special case the entry points during translation (see do_page_zero).
|
|
*/
|
|
page_set_flags(LO_COMMPAGE, LO_COMMPAGE | ~TARGET_PAGE_MASK,
|
|
PAGE_EXEC | PAGE_VALID);
|
|
return true;
|
|
}
|
|
|
|
#endif /* TARGET_HPPA */
|
|
|
|
#ifdef TARGET_XTENSA
|
|
|
|
#define ELF_START_MMAP 0x20000000
|
|
|
|
#define ELF_CLASS ELFCLASS32
|
|
#define ELF_ARCH EM_XTENSA
|
|
|
|
static inline void init_thread(struct target_pt_regs *regs,
|
|
struct image_info *infop)
|
|
{
|
|
regs->windowbase = 0;
|
|
regs->windowstart = 1;
|
|
regs->areg[1] = infop->start_stack;
|
|
regs->pc = infop->entry;
|
|
if (info_is_fdpic(infop)) {
|
|
regs->areg[4] = infop->loadmap_addr;
|
|
regs->areg[5] = infop->interpreter_loadmap_addr;
|
|
if (infop->interpreter_loadmap_addr) {
|
|
regs->areg[6] = infop->interpreter_pt_dynamic_addr;
|
|
} else {
|
|
regs->areg[6] = infop->pt_dynamic_addr;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* See linux kernel: arch/xtensa/include/asm/elf.h. */
|
|
#define ELF_NREG 128
|
|
typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
|
|
|
|
enum {
|
|
TARGET_REG_PC,
|
|
TARGET_REG_PS,
|
|
TARGET_REG_LBEG,
|
|
TARGET_REG_LEND,
|
|
TARGET_REG_LCOUNT,
|
|
TARGET_REG_SAR,
|
|
TARGET_REG_WINDOWSTART,
|
|
TARGET_REG_WINDOWBASE,
|
|
TARGET_REG_THREADPTR,
|
|
TARGET_REG_AR0 = 64,
|
|
};
|
|
|
|
static void elf_core_copy_regs(target_elf_gregset_t *regs,
|
|
const CPUXtensaState *env)
|
|
{
|
|
unsigned i;
|
|
|
|
(*regs)[TARGET_REG_PC] = tswapreg(env->pc);
|
|
(*regs)[TARGET_REG_PS] = tswapreg(env->sregs[PS] & ~PS_EXCM);
|
|
(*regs)[TARGET_REG_LBEG] = tswapreg(env->sregs[LBEG]);
|
|
(*regs)[TARGET_REG_LEND] = tswapreg(env->sregs[LEND]);
|
|
(*regs)[TARGET_REG_LCOUNT] = tswapreg(env->sregs[LCOUNT]);
|
|
(*regs)[TARGET_REG_SAR] = tswapreg(env->sregs[SAR]);
|
|
(*regs)[TARGET_REG_WINDOWSTART] = tswapreg(env->sregs[WINDOW_START]);
|
|
(*regs)[TARGET_REG_WINDOWBASE] = tswapreg(env->sregs[WINDOW_BASE]);
|
|
(*regs)[TARGET_REG_THREADPTR] = tswapreg(env->uregs[THREADPTR]);
|
|
xtensa_sync_phys_from_window((CPUXtensaState *)env);
|
|
for (i = 0; i < env->config->nareg; ++i) {
|
|
(*regs)[TARGET_REG_AR0 + i] = tswapreg(env->phys_regs[i]);
|
|
}
|
|
}
|
|
|
|
#define USE_ELF_CORE_DUMP
|
|
#define ELF_EXEC_PAGESIZE 4096
|
|
|
|
#endif /* TARGET_XTENSA */
|
|
|
|
#ifdef TARGET_HEXAGON
|
|
|
|
#define ELF_START_MMAP 0x20000000
|
|
|
|
#define ELF_CLASS ELFCLASS32
|
|
#define ELF_ARCH EM_HEXAGON
|
|
|
|
static inline void init_thread(struct target_pt_regs *regs,
|
|
struct image_info *infop)
|
|
{
|
|
regs->sepc = infop->entry;
|
|
regs->sp = infop->start_stack;
|
|
}
|
|
|
|
#endif /* TARGET_HEXAGON */
|
|
|
|
#ifndef ELF_BASE_PLATFORM
|
|
#define ELF_BASE_PLATFORM (NULL)
|
|
#endif
|
|
|
|
#ifndef ELF_PLATFORM
|
|
#define ELF_PLATFORM (NULL)
|
|
#endif
|
|
|
|
#ifndef ELF_MACHINE
|
|
#define ELF_MACHINE ELF_ARCH
|
|
#endif
|
|
|
|
#ifndef elf_check_arch
|
|
#define elf_check_arch(x) ((x) == ELF_ARCH)
|
|
#endif
|
|
|
|
#ifndef elf_check_abi
|
|
#define elf_check_abi(x) (1)
|
|
#endif
|
|
|
|
#ifndef ELF_HWCAP
|
|
#define ELF_HWCAP 0
|
|
#endif
|
|
|
|
#ifndef STACK_GROWS_DOWN
|
|
#define STACK_GROWS_DOWN 1
|
|
#endif
|
|
|
|
#ifndef STACK_ALIGNMENT
|
|
#define STACK_ALIGNMENT 16
|
|
#endif
|
|
|
|
#ifdef TARGET_ABI32
|
|
#undef ELF_CLASS
|
|
#define ELF_CLASS ELFCLASS32
|
|
#undef bswaptls
|
|
#define bswaptls(ptr) bswap32s(ptr)
|
|
#endif
|
|
|
|
#ifndef EXSTACK_DEFAULT
|
|
#define EXSTACK_DEFAULT false
|
|
#endif
|
|
|
|
#include "elf.h"
|
|
|
|
/* We must delay the following stanzas until after "elf.h". */
|
|
#if defined(TARGET_AARCH64)
|
|
|
|
static bool arch_parse_elf_property(uint32_t pr_type, uint32_t pr_datasz,
|
|
const uint32_t *data,
|
|
struct image_info *info,
|
|
Error **errp)
|
|
{
|
|
if (pr_type == GNU_PROPERTY_AARCH64_FEATURE_1_AND) {
|
|
if (pr_datasz != sizeof(uint32_t)) {
|
|
error_setg(errp, "Ill-formed GNU_PROPERTY_AARCH64_FEATURE_1_AND");
|
|
return false;
|
|
}
|
|
/* We will extract GNU_PROPERTY_AARCH64_FEATURE_1_BTI later. */
|
|
info->note_flags = *data;
|
|
}
|
|
return true;
|
|
}
|
|
#define ARCH_USE_GNU_PROPERTY 1
|
|
|
|
#else
|
|
|
|
static bool arch_parse_elf_property(uint32_t pr_type, uint32_t pr_datasz,
|
|
const uint32_t *data,
|
|
struct image_info *info,
|
|
Error **errp)
|
|
{
|
|
g_assert_not_reached();
|
|
}
|
|
#define ARCH_USE_GNU_PROPERTY 0
|
|
|
|
#endif
|
|
|
|
struct exec
|
|
{
|
|
unsigned int a_info; /* Use macros N_MAGIC, etc for access */
|
|
unsigned int a_text; /* length of text, in bytes */
|
|
unsigned int a_data; /* length of data, in bytes */
|
|
unsigned int a_bss; /* length of uninitialized data area, in bytes */
|
|
unsigned int a_syms; /* length of symbol table data in file, in bytes */
|
|
unsigned int a_entry; /* start address */
|
|
unsigned int a_trsize; /* length of relocation info for text, in bytes */
|
|
unsigned int a_drsize; /* length of relocation info for data, in bytes */
|
|
};
|
|
|
|
|
|
#define N_MAGIC(exec) ((exec).a_info & 0xffff)
|
|
#define OMAGIC 0407
|
|
#define NMAGIC 0410
|
|
#define ZMAGIC 0413
|
|
#define QMAGIC 0314
|
|
|
|
/* Necessary parameters */
|
|
#define TARGET_ELF_EXEC_PAGESIZE \
|
|
(((eppnt->p_align & ~qemu_host_page_mask) != 0) ? \
|
|
TARGET_PAGE_SIZE : MAX(qemu_host_page_size, TARGET_PAGE_SIZE))
|
|
#define TARGET_ELF_PAGELENGTH(_v) ROUND_UP((_v), TARGET_ELF_EXEC_PAGESIZE)
|
|
#define TARGET_ELF_PAGESTART(_v) ((_v) & \
|
|
~(abi_ulong)(TARGET_ELF_EXEC_PAGESIZE-1))
|
|
#define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1))
|
|
|
|
#define DLINFO_ITEMS 16
|
|
|
|
static inline void memcpy_fromfs(void * to, const void * from, unsigned long n)
|
|
{
|
|
memcpy(to, from, n);
|
|
}
|
|
|
|
#ifdef BSWAP_NEEDED
|
|
static void bswap_ehdr(struct elfhdr *ehdr)
|
|
{
|
|
bswap16s(&ehdr->e_type); /* Object file type */
|
|
bswap16s(&ehdr->e_machine); /* Architecture */
|
|
bswap32s(&ehdr->e_version); /* Object file version */
|
|
bswaptls(&ehdr->e_entry); /* Entry point virtual address */
|
|
bswaptls(&ehdr->e_phoff); /* Program header table file offset */
|
|
bswaptls(&ehdr->e_shoff); /* Section header table file offset */
|
|
bswap32s(&ehdr->e_flags); /* Processor-specific flags */
|
|
bswap16s(&ehdr->e_ehsize); /* ELF header size in bytes */
|
|
bswap16s(&ehdr->e_phentsize); /* Program header table entry size */
|
|
bswap16s(&ehdr->e_phnum); /* Program header table entry count */
|
|
bswap16s(&ehdr->e_shentsize); /* Section header table entry size */
|
|
bswap16s(&ehdr->e_shnum); /* Section header table entry count */
|
|
bswap16s(&ehdr->e_shstrndx); /* Section header string table index */
|
|
}
|
|
|
|
static void bswap_phdr(struct elf_phdr *phdr, int phnum)
|
|
{
|
|
int i;
|
|
for (i = 0; i < phnum; ++i, ++phdr) {
|
|
bswap32s(&phdr->p_type); /* Segment type */
|
|
bswap32s(&phdr->p_flags); /* Segment flags */
|
|
bswaptls(&phdr->p_offset); /* Segment file offset */
|
|
bswaptls(&phdr->p_vaddr); /* Segment virtual address */
|
|
bswaptls(&phdr->p_paddr); /* Segment physical address */
|
|
bswaptls(&phdr->p_filesz); /* Segment size in file */
|
|
bswaptls(&phdr->p_memsz); /* Segment size in memory */
|
|
bswaptls(&phdr->p_align); /* Segment alignment */
|
|
}
|
|
}
|
|
|
|
static void bswap_shdr(struct elf_shdr *shdr, int shnum)
|
|
{
|
|
int i;
|
|
for (i = 0; i < shnum; ++i, ++shdr) {
|
|
bswap32s(&shdr->sh_name);
|
|
bswap32s(&shdr->sh_type);
|
|
bswaptls(&shdr->sh_flags);
|
|
bswaptls(&shdr->sh_addr);
|
|
bswaptls(&shdr->sh_offset);
|
|
bswaptls(&shdr->sh_size);
|
|
bswap32s(&shdr->sh_link);
|
|
bswap32s(&shdr->sh_info);
|
|
bswaptls(&shdr->sh_addralign);
|
|
bswaptls(&shdr->sh_entsize);
|
|
}
|
|
}
|
|
|
|
static void bswap_sym(struct elf_sym *sym)
|
|
{
|
|
bswap32s(&sym->st_name);
|
|
bswaptls(&sym->st_value);
|
|
bswaptls(&sym->st_size);
|
|
bswap16s(&sym->st_shndx);
|
|
}
|
|
|
|
#ifdef TARGET_MIPS
|
|
static void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags)
|
|
{
|
|
bswap16s(&abiflags->version);
|
|
bswap32s(&abiflags->ases);
|
|
bswap32s(&abiflags->isa_ext);
|
|
bswap32s(&abiflags->flags1);
|
|
bswap32s(&abiflags->flags2);
|
|
}
|
|
#endif
|
|
#else
|
|
static inline void bswap_ehdr(struct elfhdr *ehdr) { }
|
|
static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { }
|
|
static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { }
|
|
static inline void bswap_sym(struct elf_sym *sym) { }
|
|
#ifdef TARGET_MIPS
|
|
static inline void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags) { }
|
|
#endif
|
|
#endif
|
|
|
|
#ifdef USE_ELF_CORE_DUMP
|
|
static int elf_core_dump(int, const CPUArchState *);
|
|
#endif /* USE_ELF_CORE_DUMP */
|
|
static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias);
|
|
|
|
/* Verify the portions of EHDR within E_IDENT for the target.
|
|
This can be performed before bswapping the entire header. */
|
|
static bool elf_check_ident(struct elfhdr *ehdr)
|
|
{
|
|
return (ehdr->e_ident[EI_MAG0] == ELFMAG0
|
|
&& ehdr->e_ident[EI_MAG1] == ELFMAG1
|
|
&& ehdr->e_ident[EI_MAG2] == ELFMAG2
|
|
&& ehdr->e_ident[EI_MAG3] == ELFMAG3
|
|
&& ehdr->e_ident[EI_CLASS] == ELF_CLASS
|
|
&& ehdr->e_ident[EI_DATA] == ELF_DATA
|
|
&& ehdr->e_ident[EI_VERSION] == EV_CURRENT);
|
|
}
|
|
|
|
/* Verify the portions of EHDR outside of E_IDENT for the target.
|
|
This has to wait until after bswapping the header. */
|
|
static bool elf_check_ehdr(struct elfhdr *ehdr)
|
|
{
|
|
return (elf_check_arch(ehdr->e_machine)
|
|
&& elf_check_abi(ehdr->e_flags)
|
|
&& ehdr->e_ehsize == sizeof(struct elfhdr)
|
|
&& ehdr->e_phentsize == sizeof(struct elf_phdr)
|
|
&& (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN));
|
|
}
|
|
|
|
/*
|
|
* 'copy_elf_strings()' copies argument/envelope strings from user
|
|
* memory to free pages in kernel mem. These are in a format ready
|
|
* to be put directly into the top of new user memory.
|
|
*
|
|
*/
|
|
static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch,
|
|
abi_ulong p, abi_ulong stack_limit)
|
|
{
|
|
char *tmp;
|
|
int len, i;
|
|
abi_ulong top = p;
|
|
|
|
if (!p) {
|
|
return 0; /* bullet-proofing */
|
|
}
|
|
|
|
if (STACK_GROWS_DOWN) {
|
|
int offset = ((p - 1) % TARGET_PAGE_SIZE) + 1;
|
|
for (i = argc - 1; i >= 0; --i) {
|
|
tmp = argv[i];
|
|
if (!tmp) {
|
|
fprintf(stderr, "VFS: argc is wrong");
|
|
exit(-1);
|
|
}
|
|
len = strlen(tmp) + 1;
|
|
tmp += len;
|
|
|
|
if (len > (p - stack_limit)) {
|
|
return 0;
|
|
}
|
|
while (len) {
|
|
int bytes_to_copy = (len > offset) ? offset : len;
|
|
tmp -= bytes_to_copy;
|
|
p -= bytes_to_copy;
|
|
offset -= bytes_to_copy;
|
|
len -= bytes_to_copy;
|
|
|
|
memcpy_fromfs(scratch + offset, tmp, bytes_to_copy);
|
|
|
|
if (offset == 0) {
|
|
memcpy_to_target(p, scratch, top - p);
|
|
top = p;
|
|
offset = TARGET_PAGE_SIZE;
|
|
}
|
|
}
|
|
}
|
|
if (p != top) {
|
|
memcpy_to_target(p, scratch + offset, top - p);
|
|
}
|
|
} else {
|
|
int remaining = TARGET_PAGE_SIZE - (p % TARGET_PAGE_SIZE);
|
|
for (i = 0; i < argc; ++i) {
|
|
tmp = argv[i];
|
|
if (!tmp) {
|
|
fprintf(stderr, "VFS: argc is wrong");
|
|
exit(-1);
|
|
}
|
|
len = strlen(tmp) + 1;
|
|
if (len > (stack_limit - p)) {
|
|
return 0;
|
|
}
|
|
while (len) {
|
|
int bytes_to_copy = (len > remaining) ? remaining : len;
|
|
|
|
memcpy_fromfs(scratch + (p - top), tmp, bytes_to_copy);
|
|
|
|
tmp += bytes_to_copy;
|
|
remaining -= bytes_to_copy;
|
|
p += bytes_to_copy;
|
|
len -= bytes_to_copy;
|
|
|
|
if (remaining == 0) {
|
|
memcpy_to_target(top, scratch, p - top);
|
|
top = p;
|
|
remaining = TARGET_PAGE_SIZE;
|
|
}
|
|
}
|
|
}
|
|
if (p != top) {
|
|
memcpy_to_target(top, scratch, p - top);
|
|
}
|
|
}
|
|
|
|
return p;
|
|
}
|
|
|
|
/* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of
|
|
* argument/environment space. Newer kernels (>2.6.33) allow more,
|
|
* dependent on stack size, but guarantee at least 32 pages for
|
|
* backwards compatibility.
|
|
*/
|
|
#define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE)
|
|
|
|
static abi_ulong setup_arg_pages(struct linux_binprm *bprm,
|
|
struct image_info *info)
|
|
{
|
|
abi_ulong size, error, guard;
|
|
int prot;
|
|
|
|
size = guest_stack_size;
|
|
if (size < STACK_LOWER_LIMIT) {
|
|
size = STACK_LOWER_LIMIT;
|
|
}
|
|
|
|
if (STACK_GROWS_DOWN) {
|
|
guard = TARGET_PAGE_SIZE;
|
|
if (guard < qemu_real_host_page_size()) {
|
|
guard = qemu_real_host_page_size();
|
|
}
|
|
} else {
|
|
/* no guard page for hppa target where stack grows upwards. */
|
|
guard = 0;
|
|
}
|
|
|
|
prot = PROT_READ | PROT_WRITE;
|
|
if (info->exec_stack) {
|
|
prot |= PROT_EXEC;
|
|
}
|
|
error = target_mmap(0, size + guard, prot,
|
|
MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
|
|
if (error == -1) {
|
|
perror("mmap stack");
|
|
exit(-1);
|
|
}
|
|
|
|
/* We reserve one extra page at the top of the stack as guard. */
|
|
if (STACK_GROWS_DOWN) {
|
|
target_mprotect(error, guard, PROT_NONE);
|
|
info->stack_limit = error + guard;
|
|
return info->stack_limit + size - sizeof(void *);
|
|
} else {
|
|
info->stack_limit = error + size;
|
|
return error;
|
|
}
|
|
}
|
|
|
|
/* Map and zero the bss. We need to explicitly zero any fractional pages
|
|
after the data section (i.e. bss). */
|
|
static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot)
|
|
{
|
|
uintptr_t host_start, host_map_start, host_end;
|
|
|
|
last_bss = TARGET_PAGE_ALIGN(last_bss);
|
|
|
|
/* ??? There is confusion between qemu_real_host_page_size and
|
|
qemu_host_page_size here and elsewhere in target_mmap, which
|
|
may lead to the end of the data section mapping from the file
|
|
not being mapped. At least there was an explicit test and
|
|
comment for that here, suggesting that "the file size must
|
|
be known". The comment probably pre-dates the introduction
|
|
of the fstat system call in target_mmap which does in fact
|
|
find out the size. What isn't clear is if the workaround
|
|
here is still actually needed. For now, continue with it,
|
|
but merge it with the "normal" mmap that would allocate the bss. */
|
|
|
|
host_start = (uintptr_t) g2h_untagged(elf_bss);
|
|
host_end = (uintptr_t) g2h_untagged(last_bss);
|
|
host_map_start = REAL_HOST_PAGE_ALIGN(host_start);
|
|
|
|
if (host_map_start < host_end) {
|
|
void *p = mmap((void *)host_map_start, host_end - host_map_start,
|
|
prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
|
|
if (p == MAP_FAILED) {
|
|
perror("cannot mmap brk");
|
|
exit(-1);
|
|
}
|
|
}
|
|
|
|
/* Ensure that the bss page(s) are valid */
|
|
if ((page_get_flags(last_bss-1) & prot) != prot) {
|
|
page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss - 1,
|
|
prot | PAGE_VALID);
|
|
}
|
|
|
|
if (host_start < host_map_start) {
|
|
memset((void *)host_start, 0, host_map_start - host_start);
|
|
}
|
|
}
|
|
|
|
#if defined(TARGET_ARM)
|
|
static int elf_is_fdpic(struct elfhdr *exec)
|
|
{
|
|
return exec->e_ident[EI_OSABI] == ELFOSABI_ARM_FDPIC;
|
|
}
|
|
#elif defined(TARGET_XTENSA)
|
|
static int elf_is_fdpic(struct elfhdr *exec)
|
|
{
|
|
return exec->e_ident[EI_OSABI] == ELFOSABI_XTENSA_FDPIC;
|
|
}
|
|
#else
|
|
/* Default implementation, always false. */
|
|
static int elf_is_fdpic(struct elfhdr *exec)
|
|
{
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp)
|
|
{
|
|
uint16_t n;
|
|
struct elf32_fdpic_loadseg *loadsegs = info->loadsegs;
|
|
|
|
/* elf32_fdpic_loadseg */
|
|
n = info->nsegs;
|
|
while (n--) {
|
|
sp -= 12;
|
|
put_user_u32(loadsegs[n].addr, sp+0);
|
|
put_user_u32(loadsegs[n].p_vaddr, sp+4);
|
|
put_user_u32(loadsegs[n].p_memsz, sp+8);
|
|
}
|
|
|
|
/* elf32_fdpic_loadmap */
|
|
sp -= 4;
|
|
put_user_u16(0, sp+0); /* version */
|
|
put_user_u16(info->nsegs, sp+2); /* nsegs */
|
|
|
|
info->personality = PER_LINUX_FDPIC;
|
|
info->loadmap_addr = sp;
|
|
|
|
return sp;
|
|
}
|
|
|
|
static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc,
|
|
struct elfhdr *exec,
|
|
struct image_info *info,
|
|
struct image_info *interp_info)
|
|
{
|
|
abi_ulong sp;
|
|
abi_ulong u_argc, u_argv, u_envp, u_auxv;
|
|
int size;
|
|
int i;
|
|
abi_ulong u_rand_bytes;
|
|
uint8_t k_rand_bytes[16];
|
|
abi_ulong u_platform, u_base_platform;
|
|
const char *k_platform, *k_base_platform;
|
|
const int n = sizeof(elf_addr_t);
|
|
|
|
sp = p;
|
|
|
|
/* Needs to be before we load the env/argc/... */
|
|
if (elf_is_fdpic(exec)) {
|
|
/* Need 4 byte alignment for these structs */
|
|
sp &= ~3;
|
|
sp = loader_build_fdpic_loadmap(info, sp);
|
|
info->other_info = interp_info;
|
|
if (interp_info) {
|
|
interp_info->other_info = info;
|
|
sp = loader_build_fdpic_loadmap(interp_info, sp);
|
|
info->interpreter_loadmap_addr = interp_info->loadmap_addr;
|
|
info->interpreter_pt_dynamic_addr = interp_info->pt_dynamic_addr;
|
|
} else {
|
|
info->interpreter_loadmap_addr = 0;
|
|
info->interpreter_pt_dynamic_addr = 0;
|
|
}
|
|
}
|
|
|
|
u_base_platform = 0;
|
|
k_base_platform = ELF_BASE_PLATFORM;
|
|
if (k_base_platform) {
|
|
size_t len = strlen(k_base_platform) + 1;
|
|
if (STACK_GROWS_DOWN) {
|
|
sp -= (len + n - 1) & ~(n - 1);
|
|
u_base_platform = sp;
|
|
/* FIXME - check return value of memcpy_to_target() for failure */
|
|
memcpy_to_target(sp, k_base_platform, len);
|
|
} else {
|
|
memcpy_to_target(sp, k_base_platform, len);
|
|
u_base_platform = sp;
|
|
sp += len + 1;
|
|
}
|
|
}
|
|
|
|
u_platform = 0;
|
|
k_platform = ELF_PLATFORM;
|
|
if (k_platform) {
|
|
size_t len = strlen(k_platform) + 1;
|
|
if (STACK_GROWS_DOWN) {
|
|
sp -= (len + n - 1) & ~(n - 1);
|
|
u_platform = sp;
|
|
/* FIXME - check return value of memcpy_to_target() for failure */
|
|
memcpy_to_target(sp, k_platform, len);
|
|
} else {
|
|
memcpy_to_target(sp, k_platform, len);
|
|
u_platform = sp;
|
|
sp += len + 1;
|
|
}
|
|
}
|
|
|
|
/* Provide 16 byte alignment for the PRNG, and basic alignment for
|
|
* the argv and envp pointers.
|
|
*/
|
|
if (STACK_GROWS_DOWN) {
|
|
sp = QEMU_ALIGN_DOWN(sp, 16);
|
|
} else {
|
|
sp = QEMU_ALIGN_UP(sp, 16);
|
|
}
|
|
|
|
/*
|
|
* Generate 16 random bytes for userspace PRNG seeding.
|
|
*/
|
|
qemu_guest_getrandom_nofail(k_rand_bytes, sizeof(k_rand_bytes));
|
|
if (STACK_GROWS_DOWN) {
|
|
sp -= 16;
|
|
u_rand_bytes = sp;
|
|
/* FIXME - check return value of memcpy_to_target() for failure */
|
|
memcpy_to_target(sp, k_rand_bytes, 16);
|
|
} else {
|
|
memcpy_to_target(sp, k_rand_bytes, 16);
|
|
u_rand_bytes = sp;
|
|
sp += 16;
|
|
}
|
|
|
|
size = (DLINFO_ITEMS + 1) * 2;
|
|
if (k_base_platform)
|
|
size += 2;
|
|
if (k_platform)
|
|
size += 2;
|
|
#ifdef DLINFO_ARCH_ITEMS
|
|
size += DLINFO_ARCH_ITEMS * 2;
|
|
#endif
|
|
#ifdef ELF_HWCAP2
|
|
size += 2;
|
|
#endif
|
|
info->auxv_len = size * n;
|
|
|
|
size += envc + argc + 2;
|
|
size += 1; /* argc itself */
|
|
size *= n;
|
|
|
|
/* Allocate space and finalize stack alignment for entry now. */
|
|
if (STACK_GROWS_DOWN) {
|
|
u_argc = QEMU_ALIGN_DOWN(sp - size, STACK_ALIGNMENT);
|
|
sp = u_argc;
|
|
} else {
|
|
u_argc = sp;
|
|
sp = QEMU_ALIGN_UP(sp + size, STACK_ALIGNMENT);
|
|
}
|
|
|
|
u_argv = u_argc + n;
|
|
u_envp = u_argv + (argc + 1) * n;
|
|
u_auxv = u_envp + (envc + 1) * n;
|
|
info->saved_auxv = u_auxv;
|
|
info->argc = argc;
|
|
info->envc = envc;
|
|
info->argv = u_argv;
|
|
info->envp = u_envp;
|
|
|
|
/* This is correct because Linux defines
|
|
* elf_addr_t as Elf32_Off / Elf64_Off
|
|
*/
|
|
#define NEW_AUX_ENT(id, val) do { \
|
|
put_user_ual(id, u_auxv); u_auxv += n; \
|
|
put_user_ual(val, u_auxv); u_auxv += n; \
|
|
} while(0)
|
|
|
|
#ifdef ARCH_DLINFO
|
|
/*
|
|
* ARCH_DLINFO must come first so platform specific code can enforce
|
|
* special alignment requirements on the AUXV if necessary (eg. PPC).
|
|
*/
|
|
ARCH_DLINFO;
|
|
#endif
|
|
/* There must be exactly DLINFO_ITEMS entries here, or the assert
|
|
* on info->auxv_len will trigger.
|
|
*/
|
|
NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff));
|
|
NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr)));
|
|
NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum));
|
|
if ((info->alignment & ~qemu_host_page_mask) != 0) {
|
|
/* Target doesn't support host page size alignment */
|
|
NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(TARGET_PAGE_SIZE));
|
|
} else {
|
|
NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE,
|
|
qemu_host_page_size)));
|
|
}
|
|
NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0));
|
|
NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0);
|
|
NEW_AUX_ENT(AT_ENTRY, info->entry);
|
|
NEW_AUX_ENT(AT_UID, (abi_ulong) getuid());
|
|
NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid());
|
|
NEW_AUX_ENT(AT_GID, (abi_ulong) getgid());
|
|
NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid());
|
|
NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP);
|
|
NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK));
|
|
NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes);
|
|
NEW_AUX_ENT(AT_SECURE, (abi_ulong) qemu_getauxval(AT_SECURE));
|
|
NEW_AUX_ENT(AT_EXECFN, info->file_string);
|
|
|
|
#ifdef ELF_HWCAP2
|
|
NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2);
|
|
#endif
|
|
|
|
if (u_base_platform) {
|
|
NEW_AUX_ENT(AT_BASE_PLATFORM, u_base_platform);
|
|
}
|
|
if (u_platform) {
|
|
NEW_AUX_ENT(AT_PLATFORM, u_platform);
|
|
}
|
|
NEW_AUX_ENT (AT_NULL, 0);
|
|
#undef NEW_AUX_ENT
|
|
|
|
/* Check that our initial calculation of the auxv length matches how much
|
|
* we actually put into it.
|
|
*/
|
|
assert(info->auxv_len == u_auxv - info->saved_auxv);
|
|
|
|
put_user_ual(argc, u_argc);
|
|
|
|
p = info->arg_strings;
|
|
for (i = 0; i < argc; ++i) {
|
|
put_user_ual(p, u_argv);
|
|
u_argv += n;
|
|
p += target_strlen(p) + 1;
|
|
}
|
|
put_user_ual(0, u_argv);
|
|
|
|
p = info->env_strings;
|
|
for (i = 0; i < envc; ++i) {
|
|
put_user_ual(p, u_envp);
|
|
u_envp += n;
|
|
p += target_strlen(p) + 1;
|
|
}
|
|
put_user_ual(0, u_envp);
|
|
|
|
return sp;
|
|
}
|
|
|
|
#if defined(HI_COMMPAGE)
|
|
#define LO_COMMPAGE -1
|
|
#elif defined(LO_COMMPAGE)
|
|
#define HI_COMMPAGE 0
|
|
#else
|
|
#define HI_COMMPAGE 0
|
|
#define LO_COMMPAGE -1
|
|
#ifndef INIT_GUEST_COMMPAGE
|
|
#define init_guest_commpage() true
|
|
#endif
|
|
#endif
|
|
|
|
static void pgb_fail_in_use(const char *image_name)
|
|
{
|
|
error_report("%s: requires virtual address space that is in use "
|
|
"(omit the -B option or choose a different value)",
|
|
image_name);
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
|
|
static void pgb_have_guest_base(const char *image_name, abi_ulong guest_loaddr,
|
|
abi_ulong guest_hiaddr, long align)
|
|
{
|
|
const int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE;
|
|
void *addr, *test;
|
|
|
|
if (!QEMU_IS_ALIGNED(guest_base, align)) {
|
|
fprintf(stderr, "Requested guest base %p does not satisfy "
|
|
"host minimum alignment (0x%lx)\n",
|
|
(void *)guest_base, align);
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
|
|
/* Sanity check the guest binary. */
|
|
if (reserved_va) {
|
|
if (guest_hiaddr > reserved_va) {
|
|
error_report("%s: requires more than reserved virtual "
|
|
"address space (0x%" PRIx64 " > 0x%lx)",
|
|
image_name, (uint64_t)guest_hiaddr, reserved_va);
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
} else {
|
|
#if HOST_LONG_BITS < TARGET_ABI_BITS
|
|
if ((guest_hiaddr - guest_base) > ~(uintptr_t)0) {
|
|
error_report("%s: requires more virtual address space "
|
|
"than the host can provide (0x%" PRIx64 ")",
|
|
image_name, (uint64_t)guest_hiaddr + 1 - guest_base);
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Expand the allocation to the entire reserved_va.
|
|
* Exclude the mmap_min_addr hole.
|
|
*/
|
|
if (reserved_va) {
|
|
guest_loaddr = (guest_base >= mmap_min_addr ? 0
|
|
: mmap_min_addr - guest_base);
|
|
guest_hiaddr = reserved_va;
|
|
}
|
|
|
|
/* Reserve the address space for the binary, or reserved_va. */
|
|
test = g2h_untagged(guest_loaddr);
|
|
addr = mmap(test, guest_hiaddr - guest_loaddr + 1, PROT_NONE, flags, -1, 0);
|
|
if (test != addr) {
|
|
pgb_fail_in_use(image_name);
|
|
}
|
|
qemu_log_mask(CPU_LOG_PAGE,
|
|
"%s: base @ %p for %" PRIu64 " bytes\n",
|
|
__func__, addr, (uint64_t)guest_hiaddr - guest_loaddr + 1);
|
|
}
|
|
|
|
/**
|
|
* pgd_find_hole_fallback: potential mmap address
|
|
* @guest_size: size of available space
|
|
* @brk: location of break
|
|
* @align: memory alignment
|
|
*
|
|
* This is a fallback method for finding a hole in the host address
|
|
* space if we don't have the benefit of being able to access
|
|
* /proc/self/map. It can potentially take a very long time as we can
|
|
* only dumbly iterate up the host address space seeing if the
|
|
* allocation would work.
|
|
*/
|
|
static uintptr_t pgd_find_hole_fallback(uintptr_t guest_size, uintptr_t brk,
|
|
long align, uintptr_t offset)
|
|
{
|
|
uintptr_t base;
|
|
|
|
/* Start (aligned) at the bottom and work our way up */
|
|
base = ROUND_UP(mmap_min_addr, align);
|
|
|
|
while (true) {
|
|
uintptr_t align_start, end;
|
|
align_start = ROUND_UP(base, align);
|
|
end = align_start + guest_size + offset;
|
|
|
|
/* if brk is anywhere in the range give ourselves some room to grow. */
|
|
if (align_start <= brk && brk < end) {
|
|
base = brk + (16 * MiB);
|
|
continue;
|
|
} else if (align_start + guest_size < align_start) {
|
|
/* we have run out of space */
|
|
return -1;
|
|
} else {
|
|
int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE |
|
|
MAP_FIXED_NOREPLACE;
|
|
void * mmap_start = mmap((void *) align_start, guest_size,
|
|
PROT_NONE, flags, -1, 0);
|
|
if (mmap_start != MAP_FAILED) {
|
|
munmap(mmap_start, guest_size);
|
|
if (mmap_start == (void *) align_start) {
|
|
qemu_log_mask(CPU_LOG_PAGE,
|
|
"%s: base @ %p for %" PRIdPTR" bytes\n",
|
|
__func__, mmap_start + offset, guest_size);
|
|
return (uintptr_t) mmap_start + offset;
|
|
}
|
|
}
|
|
base += qemu_host_page_size;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Return value for guest_base, or -1 if no hole found. */
|
|
static uintptr_t pgb_find_hole(uintptr_t guest_loaddr, uintptr_t guest_size,
|
|
long align, uintptr_t offset)
|
|
{
|
|
GSList *maps, *iter;
|
|
uintptr_t this_start, this_end, next_start, brk;
|
|
intptr_t ret = -1;
|
|
|
|
assert(QEMU_IS_ALIGNED(guest_loaddr, align));
|
|
|
|
maps = read_self_maps();
|
|
|
|
/* Read brk after we've read the maps, which will malloc. */
|
|
brk = (uintptr_t)sbrk(0);
|
|
|
|
if (!maps) {
|
|
return pgd_find_hole_fallback(guest_size, brk, align, offset);
|
|
}
|
|
|
|
/* The first hole is before the first map entry. */
|
|
this_start = mmap_min_addr;
|
|
|
|
for (iter = maps; iter;
|
|
this_start = next_start, iter = g_slist_next(iter)) {
|
|
uintptr_t align_start, hole_size;
|
|
|
|
this_end = ((MapInfo *)iter->data)->start;
|
|
next_start = ((MapInfo *)iter->data)->end;
|
|
align_start = ROUND_UP(this_start + offset, align);
|
|
|
|
/* Skip holes that are too small. */
|
|
if (align_start >= this_end) {
|
|
continue;
|
|
}
|
|
hole_size = this_end - align_start;
|
|
if (hole_size < guest_size) {
|
|
continue;
|
|
}
|
|
|
|
/* If this hole contains brk, give ourselves some room to grow. */
|
|
if (this_start <= brk && brk < this_end) {
|
|
hole_size -= guest_size;
|
|
if (sizeof(uintptr_t) == 8 && hole_size >= 1 * GiB) {
|
|
align_start += 1 * GiB;
|
|
} else if (hole_size >= 16 * MiB) {
|
|
align_start += 16 * MiB;
|
|
} else {
|
|
align_start = (this_end - guest_size) & -align;
|
|
if (align_start < this_start) {
|
|
continue;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Record the lowest successful match. */
|
|
if (ret < 0) {
|
|
ret = align_start;
|
|
}
|
|
/* If this hole contains the identity map, select it. */
|
|
if (align_start <= guest_loaddr &&
|
|
guest_loaddr + guest_size <= this_end) {
|
|
ret = 0;
|
|
}
|
|
/* If this hole ends above the identity map, stop looking. */
|
|
if (this_end >= guest_loaddr) {
|
|
break;
|
|
}
|
|
}
|
|
free_self_maps(maps);
|
|
|
|
if (ret != -1) {
|
|
qemu_log_mask(CPU_LOG_PAGE, "%s: base @ %" PRIxPTR
|
|
" for %" PRIuPTR " bytes\n",
|
|
__func__, ret, guest_size);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void pgb_static(const char *image_name, abi_ulong orig_loaddr,
|
|
abi_ulong orig_hiaddr, long align)
|
|
{
|
|
uintptr_t loaddr = orig_loaddr;
|
|
uintptr_t hiaddr = orig_hiaddr;
|
|
uintptr_t offset = 0;
|
|
uintptr_t addr;
|
|
|
|
if (hiaddr != orig_hiaddr) {
|
|
error_report("%s: requires virtual address space that the "
|
|
"host cannot provide (0x%" PRIx64 ")",
|
|
image_name, (uint64_t)orig_hiaddr + 1);
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
|
|
loaddr &= -align;
|
|
if (HI_COMMPAGE) {
|
|
/*
|
|
* Extend the allocation to include the commpage.
|
|
* For a 64-bit host, this is just 4GiB; for a 32-bit host we
|
|
* need to ensure there is space bellow the guest_base so we
|
|
* can map the commpage in the place needed when the address
|
|
* arithmetic wraps around.
|
|
*/
|
|
if (sizeof(uintptr_t) == 8 || loaddr >= 0x80000000u) {
|
|
hiaddr = UINT32_MAX;
|
|
} else {
|
|
offset = -(HI_COMMPAGE & -align);
|
|
}
|
|
} else if (LO_COMMPAGE != -1) {
|
|
loaddr = MIN(loaddr, LO_COMMPAGE & -align);
|
|
}
|
|
|
|
addr = pgb_find_hole(loaddr, hiaddr - loaddr + 1, align, offset);
|
|
if (addr == -1) {
|
|
/*
|
|
* If HI_COMMPAGE, there *might* be a non-consecutive allocation
|
|
* that can satisfy both. But as the normal arm32 link base address
|
|
* is ~32k, and we extend down to include the commpage, making the
|
|
* overhead only ~96k, this is unlikely.
|
|
*/
|
|
error_report("%s: Unable to allocate %#zx bytes of "
|
|
"virtual address space", image_name,
|
|
(size_t)(hiaddr - loaddr));
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
|
|
guest_base = addr;
|
|
|
|
qemu_log_mask(CPU_LOG_PAGE, "%s: base @ %"PRIxPTR" for %" PRIuPTR" bytes\n",
|
|
__func__, addr, hiaddr - loaddr);
|
|
}
|
|
|
|
static void pgb_dynamic(const char *image_name, long align)
|
|
{
|
|
/*
|
|
* The executable is dynamic and does not require a fixed address.
|
|
* All we need is a commpage that satisfies align.
|
|
* If we do not need a commpage, leave guest_base == 0.
|
|
*/
|
|
if (HI_COMMPAGE) {
|
|
uintptr_t addr, commpage;
|
|
|
|
/* 64-bit hosts should have used reserved_va. */
|
|
assert(sizeof(uintptr_t) == 4);
|
|
|
|
/*
|
|
* By putting the commpage at the first hole, that puts guest_base
|
|
* just above that, and maximises the positive guest addresses.
|
|
*/
|
|
commpage = HI_COMMPAGE & -align;
|
|
addr = pgb_find_hole(commpage, -commpage, align, 0);
|
|
assert(addr != -1);
|
|
guest_base = addr;
|
|
}
|
|
}
|
|
|
|
static void pgb_reserved_va(const char *image_name, abi_ulong guest_loaddr,
|
|
abi_ulong guest_hiaddr, long align)
|
|
{
|
|
int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE;
|
|
void *addr, *test;
|
|
|
|
if (guest_hiaddr > reserved_va) {
|
|
error_report("%s: requires more than reserved virtual "
|
|
"address space (0x%" PRIx64 " > 0x%lx)",
|
|
image_name, (uint64_t)guest_hiaddr, reserved_va);
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
|
|
/* Widen the "image" to the entire reserved address space. */
|
|
pgb_static(image_name, 0, reserved_va, align);
|
|
|
|
/* osdep.h defines this as 0 if it's missing */
|
|
flags |= MAP_FIXED_NOREPLACE;
|
|
|
|
/* Reserve the memory on the host. */
|
|
assert(guest_base != 0);
|
|
test = g2h_untagged(0);
|
|
addr = mmap(test, reserved_va + 1, PROT_NONE, flags, -1, 0);
|
|
if (addr == MAP_FAILED || addr != test) {
|
|
error_report("Unable to reserve 0x%lx bytes of virtual address "
|
|
"space at %p (%s) for use as guest address space (check your "
|
|
"virtual memory ulimit setting, mmap_min_addr or reserve less "
|
|
"using qemu-user's -R option)",
|
|
reserved_va + 1, test, strerror(errno));
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
|
|
qemu_log_mask(CPU_LOG_PAGE, "%s: base @ %p for %lu bytes\n",
|
|
__func__, addr, reserved_va + 1);
|
|
}
|
|
|
|
void probe_guest_base(const char *image_name, abi_ulong guest_loaddr,
|
|
abi_ulong guest_hiaddr)
|
|
{
|
|
/* In order to use host shmat, we must be able to honor SHMLBA. */
|
|
uintptr_t align = MAX(SHMLBA, qemu_host_page_size);
|
|
|
|
if (have_guest_base) {
|
|
pgb_have_guest_base(image_name, guest_loaddr, guest_hiaddr, align);
|
|
} else if (reserved_va) {
|
|
pgb_reserved_va(image_name, guest_loaddr, guest_hiaddr, align);
|
|
} else if (guest_loaddr) {
|
|
pgb_static(image_name, guest_loaddr, guest_hiaddr, align);
|
|
} else {
|
|
pgb_dynamic(image_name, align);
|
|
}
|
|
|
|
/* Reserve and initialize the commpage. */
|
|
if (!init_guest_commpage()) {
|
|
/*
|
|
* With have_guest_base, the user has selected the address and
|
|
* we are trying to work with that. Otherwise, we have selected
|
|
* free space and init_guest_commpage must succeeded.
|
|
*/
|
|
assert(have_guest_base);
|
|
pgb_fail_in_use(image_name);
|
|
}
|
|
|
|
assert(QEMU_IS_ALIGNED(guest_base, align));
|
|
qemu_log_mask(CPU_LOG_PAGE, "Locating guest address space "
|
|
"@ 0x%" PRIx64 "\n", (uint64_t)guest_base);
|
|
}
|
|
|
|
enum {
|
|
/* The string "GNU\0" as a magic number. */
|
|
GNU0_MAGIC = const_le32('G' | 'N' << 8 | 'U' << 16),
|
|
NOTE_DATA_SZ = 1 * KiB,
|
|
NOTE_NAME_SZ = 4,
|
|
ELF_GNU_PROPERTY_ALIGN = ELF_CLASS == ELFCLASS32 ? 4 : 8,
|
|
};
|
|
|
|
/*
|
|
* Process a single gnu_property entry.
|
|
* Return false for error.
|
|
*/
|
|
static bool parse_elf_property(const uint32_t *data, int *off, int datasz,
|
|
struct image_info *info, bool have_prev_type,
|
|
uint32_t *prev_type, Error **errp)
|
|
{
|
|
uint32_t pr_type, pr_datasz, step;
|
|
|
|
if (*off > datasz || !QEMU_IS_ALIGNED(*off, ELF_GNU_PROPERTY_ALIGN)) {
|
|
goto error_data;
|
|
}
|
|
datasz -= *off;
|
|
data += *off / sizeof(uint32_t);
|
|
|
|
if (datasz < 2 * sizeof(uint32_t)) {
|
|
goto error_data;
|
|
}
|
|
pr_type = data[0];
|
|
pr_datasz = data[1];
|
|
data += 2;
|
|
datasz -= 2 * sizeof(uint32_t);
|
|
step = ROUND_UP(pr_datasz, ELF_GNU_PROPERTY_ALIGN);
|
|
if (step > datasz) {
|
|
goto error_data;
|
|
}
|
|
|
|
/* Properties are supposed to be unique and sorted on pr_type. */
|
|
if (have_prev_type && pr_type <= *prev_type) {
|
|
if (pr_type == *prev_type) {
|
|
error_setg(errp, "Duplicate property in PT_GNU_PROPERTY");
|
|
} else {
|
|
error_setg(errp, "Unsorted property in PT_GNU_PROPERTY");
|
|
}
|
|
return false;
|
|
}
|
|
*prev_type = pr_type;
|
|
|
|
if (!arch_parse_elf_property(pr_type, pr_datasz, data, info, errp)) {
|
|
return false;
|
|
}
|
|
|
|
*off += 2 * sizeof(uint32_t) + step;
|
|
return true;
|
|
|
|
error_data:
|
|
error_setg(errp, "Ill-formed property in PT_GNU_PROPERTY");
|
|
return false;
|
|
}
|
|
|
|
/* Process NT_GNU_PROPERTY_TYPE_0. */
|
|
static bool parse_elf_properties(int image_fd,
|
|
struct image_info *info,
|
|
const struct elf_phdr *phdr,
|
|
char bprm_buf[BPRM_BUF_SIZE],
|
|
Error **errp)
|
|
{
|
|
union {
|
|
struct elf_note nhdr;
|
|
uint32_t data[NOTE_DATA_SZ / sizeof(uint32_t)];
|
|
} note;
|
|
|
|
int n, off, datasz;
|
|
bool have_prev_type;
|
|
uint32_t prev_type;
|
|
|
|
/* Unless the arch requires properties, ignore them. */
|
|
if (!ARCH_USE_GNU_PROPERTY) {
|
|
return true;
|
|
}
|
|
|
|
/* If the properties are crazy large, that's too bad. */
|
|
n = phdr->p_filesz;
|
|
if (n > sizeof(note)) {
|
|
error_setg(errp, "PT_GNU_PROPERTY too large");
|
|
return false;
|
|
}
|
|
if (n < sizeof(note.nhdr)) {
|
|
error_setg(errp, "PT_GNU_PROPERTY too small");
|
|
return false;
|
|
}
|
|
|
|
if (phdr->p_offset + n <= BPRM_BUF_SIZE) {
|
|
memcpy(¬e, bprm_buf + phdr->p_offset, n);
|
|
} else {
|
|
ssize_t len = pread(image_fd, ¬e, n, phdr->p_offset);
|
|
if (len != n) {
|
|
error_setg_errno(errp, errno, "Error reading file header");
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* The contents of a valid PT_GNU_PROPERTY is a sequence
|
|
* of uint32_t -- swap them all now.
|
|
*/
|
|
#ifdef BSWAP_NEEDED
|
|
for (int i = 0; i < n / 4; i++) {
|
|
bswap32s(note.data + i);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Note that nhdr is 3 words, and that the "name" described by namesz
|
|
* immediately follows nhdr and is thus at the 4th word. Further, all
|
|
* of the inputs to the kernel's round_up are multiples of 4.
|
|
*/
|
|
if (note.nhdr.n_type != NT_GNU_PROPERTY_TYPE_0 ||
|
|
note.nhdr.n_namesz != NOTE_NAME_SZ ||
|
|
note.data[3] != GNU0_MAGIC) {
|
|
error_setg(errp, "Invalid note in PT_GNU_PROPERTY");
|
|
return false;
|
|
}
|
|
off = sizeof(note.nhdr) + NOTE_NAME_SZ;
|
|
|
|
datasz = note.nhdr.n_descsz + off;
|
|
if (datasz > n) {
|
|
error_setg(errp, "Invalid note size in PT_GNU_PROPERTY");
|
|
return false;
|
|
}
|
|
|
|
have_prev_type = false;
|
|
prev_type = 0;
|
|
while (1) {
|
|
if (off == datasz) {
|
|
return true; /* end, exit ok */
|
|
}
|
|
if (!parse_elf_property(note.data, &off, datasz, info,
|
|
have_prev_type, &prev_type, errp)) {
|
|
return false;
|
|
}
|
|
have_prev_type = true;
|
|
}
|
|
}
|
|
|
|
/* Load an ELF image into the address space.
|
|
|
|
IMAGE_NAME is the filename of the image, to use in error messages.
|
|
IMAGE_FD is the open file descriptor for the image.
|
|
|
|
BPRM_BUF is a copy of the beginning of the file; this of course
|
|
contains the elf file header at offset 0. It is assumed that this
|
|
buffer is sufficiently aligned to present no problems to the host
|
|
in accessing data at aligned offsets within the buffer.
|
|
|
|
On return: INFO values will be filled in, as necessary or available. */
|
|
|
|
static void load_elf_image(const char *image_name, int image_fd,
|
|
struct image_info *info, char **pinterp_name,
|
|
char bprm_buf[BPRM_BUF_SIZE])
|
|
{
|
|
struct elfhdr *ehdr = (struct elfhdr *)bprm_buf;
|
|
struct elf_phdr *phdr;
|
|
abi_ulong load_addr, load_bias, loaddr, hiaddr, error;
|
|
int i, retval, prot_exec;
|
|
Error *err = NULL;
|
|
|
|
/* First of all, some simple consistency checks */
|
|
if (!elf_check_ident(ehdr)) {
|
|
error_setg(&err, "Invalid ELF image for this architecture");
|
|
goto exit_errmsg;
|
|
}
|
|
bswap_ehdr(ehdr);
|
|
if (!elf_check_ehdr(ehdr)) {
|
|
error_setg(&err, "Invalid ELF image for this architecture");
|
|
goto exit_errmsg;
|
|
}
|
|
|
|
i = ehdr->e_phnum * sizeof(struct elf_phdr);
|
|
if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) {
|
|
phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff);
|
|
} else {
|
|
phdr = (struct elf_phdr *) alloca(i);
|
|
retval = pread(image_fd, phdr, i, ehdr->e_phoff);
|
|
if (retval != i) {
|
|
goto exit_read;
|
|
}
|
|
}
|
|
bswap_phdr(phdr, ehdr->e_phnum);
|
|
|
|
info->nsegs = 0;
|
|
info->pt_dynamic_addr = 0;
|
|
|
|
mmap_lock();
|
|
|
|
/*
|
|
* Find the maximum size of the image and allocate an appropriate
|
|
* amount of memory to handle that. Locate the interpreter, if any.
|
|
*/
|
|
loaddr = -1, hiaddr = 0;
|
|
info->alignment = 0;
|
|
info->exec_stack = EXSTACK_DEFAULT;
|
|
for (i = 0; i < ehdr->e_phnum; ++i) {
|
|
struct elf_phdr *eppnt = phdr + i;
|
|
if (eppnt->p_type == PT_LOAD) {
|
|
abi_ulong a = eppnt->p_vaddr - eppnt->p_offset;
|
|
if (a < loaddr) {
|
|
loaddr = a;
|
|
}
|
|
a = eppnt->p_vaddr + eppnt->p_memsz - 1;
|
|
if (a > hiaddr) {
|
|
hiaddr = a;
|
|
}
|
|
++info->nsegs;
|
|
info->alignment |= eppnt->p_align;
|
|
} else if (eppnt->p_type == PT_INTERP && pinterp_name) {
|
|
g_autofree char *interp_name = NULL;
|
|
|
|
if (*pinterp_name) {
|
|
error_setg(&err, "Multiple PT_INTERP entries");
|
|
goto exit_errmsg;
|
|
}
|
|
|
|
interp_name = g_malloc(eppnt->p_filesz);
|
|
|
|
if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
|
|
memcpy(interp_name, bprm_buf + eppnt->p_offset,
|
|
eppnt->p_filesz);
|
|
} else {
|
|
retval = pread(image_fd, interp_name, eppnt->p_filesz,
|
|
eppnt->p_offset);
|
|
if (retval != eppnt->p_filesz) {
|
|
goto exit_read;
|
|
}
|
|
}
|
|
if (interp_name[eppnt->p_filesz - 1] != 0) {
|
|
error_setg(&err, "Invalid PT_INTERP entry");
|
|
goto exit_errmsg;
|
|
}
|
|
*pinterp_name = g_steal_pointer(&interp_name);
|
|
} else if (eppnt->p_type == PT_GNU_PROPERTY) {
|
|
if (!parse_elf_properties(image_fd, info, eppnt, bprm_buf, &err)) {
|
|
goto exit_errmsg;
|
|
}
|
|
} else if (eppnt->p_type == PT_GNU_STACK) {
|
|
info->exec_stack = eppnt->p_flags & PF_X;
|
|
}
|
|
}
|
|
|
|
if (pinterp_name != NULL) {
|
|
/*
|
|
* This is the main executable.
|
|
*
|
|
* Reserve extra space for brk.
|
|
* We hold on to this space while placing the interpreter
|
|
* and the stack, lest they be placed immediately after
|
|
* the data segment and block allocation from the brk.
|
|
*
|
|
* 16MB is chosen as "large enough" without being so large as
|
|
* to allow the result to not fit with a 32-bit guest on a
|
|
* 32-bit host. However some 64 bit guests (e.g. s390x)
|
|
* attempt to place their heap further ahead and currently
|
|
* nothing stops them smashing into QEMUs address space.
|
|
*/
|
|
#if TARGET_LONG_BITS == 64
|
|
info->reserve_brk = 32 * MiB;
|
|
#else
|
|
info->reserve_brk = 16 * MiB;
|
|
#endif
|
|
hiaddr += info->reserve_brk;
|
|
|
|
if (ehdr->e_type == ET_EXEC) {
|
|
/*
|
|
* Make sure that the low address does not conflict with
|
|
* MMAP_MIN_ADDR or the QEMU application itself.
|
|
*/
|
|
probe_guest_base(image_name, loaddr, hiaddr);
|
|
} else {
|
|
/*
|
|
* The binary is dynamic, but we still need to
|
|
* select guest_base. In this case we pass a size.
|
|
*/
|
|
probe_guest_base(image_name, 0, hiaddr - loaddr);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Reserve address space for all of this.
|
|
*
|
|
* In the case of ET_EXEC, we supply MAP_FIXED so that we get
|
|
* exactly the address range that is required.
|
|
*
|
|
* Otherwise this is ET_DYN, and we are searching for a location
|
|
* that can hold the memory space required. If the image is
|
|
* pre-linked, LOADDR will be non-zero, and the kernel should
|
|
* honor that address if it happens to be free.
|
|
*
|
|
* In both cases, we will overwrite pages in this range with mappings
|
|
* from the executable.
|
|
*/
|
|
load_addr = target_mmap(loaddr, (size_t)hiaddr - loaddr + 1, PROT_NONE,
|
|
MAP_PRIVATE | MAP_ANON | MAP_NORESERVE |
|
|
(ehdr->e_type == ET_EXEC ? MAP_FIXED : 0),
|
|
-1, 0);
|
|
if (load_addr == -1) {
|
|
goto exit_mmap;
|
|
}
|
|
load_bias = load_addr - loaddr;
|
|
|
|
if (elf_is_fdpic(ehdr)) {
|
|
struct elf32_fdpic_loadseg *loadsegs = info->loadsegs =
|
|
g_malloc(sizeof(*loadsegs) * info->nsegs);
|
|
|
|
for (i = 0; i < ehdr->e_phnum; ++i) {
|
|
switch (phdr[i].p_type) {
|
|
case PT_DYNAMIC:
|
|
info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias;
|
|
break;
|
|
case PT_LOAD:
|
|
loadsegs->addr = phdr[i].p_vaddr + load_bias;
|
|
loadsegs->p_vaddr = phdr[i].p_vaddr;
|
|
loadsegs->p_memsz = phdr[i].p_memsz;
|
|
++loadsegs;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
info->load_bias = load_bias;
|
|
info->code_offset = load_bias;
|
|
info->data_offset = load_bias;
|
|
info->load_addr = load_addr;
|
|
info->entry = ehdr->e_entry + load_bias;
|
|
info->start_code = -1;
|
|
info->end_code = 0;
|
|
info->start_data = -1;
|
|
info->end_data = 0;
|
|
info->brk = 0;
|
|
info->elf_flags = ehdr->e_flags;
|
|
|
|
prot_exec = PROT_EXEC;
|
|
#ifdef TARGET_AARCH64
|
|
/*
|
|
* If the BTI feature is present, this indicates that the executable
|
|
* pages of the startup binary should be mapped with PROT_BTI, so that
|
|
* branch targets are enforced.
|
|
*
|
|
* The startup binary is either the interpreter or the static executable.
|
|
* The interpreter is responsible for all pages of a dynamic executable.
|
|
*
|
|
* Elf notes are backward compatible to older cpus.
|
|
* Do not enable BTI unless it is supported.
|
|
*/
|
|
if ((info->note_flags & GNU_PROPERTY_AARCH64_FEATURE_1_BTI)
|
|
&& (pinterp_name == NULL || *pinterp_name == 0)
|
|
&& cpu_isar_feature(aa64_bti, ARM_CPU(thread_cpu))) {
|
|
prot_exec |= TARGET_PROT_BTI;
|
|
}
|
|
#endif
|
|
|
|
for (i = 0; i < ehdr->e_phnum; i++) {
|
|
struct elf_phdr *eppnt = phdr + i;
|
|
if (eppnt->p_type == PT_LOAD) {
|
|
abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em, vaddr_len;
|
|
int elf_prot = 0;
|
|
|
|
if (eppnt->p_flags & PF_R) {
|
|
elf_prot |= PROT_READ;
|
|
}
|
|
if (eppnt->p_flags & PF_W) {
|
|
elf_prot |= PROT_WRITE;
|
|
}
|
|
if (eppnt->p_flags & PF_X) {
|
|
elf_prot |= prot_exec;
|
|
}
|
|
|
|
vaddr = load_bias + eppnt->p_vaddr;
|
|
vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr);
|
|
vaddr_ps = TARGET_ELF_PAGESTART(vaddr);
|
|
|
|
vaddr_ef = vaddr + eppnt->p_filesz;
|
|
vaddr_em = vaddr + eppnt->p_memsz;
|
|
|
|
/*
|
|
* Some segments may be completely empty, with a non-zero p_memsz
|
|
* but no backing file segment.
|
|
*/
|
|
if (eppnt->p_filesz != 0) {
|
|
vaddr_len = TARGET_ELF_PAGELENGTH(eppnt->p_filesz + vaddr_po);
|
|
error = target_mmap(vaddr_ps, vaddr_len, elf_prot,
|
|
MAP_PRIVATE | MAP_FIXED,
|
|
image_fd, eppnt->p_offset - vaddr_po);
|
|
|
|
if (error == -1) {
|
|
goto exit_mmap;
|
|
}
|
|
|
|
/*
|
|
* If the load segment requests extra zeros (e.g. bss), map it.
|
|
*/
|
|
if (eppnt->p_filesz < eppnt->p_memsz) {
|
|
zero_bss(vaddr_ef, vaddr_em, elf_prot);
|
|
}
|
|
} else if (eppnt->p_memsz != 0) {
|
|
vaddr_len = TARGET_ELF_PAGELENGTH(eppnt->p_memsz + vaddr_po);
|
|
error = target_mmap(vaddr_ps, vaddr_len, elf_prot,
|
|
MAP_PRIVATE | MAP_FIXED | MAP_ANONYMOUS,
|
|
-1, 0);
|
|
|
|
if (error == -1) {
|
|
goto exit_mmap;
|
|
}
|
|
}
|
|
|
|
/* Find the full program boundaries. */
|
|
if (elf_prot & PROT_EXEC) {
|
|
if (vaddr < info->start_code) {
|
|
info->start_code = vaddr;
|
|
}
|
|
if (vaddr_ef > info->end_code) {
|
|
info->end_code = vaddr_ef;
|
|
}
|
|
}
|
|
if (elf_prot & PROT_WRITE) {
|
|
if (vaddr < info->start_data) {
|
|
info->start_data = vaddr;
|
|
}
|
|
if (vaddr_ef > info->end_data) {
|
|
info->end_data = vaddr_ef;
|
|
}
|
|
}
|
|
if (vaddr_em > info->brk) {
|
|
info->brk = vaddr_em;
|
|
}
|
|
#ifdef TARGET_MIPS
|
|
} else if (eppnt->p_type == PT_MIPS_ABIFLAGS) {
|
|
Mips_elf_abiflags_v0 abiflags;
|
|
if (eppnt->p_filesz < sizeof(Mips_elf_abiflags_v0)) {
|
|
error_setg(&err, "Invalid PT_MIPS_ABIFLAGS entry");
|
|
goto exit_errmsg;
|
|
}
|
|
if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
|
|
memcpy(&abiflags, bprm_buf + eppnt->p_offset,
|
|
sizeof(Mips_elf_abiflags_v0));
|
|
} else {
|
|
retval = pread(image_fd, &abiflags, sizeof(Mips_elf_abiflags_v0),
|
|
eppnt->p_offset);
|
|
if (retval != sizeof(Mips_elf_abiflags_v0)) {
|
|
goto exit_read;
|
|
}
|
|
}
|
|
bswap_mips_abiflags(&abiflags);
|
|
info->fp_abi = abiflags.fp_abi;
|
|
#endif
|
|
}
|
|
}
|
|
|
|
if (info->end_data == 0) {
|
|
info->start_data = info->end_code;
|
|
info->end_data = info->end_code;
|
|
}
|
|
|
|
if (qemu_log_enabled()) {
|
|
load_symbols(ehdr, image_fd, load_bias);
|
|
}
|
|
|
|
debuginfo_report_elf(image_name, image_fd, load_bias);
|
|
|
|
mmap_unlock();
|
|
|
|
close(image_fd);
|
|
return;
|
|
|
|
exit_read:
|
|
if (retval >= 0) {
|
|
error_setg(&err, "Incomplete read of file header");
|
|
} else {
|
|
error_setg_errno(&err, errno, "Error reading file header");
|
|
}
|
|
goto exit_errmsg;
|
|
exit_mmap:
|
|
error_setg_errno(&err, errno, "Error mapping file");
|
|
goto exit_errmsg;
|
|
exit_errmsg:
|
|
error_reportf_err(err, "%s: ", image_name);
|
|
exit(-1);
|
|
}
|
|
|
|
static void load_elf_interp(const char *filename, struct image_info *info,
|
|
char bprm_buf[BPRM_BUF_SIZE])
|
|
{
|
|
int fd, retval;
|
|
Error *err = NULL;
|
|
|
|
fd = open(path(filename), O_RDONLY);
|
|
if (fd < 0) {
|
|
error_setg_file_open(&err, errno, filename);
|
|
error_report_err(err);
|
|
exit(-1);
|
|
}
|
|
|
|
retval = read(fd, bprm_buf, BPRM_BUF_SIZE);
|
|
if (retval < 0) {
|
|
error_setg_errno(&err, errno, "Error reading file header");
|
|
error_reportf_err(err, "%s: ", filename);
|
|
exit(-1);
|
|
}
|
|
|
|
if (retval < BPRM_BUF_SIZE) {
|
|
memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval);
|
|
}
|
|
|
|
load_elf_image(filename, fd, info, NULL, bprm_buf);
|
|
}
|
|
|
|
static int symfind(const void *s0, const void *s1)
|
|
{
|
|
struct elf_sym *sym = (struct elf_sym *)s1;
|
|
__typeof(sym->st_value) addr = *(uint64_t *)s0;
|
|
int result = 0;
|
|
|
|
if (addr < sym->st_value) {
|
|
result = -1;
|
|
} else if (addr >= sym->st_value + sym->st_size) {
|
|
result = 1;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
static const char *lookup_symbolxx(struct syminfo *s, uint64_t orig_addr)
|
|
{
|
|
#if ELF_CLASS == ELFCLASS32
|
|
struct elf_sym *syms = s->disas_symtab.elf32;
|
|
#else
|
|
struct elf_sym *syms = s->disas_symtab.elf64;
|
|
#endif
|
|
|
|
// binary search
|
|
struct elf_sym *sym;
|
|
|
|
sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind);
|
|
if (sym != NULL) {
|
|
return s->disas_strtab + sym->st_name;
|
|
}
|
|
|
|
return "";
|
|
}
|
|
|
|
/* FIXME: This should use elf_ops.h */
|
|
static int symcmp(const void *s0, const void *s1)
|
|
{
|
|
struct elf_sym *sym0 = (struct elf_sym *)s0;
|
|
struct elf_sym *sym1 = (struct elf_sym *)s1;
|
|
return (sym0->st_value < sym1->st_value)
|
|
? -1
|
|
: ((sym0->st_value > sym1->st_value) ? 1 : 0);
|
|
}
|
|
|
|
/* Best attempt to load symbols from this ELF object. */
|
|
static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias)
|
|
{
|
|
int i, shnum, nsyms, sym_idx = 0, str_idx = 0;
|
|
uint64_t segsz;
|
|
struct elf_shdr *shdr;
|
|
char *strings = NULL;
|
|
struct syminfo *s = NULL;
|
|
struct elf_sym *new_syms, *syms = NULL;
|
|
|
|
shnum = hdr->e_shnum;
|
|
i = shnum * sizeof(struct elf_shdr);
|
|
shdr = (struct elf_shdr *)alloca(i);
|
|
if (pread(fd, shdr, i, hdr->e_shoff) != i) {
|
|
return;
|
|
}
|
|
|
|
bswap_shdr(shdr, shnum);
|
|
for (i = 0; i < shnum; ++i) {
|
|
if (shdr[i].sh_type == SHT_SYMTAB) {
|
|
sym_idx = i;
|
|
str_idx = shdr[i].sh_link;
|
|
goto found;
|
|
}
|
|
}
|
|
|
|
/* There will be no symbol table if the file was stripped. */
|
|
return;
|
|
|
|
found:
|
|
/* Now know where the strtab and symtab are. Snarf them. */
|
|
s = g_try_new(struct syminfo, 1);
|
|
if (!s) {
|
|
goto give_up;
|
|
}
|
|
|
|
segsz = shdr[str_idx].sh_size;
|
|
s->disas_strtab = strings = g_try_malloc(segsz);
|
|
if (!strings ||
|
|
pread(fd, strings, segsz, shdr[str_idx].sh_offset) != segsz) {
|
|
goto give_up;
|
|
}
|
|
|
|
segsz = shdr[sym_idx].sh_size;
|
|
syms = g_try_malloc(segsz);
|
|
if (!syms || pread(fd, syms, segsz, shdr[sym_idx].sh_offset) != segsz) {
|
|
goto give_up;
|
|
}
|
|
|
|
if (segsz / sizeof(struct elf_sym) > INT_MAX) {
|
|
/* Implausibly large symbol table: give up rather than ploughing
|
|
* on with the number of symbols calculation overflowing
|
|
*/
|
|
goto give_up;
|
|
}
|
|
nsyms = segsz / sizeof(struct elf_sym);
|
|
for (i = 0; i < nsyms; ) {
|
|
bswap_sym(syms + i);
|
|
/* Throw away entries which we do not need. */
|
|
if (syms[i].st_shndx == SHN_UNDEF
|
|
|| syms[i].st_shndx >= SHN_LORESERVE
|
|
|| ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) {
|
|
if (i < --nsyms) {
|
|
syms[i] = syms[nsyms];
|
|
}
|
|
} else {
|
|
#if defined(TARGET_ARM) || defined (TARGET_MIPS)
|
|
/* The bottom address bit marks a Thumb or MIPS16 symbol. */
|
|
syms[i].st_value &= ~(target_ulong)1;
|
|
#endif
|
|
syms[i].st_value += load_bias;
|
|
i++;
|
|
}
|
|
}
|
|
|
|
/* No "useful" symbol. */
|
|
if (nsyms == 0) {
|
|
goto give_up;
|
|
}
|
|
|
|
/* Attempt to free the storage associated with the local symbols
|
|
that we threw away. Whether or not this has any effect on the
|
|
memory allocation depends on the malloc implementation and how
|
|
many symbols we managed to discard. */
|
|
new_syms = g_try_renew(struct elf_sym, syms, nsyms);
|
|
if (new_syms == NULL) {
|
|
goto give_up;
|
|
}
|
|
syms = new_syms;
|
|
|
|
qsort(syms, nsyms, sizeof(*syms), symcmp);
|
|
|
|
s->disas_num_syms = nsyms;
|
|
#if ELF_CLASS == ELFCLASS32
|
|
s->disas_symtab.elf32 = syms;
|
|
#else
|
|
s->disas_symtab.elf64 = syms;
|
|
#endif
|
|
s->lookup_symbol = lookup_symbolxx;
|
|
s->next = syminfos;
|
|
syminfos = s;
|
|
|
|
return;
|
|
|
|
give_up:
|
|
g_free(s);
|
|
g_free(strings);
|
|
g_free(syms);
|
|
}
|
|
|
|
uint32_t get_elf_eflags(int fd)
|
|
{
|
|
struct elfhdr ehdr;
|
|
off_t offset;
|
|
int ret;
|
|
|
|
/* Read ELF header */
|
|
offset = lseek(fd, 0, SEEK_SET);
|
|
if (offset == (off_t) -1) {
|
|
return 0;
|
|
}
|
|
ret = read(fd, &ehdr, sizeof(ehdr));
|
|
if (ret < sizeof(ehdr)) {
|
|
return 0;
|
|
}
|
|
offset = lseek(fd, offset, SEEK_SET);
|
|
if (offset == (off_t) -1) {
|
|
return 0;
|
|
}
|
|
|
|
/* Check ELF signature */
|
|
if (!elf_check_ident(&ehdr)) {
|
|
return 0;
|
|
}
|
|
|
|
/* check header */
|
|
bswap_ehdr(&ehdr);
|
|
if (!elf_check_ehdr(&ehdr)) {
|
|
return 0;
|
|
}
|
|
|
|
/* return architecture id */
|
|
return ehdr.e_flags;
|
|
}
|
|
|
|
int load_elf_binary(struct linux_binprm *bprm, struct image_info *info)
|
|
{
|
|
struct image_info interp_info;
|
|
struct elfhdr elf_ex;
|
|
char *elf_interpreter = NULL;
|
|
char *scratch;
|
|
|
|
memset(&interp_info, 0, sizeof(interp_info));
|
|
#ifdef TARGET_MIPS
|
|
interp_info.fp_abi = MIPS_ABI_FP_UNKNOWN;
|
|
#endif
|
|
|
|
info->start_mmap = (abi_ulong)ELF_START_MMAP;
|
|
|
|
load_elf_image(bprm->filename, bprm->fd, info,
|
|
&elf_interpreter, bprm->buf);
|
|
|
|
/* ??? We need a copy of the elf header for passing to create_elf_tables.
|
|
If we do nothing, we'll have overwritten this when we re-use bprm->buf
|
|
when we load the interpreter. */
|
|
elf_ex = *(struct elfhdr *)bprm->buf;
|
|
|
|
/* Do this so that we can load the interpreter, if need be. We will
|
|
change some of these later */
|
|
bprm->p = setup_arg_pages(bprm, info);
|
|
|
|
scratch = g_new0(char, TARGET_PAGE_SIZE);
|
|
if (STACK_GROWS_DOWN) {
|
|
bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
|
|
bprm->p, info->stack_limit);
|
|
info->file_string = bprm->p;
|
|
bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
|
|
bprm->p, info->stack_limit);
|
|
info->env_strings = bprm->p;
|
|
bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
|
|
bprm->p, info->stack_limit);
|
|
info->arg_strings = bprm->p;
|
|
} else {
|
|
info->arg_strings = bprm->p;
|
|
bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
|
|
bprm->p, info->stack_limit);
|
|
info->env_strings = bprm->p;
|
|
bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
|
|
bprm->p, info->stack_limit);
|
|
info->file_string = bprm->p;
|
|
bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
|
|
bprm->p, info->stack_limit);
|
|
}
|
|
|
|
g_free(scratch);
|
|
|
|
if (!bprm->p) {
|
|
fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG));
|
|
exit(-1);
|
|
}
|
|
|
|
if (elf_interpreter) {
|
|
load_elf_interp(elf_interpreter, &interp_info, bprm->buf);
|
|
|
|
/* If the program interpreter is one of these two, then assume
|
|
an iBCS2 image. Otherwise assume a native linux image. */
|
|
|
|
if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0
|
|
|| strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) {
|
|
info->personality = PER_SVR4;
|
|
|
|
/* Why this, you ask??? Well SVr4 maps page 0 as read-only,
|
|
and some applications "depend" upon this behavior. Since
|
|
we do not have the power to recompile these, we emulate
|
|
the SVr4 behavior. Sigh. */
|
|
target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC,
|
|
MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
|
|
}
|
|
#ifdef TARGET_MIPS
|
|
info->interp_fp_abi = interp_info.fp_abi;
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* TODO: load a vdso, which would also contain the signal trampolines.
|
|
* Otherwise, allocate a private page to hold them.
|
|
*/
|
|
if (TARGET_ARCH_HAS_SIGTRAMP_PAGE) {
|
|
abi_long tramp_page = target_mmap(0, TARGET_PAGE_SIZE,
|
|
PROT_READ | PROT_WRITE,
|
|
MAP_PRIVATE | MAP_ANON, -1, 0);
|
|
if (tramp_page == -1) {
|
|
return -errno;
|
|
}
|
|
|
|
setup_sigtramp(tramp_page);
|
|
target_mprotect(tramp_page, TARGET_PAGE_SIZE, PROT_READ | PROT_EXEC);
|
|
}
|
|
|
|
bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex,
|
|
info, (elf_interpreter ? &interp_info : NULL));
|
|
info->start_stack = bprm->p;
|
|
|
|
/* If we have an interpreter, set that as the program's entry point.
|
|
Copy the load_bias as well, to help PPC64 interpret the entry
|
|
point as a function descriptor. Do this after creating elf tables
|
|
so that we copy the original program entry point into the AUXV. */
|
|
if (elf_interpreter) {
|
|
info->load_bias = interp_info.load_bias;
|
|
info->entry = interp_info.entry;
|
|
g_free(elf_interpreter);
|
|
}
|
|
|
|
#ifdef USE_ELF_CORE_DUMP
|
|
bprm->core_dump = &elf_core_dump;
|
|
#endif
|
|
|
|
/*
|
|
* If we reserved extra space for brk, release it now.
|
|
* The implementation of do_brk in syscalls.c expects to be able
|
|
* to mmap pages in this space.
|
|
*/
|
|
if (info->reserve_brk) {
|
|
abi_ulong start_brk = HOST_PAGE_ALIGN(info->brk);
|
|
abi_ulong end_brk = HOST_PAGE_ALIGN(info->brk + info->reserve_brk);
|
|
target_munmap(start_brk, end_brk - start_brk);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
#ifdef USE_ELF_CORE_DUMP
|
|
/*
|
|
* Definitions to generate Intel SVR4-like core files.
|
|
* These mostly have the same names as the SVR4 types with "target_elf_"
|
|
* tacked on the front to prevent clashes with linux definitions,
|
|
* and the typedef forms have been avoided. This is mostly like
|
|
* the SVR4 structure, but more Linuxy, with things that Linux does
|
|
* not support and which gdb doesn't really use excluded.
|
|
*
|
|
* Fields we don't dump (their contents is zero) in linux-user qemu
|
|
* are marked with XXX.
|
|
*
|
|
* Core dump code is copied from linux kernel (fs/binfmt_elf.c).
|
|
*
|
|
* Porting ELF coredump for target is (quite) simple process. First you
|
|
* define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for
|
|
* the target resides):
|
|
*
|
|
* #define USE_ELF_CORE_DUMP
|
|
*
|
|
* Next you define type of register set used for dumping. ELF specification
|
|
* says that it needs to be array of elf_greg_t that has size of ELF_NREG.
|
|
*
|
|
* typedef <target_regtype> target_elf_greg_t;
|
|
* #define ELF_NREG <number of registers>
|
|
* typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG];
|
|
*
|
|
* Last step is to implement target specific function that copies registers
|
|
* from given cpu into just specified register set. Prototype is:
|
|
*
|
|
* static void elf_core_copy_regs(taret_elf_gregset_t *regs,
|
|
* const CPUArchState *env);
|
|
*
|
|
* Parameters:
|
|
* regs - copy register values into here (allocated and zeroed by caller)
|
|
* env - copy registers from here
|
|
*
|
|
* Example for ARM target is provided in this file.
|
|
*/
|
|
|
|
/* An ELF note in memory */
|
|
struct memelfnote {
|
|
const char *name;
|
|
size_t namesz;
|
|
size_t namesz_rounded;
|
|
int type;
|
|
size_t datasz;
|
|
size_t datasz_rounded;
|
|
void *data;
|
|
size_t notesz;
|
|
};
|
|
|
|
struct target_elf_siginfo {
|
|
abi_int si_signo; /* signal number */
|
|
abi_int si_code; /* extra code */
|
|
abi_int si_errno; /* errno */
|
|
};
|
|
|
|
struct target_elf_prstatus {
|
|
struct target_elf_siginfo pr_info; /* Info associated with signal */
|
|
abi_short pr_cursig; /* Current signal */
|
|
abi_ulong pr_sigpend; /* XXX */
|
|
abi_ulong pr_sighold; /* XXX */
|
|
target_pid_t pr_pid;
|
|
target_pid_t pr_ppid;
|
|
target_pid_t pr_pgrp;
|
|
target_pid_t pr_sid;
|
|
struct target_timeval pr_utime; /* XXX User time */
|
|
struct target_timeval pr_stime; /* XXX System time */
|
|
struct target_timeval pr_cutime; /* XXX Cumulative user time */
|
|
struct target_timeval pr_cstime; /* XXX Cumulative system time */
|
|
target_elf_gregset_t pr_reg; /* GP registers */
|
|
abi_int pr_fpvalid; /* XXX */
|
|
};
|
|
|
|
#define ELF_PRARGSZ (80) /* Number of chars for args */
|
|
|
|
struct target_elf_prpsinfo {
|
|
char pr_state; /* numeric process state */
|
|
char pr_sname; /* char for pr_state */
|
|
char pr_zomb; /* zombie */
|
|
char pr_nice; /* nice val */
|
|
abi_ulong pr_flag; /* flags */
|
|
target_uid_t pr_uid;
|
|
target_gid_t pr_gid;
|
|
target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid;
|
|
/* Lots missing */
|
|
char pr_fname[16] QEMU_NONSTRING; /* filename of executable */
|
|
char pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */
|
|
};
|
|
|
|
/* Here is the structure in which status of each thread is captured. */
|
|
struct elf_thread_status {
|
|
QTAILQ_ENTRY(elf_thread_status) ets_link;
|
|
struct target_elf_prstatus prstatus; /* NT_PRSTATUS */
|
|
#if 0
|
|
elf_fpregset_t fpu; /* NT_PRFPREG */
|
|
struct task_struct *thread;
|
|
elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */
|
|
#endif
|
|
struct memelfnote notes[1];
|
|
int num_notes;
|
|
};
|
|
|
|
struct elf_note_info {
|
|
struct memelfnote *notes;
|
|
struct target_elf_prstatus *prstatus; /* NT_PRSTATUS */
|
|
struct target_elf_prpsinfo *psinfo; /* NT_PRPSINFO */
|
|
|
|
QTAILQ_HEAD(, elf_thread_status) thread_list;
|
|
#if 0
|
|
/*
|
|
* Current version of ELF coredump doesn't support
|
|
* dumping fp regs etc.
|
|
*/
|
|
elf_fpregset_t *fpu;
|
|
elf_fpxregset_t *xfpu;
|
|
int thread_status_size;
|
|
#endif
|
|
int notes_size;
|
|
int numnote;
|
|
};
|
|
|
|
struct vm_area_struct {
|
|
target_ulong vma_start; /* start vaddr of memory region */
|
|
target_ulong vma_end; /* end vaddr of memory region */
|
|
abi_ulong vma_flags; /* protection etc. flags for the region */
|
|
QTAILQ_ENTRY(vm_area_struct) vma_link;
|
|
};
|
|
|
|
struct mm_struct {
|
|
QTAILQ_HEAD(, vm_area_struct) mm_mmap;
|
|
int mm_count; /* number of mappings */
|
|
};
|
|
|
|
static struct mm_struct *vma_init(void);
|
|
static void vma_delete(struct mm_struct *);
|
|
static int vma_add_mapping(struct mm_struct *, target_ulong,
|
|
target_ulong, abi_ulong);
|
|
static int vma_get_mapping_count(const struct mm_struct *);
|
|
static struct vm_area_struct *vma_first(const struct mm_struct *);
|
|
static struct vm_area_struct *vma_next(struct vm_area_struct *);
|
|
static abi_ulong vma_dump_size(const struct vm_area_struct *);
|
|
static int vma_walker(void *priv, target_ulong start, target_ulong end,
|
|
unsigned long flags);
|
|
|
|
static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t);
|
|
static void fill_note(struct memelfnote *, const char *, int,
|
|
unsigned int, void *);
|
|
static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int);
|
|
static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *);
|
|
static void fill_auxv_note(struct memelfnote *, const TaskState *);
|
|
static void fill_elf_note_phdr(struct elf_phdr *, int, off_t);
|
|
static size_t note_size(const struct memelfnote *);
|
|
static void free_note_info(struct elf_note_info *);
|
|
static int fill_note_info(struct elf_note_info *, long, const CPUArchState *);
|
|
static void fill_thread_info(struct elf_note_info *, const CPUArchState *);
|
|
|
|
static int dump_write(int, const void *, size_t);
|
|
static int write_note(struct memelfnote *, int);
|
|
static int write_note_info(struct elf_note_info *, int);
|
|
|
|
#ifdef BSWAP_NEEDED
|
|
static void bswap_prstatus(struct target_elf_prstatus *prstatus)
|
|
{
|
|
prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo);
|
|
prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code);
|
|
prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno);
|
|
prstatus->pr_cursig = tswap16(prstatus->pr_cursig);
|
|
prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend);
|
|
prstatus->pr_sighold = tswapal(prstatus->pr_sighold);
|
|
prstatus->pr_pid = tswap32(prstatus->pr_pid);
|
|
prstatus->pr_ppid = tswap32(prstatus->pr_ppid);
|
|
prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp);
|
|
prstatus->pr_sid = tswap32(prstatus->pr_sid);
|
|
/* cpu times are not filled, so we skip them */
|
|
/* regs should be in correct format already */
|
|
prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid);
|
|
}
|
|
|
|
static void bswap_psinfo(struct target_elf_prpsinfo *psinfo)
|
|
{
|
|
psinfo->pr_flag = tswapal(psinfo->pr_flag);
|
|
psinfo->pr_uid = tswap16(psinfo->pr_uid);
|
|
psinfo->pr_gid = tswap16(psinfo->pr_gid);
|
|
psinfo->pr_pid = tswap32(psinfo->pr_pid);
|
|
psinfo->pr_ppid = tswap32(psinfo->pr_ppid);
|
|
psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp);
|
|
psinfo->pr_sid = tswap32(psinfo->pr_sid);
|
|
}
|
|
|
|
static void bswap_note(struct elf_note *en)
|
|
{
|
|
bswap32s(&en->n_namesz);
|
|
bswap32s(&en->n_descsz);
|
|
bswap32s(&en->n_type);
|
|
}
|
|
#else
|
|
static inline void bswap_prstatus(struct target_elf_prstatus *p) { }
|
|
static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {}
|
|
static inline void bswap_note(struct elf_note *en) { }
|
|
#endif /* BSWAP_NEEDED */
|
|
|
|
/*
|
|
* Minimal support for linux memory regions. These are needed
|
|
* when we are finding out what memory exactly belongs to
|
|
* emulated process. No locks needed here, as long as
|
|
* thread that received the signal is stopped.
|
|
*/
|
|
|
|
static struct mm_struct *vma_init(void)
|
|
{
|
|
struct mm_struct *mm;
|
|
|
|
if ((mm = g_malloc(sizeof (*mm))) == NULL)
|
|
return (NULL);
|
|
|
|
mm->mm_count = 0;
|
|
QTAILQ_INIT(&mm->mm_mmap);
|
|
|
|
return (mm);
|
|
}
|
|
|
|
static void vma_delete(struct mm_struct *mm)
|
|
{
|
|
struct vm_area_struct *vma;
|
|
|
|
while ((vma = vma_first(mm)) != NULL) {
|
|
QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link);
|
|
g_free(vma);
|
|
}
|
|
g_free(mm);
|
|
}
|
|
|
|
static int vma_add_mapping(struct mm_struct *mm, target_ulong start,
|
|
target_ulong end, abi_ulong flags)
|
|
{
|
|
struct vm_area_struct *vma;
|
|
|
|
if ((vma = g_malloc0(sizeof (*vma))) == NULL)
|
|
return (-1);
|
|
|
|
vma->vma_start = start;
|
|
vma->vma_end = end;
|
|
vma->vma_flags = flags;
|
|
|
|
QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link);
|
|
mm->mm_count++;
|
|
|
|
return (0);
|
|
}
|
|
|
|
static struct vm_area_struct *vma_first(const struct mm_struct *mm)
|
|
{
|
|
return (QTAILQ_FIRST(&mm->mm_mmap));
|
|
}
|
|
|
|
static struct vm_area_struct *vma_next(struct vm_area_struct *vma)
|
|
{
|
|
return (QTAILQ_NEXT(vma, vma_link));
|
|
}
|
|
|
|
static int vma_get_mapping_count(const struct mm_struct *mm)
|
|
{
|
|
return (mm->mm_count);
|
|
}
|
|
|
|
/*
|
|
* Calculate file (dump) size of given memory region.
|
|
*/
|
|
static abi_ulong vma_dump_size(const struct vm_area_struct *vma)
|
|
{
|
|
/* if we cannot even read the first page, skip it */
|
|
if (!access_ok_untagged(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE))
|
|
return (0);
|
|
|
|
/*
|
|
* Usually we don't dump executable pages as they contain
|
|
* non-writable code that debugger can read directly from
|
|
* target library etc. However, thread stacks are marked
|
|
* also executable so we read in first page of given region
|
|
* and check whether it contains elf header. If there is
|
|
* no elf header, we dump it.
|
|
*/
|
|
if (vma->vma_flags & PROT_EXEC) {
|
|
char page[TARGET_PAGE_SIZE];
|
|
|
|
if (copy_from_user(page, vma->vma_start, sizeof (page))) {
|
|
return 0;
|
|
}
|
|
if ((page[EI_MAG0] == ELFMAG0) &&
|
|
(page[EI_MAG1] == ELFMAG1) &&
|
|
(page[EI_MAG2] == ELFMAG2) &&
|
|
(page[EI_MAG3] == ELFMAG3)) {
|
|
/*
|
|
* Mappings are possibly from ELF binary. Don't dump
|
|
* them.
|
|
*/
|
|
return (0);
|
|
}
|
|
}
|
|
|
|
return (vma->vma_end - vma->vma_start);
|
|
}
|
|
|
|
static int vma_walker(void *priv, target_ulong start, target_ulong end,
|
|
unsigned long flags)
|
|
{
|
|
struct mm_struct *mm = (struct mm_struct *)priv;
|
|
|
|
vma_add_mapping(mm, start, end, flags);
|
|
return (0);
|
|
}
|
|
|
|
static void fill_note(struct memelfnote *note, const char *name, int type,
|
|
unsigned int sz, void *data)
|
|
{
|
|
unsigned int namesz;
|
|
|
|
namesz = strlen(name) + 1;
|
|
note->name = name;
|
|
note->namesz = namesz;
|
|
note->namesz_rounded = roundup(namesz, sizeof (int32_t));
|
|
note->type = type;
|
|
note->datasz = sz;
|
|
note->datasz_rounded = roundup(sz, sizeof (int32_t));
|
|
|
|
note->data = data;
|
|
|
|
/*
|
|
* We calculate rounded up note size here as specified by
|
|
* ELF document.
|
|
*/
|
|
note->notesz = sizeof (struct elf_note) +
|
|
note->namesz_rounded + note->datasz_rounded;
|
|
}
|
|
|
|
static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine,
|
|
uint32_t flags)
|
|
{
|
|
(void) memset(elf, 0, sizeof(*elf));
|
|
|
|
(void) memcpy(elf->e_ident, ELFMAG, SELFMAG);
|
|
elf->e_ident[EI_CLASS] = ELF_CLASS;
|
|
elf->e_ident[EI_DATA] = ELF_DATA;
|
|
elf->e_ident[EI_VERSION] = EV_CURRENT;
|
|
elf->e_ident[EI_OSABI] = ELF_OSABI;
|
|
|
|
elf->e_type = ET_CORE;
|
|
elf->e_machine = machine;
|
|
elf->e_version = EV_CURRENT;
|
|
elf->e_phoff = sizeof(struct elfhdr);
|
|
elf->e_flags = flags;
|
|
elf->e_ehsize = sizeof(struct elfhdr);
|
|
elf->e_phentsize = sizeof(struct elf_phdr);
|
|
elf->e_phnum = segs;
|
|
|
|
bswap_ehdr(elf);
|
|
}
|
|
|
|
static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset)
|
|
{
|
|
phdr->p_type = PT_NOTE;
|
|
phdr->p_offset = offset;
|
|
phdr->p_vaddr = 0;
|
|
phdr->p_paddr = 0;
|
|
phdr->p_filesz = sz;
|
|
phdr->p_memsz = 0;
|
|
phdr->p_flags = 0;
|
|
phdr->p_align = 0;
|
|
|
|
bswap_phdr(phdr, 1);
|
|
}
|
|
|
|
static size_t note_size(const struct memelfnote *note)
|
|
{
|
|
return (note->notesz);
|
|
}
|
|
|
|
static void fill_prstatus(struct target_elf_prstatus *prstatus,
|
|
const TaskState *ts, int signr)
|
|
{
|
|
(void) memset(prstatus, 0, sizeof (*prstatus));
|
|
prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
|
|
prstatus->pr_pid = ts->ts_tid;
|
|
prstatus->pr_ppid = getppid();
|
|
prstatus->pr_pgrp = getpgrp();
|
|
prstatus->pr_sid = getsid(0);
|
|
|
|
bswap_prstatus(prstatus);
|
|
}
|
|
|
|
static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts)
|
|
{
|
|
char *base_filename;
|
|
unsigned int i, len;
|
|
|
|
(void) memset(psinfo, 0, sizeof (*psinfo));
|
|
|
|
len = ts->info->env_strings - ts->info->arg_strings;
|
|
if (len >= ELF_PRARGSZ)
|
|
len = ELF_PRARGSZ - 1;
|
|
if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_strings, len)) {
|
|
return -EFAULT;
|
|
}
|
|
for (i = 0; i < len; i++)
|
|
if (psinfo->pr_psargs[i] == 0)
|
|
psinfo->pr_psargs[i] = ' ';
|
|
psinfo->pr_psargs[len] = 0;
|
|
|
|
psinfo->pr_pid = getpid();
|
|
psinfo->pr_ppid = getppid();
|
|
psinfo->pr_pgrp = getpgrp();
|
|
psinfo->pr_sid = getsid(0);
|
|
psinfo->pr_uid = getuid();
|
|
psinfo->pr_gid = getgid();
|
|
|
|
base_filename = g_path_get_basename(ts->bprm->filename);
|
|
/*
|
|
* Using strncpy here is fine: at max-length,
|
|
* this field is not NUL-terminated.
|
|
*/
|
|
(void) strncpy(psinfo->pr_fname, base_filename,
|
|
sizeof(psinfo->pr_fname));
|
|
|
|
g_free(base_filename);
|
|
bswap_psinfo(psinfo);
|
|
return (0);
|
|
}
|
|
|
|
static void fill_auxv_note(struct memelfnote *note, const TaskState *ts)
|
|
{
|
|
elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv;
|
|
elf_addr_t orig_auxv = auxv;
|
|
void *ptr;
|
|
int len = ts->info->auxv_len;
|
|
|
|
/*
|
|
* Auxiliary vector is stored in target process stack. It contains
|
|
* {type, value} pairs that we need to dump into note. This is not
|
|
* strictly necessary but we do it here for sake of completeness.
|
|
*/
|
|
|
|
/* read in whole auxv vector and copy it to memelfnote */
|
|
ptr = lock_user(VERIFY_READ, orig_auxv, len, 0);
|
|
if (ptr != NULL) {
|
|
fill_note(note, "CORE", NT_AUXV, len, ptr);
|
|
unlock_user(ptr, auxv, len);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Constructs name of coredump file. We have following convention
|
|
* for the name:
|
|
* qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core
|
|
*
|
|
* Returns the filename
|
|
*/
|
|
static char *core_dump_filename(const TaskState *ts)
|
|
{
|
|
g_autoptr(GDateTime) now = g_date_time_new_now_local();
|
|
g_autofree char *nowstr = g_date_time_format(now, "%Y%m%d-%H%M%S");
|
|
g_autofree char *base_filename = g_path_get_basename(ts->bprm->filename);
|
|
|
|
return g_strdup_printf("qemu_%s_%s_%d.core",
|
|
base_filename, nowstr, (int)getpid());
|
|
}
|
|
|
|
static int dump_write(int fd, const void *ptr, size_t size)
|
|
{
|
|
const char *bufp = (const char *)ptr;
|
|
ssize_t bytes_written, bytes_left;
|
|
struct rlimit dumpsize;
|
|
off_t pos;
|
|
|
|
bytes_written = 0;
|
|
getrlimit(RLIMIT_CORE, &dumpsize);
|
|
if ((pos = lseek(fd, 0, SEEK_CUR))==-1) {
|
|
if (errno == ESPIPE) { /* not a seekable stream */
|
|
bytes_left = size;
|
|
} else {
|
|
return pos;
|
|
}
|
|
} else {
|
|
if (dumpsize.rlim_cur <= pos) {
|
|
return -1;
|
|
} else if (dumpsize.rlim_cur == RLIM_INFINITY) {
|
|
bytes_left = size;
|
|
} else {
|
|
size_t limit_left=dumpsize.rlim_cur - pos;
|
|
bytes_left = limit_left >= size ? size : limit_left ;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* In normal conditions, single write(2) should do but
|
|
* in case of socket etc. this mechanism is more portable.
|
|
*/
|
|
do {
|
|
bytes_written = write(fd, bufp, bytes_left);
|
|
if (bytes_written < 0) {
|
|
if (errno == EINTR)
|
|
continue;
|
|
return (-1);
|
|
} else if (bytes_written == 0) { /* eof */
|
|
return (-1);
|
|
}
|
|
bufp += bytes_written;
|
|
bytes_left -= bytes_written;
|
|
} while (bytes_left > 0);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int write_note(struct memelfnote *men, int fd)
|
|
{
|
|
struct elf_note en;
|
|
|
|
en.n_namesz = men->namesz;
|
|
en.n_type = men->type;
|
|
en.n_descsz = men->datasz;
|
|
|
|
bswap_note(&en);
|
|
|
|
if (dump_write(fd, &en, sizeof(en)) != 0)
|
|
return (-1);
|
|
if (dump_write(fd, men->name, men->namesz_rounded) != 0)
|
|
return (-1);
|
|
if (dump_write(fd, men->data, men->datasz_rounded) != 0)
|
|
return (-1);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env)
|
|
{
|
|
CPUState *cpu = env_cpu((CPUArchState *)env);
|
|
TaskState *ts = (TaskState *)cpu->opaque;
|
|
struct elf_thread_status *ets;
|
|
|
|
ets = g_malloc0(sizeof (*ets));
|
|
ets->num_notes = 1; /* only prstatus is dumped */
|
|
fill_prstatus(&ets->prstatus, ts, 0);
|
|
elf_core_copy_regs(&ets->prstatus.pr_reg, env);
|
|
fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus),
|
|
&ets->prstatus);
|
|
|
|
QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link);
|
|
|
|
info->notes_size += note_size(&ets->notes[0]);
|
|
}
|
|
|
|
static void init_note_info(struct elf_note_info *info)
|
|
{
|
|
/* Initialize the elf_note_info structure so that it is at
|
|
* least safe to call free_note_info() on it. Must be
|
|
* called before calling fill_note_info().
|
|
*/
|
|
memset(info, 0, sizeof (*info));
|
|
QTAILQ_INIT(&info->thread_list);
|
|
}
|
|
|
|
static int fill_note_info(struct elf_note_info *info,
|
|
long signr, const CPUArchState *env)
|
|
{
|
|
#define NUMNOTES 3
|
|
CPUState *cpu = env_cpu((CPUArchState *)env);
|
|
TaskState *ts = (TaskState *)cpu->opaque;
|
|
int i;
|
|
|
|
info->notes = g_new0(struct memelfnote, NUMNOTES);
|
|
if (info->notes == NULL)
|
|
return (-ENOMEM);
|
|
info->prstatus = g_malloc0(sizeof (*info->prstatus));
|
|
if (info->prstatus == NULL)
|
|
return (-ENOMEM);
|
|
info->psinfo = g_malloc0(sizeof (*info->psinfo));
|
|
if (info->prstatus == NULL)
|
|
return (-ENOMEM);
|
|
|
|
/*
|
|
* First fill in status (and registers) of current thread
|
|
* including process info & aux vector.
|
|
*/
|
|
fill_prstatus(info->prstatus, ts, signr);
|
|
elf_core_copy_regs(&info->prstatus->pr_reg, env);
|
|
fill_note(&info->notes[0], "CORE", NT_PRSTATUS,
|
|
sizeof (*info->prstatus), info->prstatus);
|
|
fill_psinfo(info->psinfo, ts);
|
|
fill_note(&info->notes[1], "CORE", NT_PRPSINFO,
|
|
sizeof (*info->psinfo), info->psinfo);
|
|
fill_auxv_note(&info->notes[2], ts);
|
|
info->numnote = 3;
|
|
|
|
info->notes_size = 0;
|
|
for (i = 0; i < info->numnote; i++)
|
|
info->notes_size += note_size(&info->notes[i]);
|
|
|
|
/* read and fill status of all threads */
|
|
WITH_QEMU_LOCK_GUARD(&qemu_cpu_list_lock) {
|
|
CPU_FOREACH(cpu) {
|
|
if (cpu == thread_cpu) {
|
|
continue;
|
|
}
|
|
fill_thread_info(info, cpu->env_ptr);
|
|
}
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
static void free_note_info(struct elf_note_info *info)
|
|
{
|
|
struct elf_thread_status *ets;
|
|
|
|
while (!QTAILQ_EMPTY(&info->thread_list)) {
|
|
ets = QTAILQ_FIRST(&info->thread_list);
|
|
QTAILQ_REMOVE(&info->thread_list, ets, ets_link);
|
|
g_free(ets);
|
|
}
|
|
|
|
g_free(info->prstatus);
|
|
g_free(info->psinfo);
|
|
g_free(info->notes);
|
|
}
|
|
|
|
static int write_note_info(struct elf_note_info *info, int fd)
|
|
{
|
|
struct elf_thread_status *ets;
|
|
int i, error = 0;
|
|
|
|
/* write prstatus, psinfo and auxv for current thread */
|
|
for (i = 0; i < info->numnote; i++)
|
|
if ((error = write_note(&info->notes[i], fd)) != 0)
|
|
return (error);
|
|
|
|
/* write prstatus for each thread */
|
|
QTAILQ_FOREACH(ets, &info->thread_list, ets_link) {
|
|
if ((error = write_note(&ets->notes[0], fd)) != 0)
|
|
return (error);
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Write out ELF coredump.
|
|
*
|
|
* See documentation of ELF object file format in:
|
|
* http://www.caldera.com/developers/devspecs/gabi41.pdf
|
|
*
|
|
* Coredump format in linux is following:
|
|
*
|
|
* 0 +----------------------+ \
|
|
* | ELF header | ET_CORE |
|
|
* +----------------------+ |
|
|
* | ELF program headers | |--- headers
|
|
* | - NOTE section | |
|
|
* | - PT_LOAD sections | |
|
|
* +----------------------+ /
|
|
* | NOTEs: |
|
|
* | - NT_PRSTATUS |
|
|
* | - NT_PRSINFO |
|
|
* | - NT_AUXV |
|
|
* +----------------------+ <-- aligned to target page
|
|
* | Process memory dump |
|
|
* : :
|
|
* . .
|
|
* : :
|
|
* | |
|
|
* +----------------------+
|
|
*
|
|
* NT_PRSTATUS -> struct elf_prstatus (per thread)
|
|
* NT_PRSINFO -> struct elf_prpsinfo
|
|
* NT_AUXV is array of { type, value } pairs (see fill_auxv_note()).
|
|
*
|
|
* Format follows System V format as close as possible. Current
|
|
* version limitations are as follows:
|
|
* - no floating point registers are dumped
|
|
*
|
|
* Function returns 0 in case of success, negative errno otherwise.
|
|
*
|
|
* TODO: make this work also during runtime: it should be
|
|
* possible to force coredump from running process and then
|
|
* continue processing. For example qemu could set up SIGUSR2
|
|
* handler (provided that target process haven't registered
|
|
* handler for that) that does the dump when signal is received.
|
|
*/
|
|
static int elf_core_dump(int signr, const CPUArchState *env)
|
|
{
|
|
const CPUState *cpu = env_cpu((CPUArchState *)env);
|
|
const TaskState *ts = (const TaskState *)cpu->opaque;
|
|
struct vm_area_struct *vma = NULL;
|
|
g_autofree char *corefile = NULL;
|
|
struct elf_note_info info;
|
|
struct elfhdr elf;
|
|
struct elf_phdr phdr;
|
|
struct rlimit dumpsize;
|
|
struct mm_struct *mm = NULL;
|
|
off_t offset = 0, data_offset = 0;
|
|
int segs = 0;
|
|
int fd = -1;
|
|
|
|
init_note_info(&info);
|
|
|
|
errno = 0;
|
|
getrlimit(RLIMIT_CORE, &dumpsize);
|
|
if (dumpsize.rlim_cur == 0)
|
|
return 0;
|
|
|
|
corefile = core_dump_filename(ts);
|
|
|
|
if ((fd = open(corefile, O_WRONLY | O_CREAT,
|
|
S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0)
|
|
return (-errno);
|
|
|
|
/*
|
|
* Walk through target process memory mappings and
|
|
* set up structure containing this information. After
|
|
* this point vma_xxx functions can be used.
|
|
*/
|
|
if ((mm = vma_init()) == NULL)
|
|
goto out;
|
|
|
|
walk_memory_regions(mm, vma_walker);
|
|
segs = vma_get_mapping_count(mm);
|
|
|
|
/*
|
|
* Construct valid coredump ELF header. We also
|
|
* add one more segment for notes.
|
|
*/
|
|
fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0);
|
|
if (dump_write(fd, &elf, sizeof (elf)) != 0)
|
|
goto out;
|
|
|
|
/* fill in the in-memory version of notes */
|
|
if (fill_note_info(&info, signr, env) < 0)
|
|
goto out;
|
|
|
|
offset += sizeof (elf); /* elf header */
|
|
offset += (segs + 1) * sizeof (struct elf_phdr); /* program headers */
|
|
|
|
/* write out notes program header */
|
|
fill_elf_note_phdr(&phdr, info.notes_size, offset);
|
|
|
|
offset += info.notes_size;
|
|
if (dump_write(fd, &phdr, sizeof (phdr)) != 0)
|
|
goto out;
|
|
|
|
/*
|
|
* ELF specification wants data to start at page boundary so
|
|
* we align it here.
|
|
*/
|
|
data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE);
|
|
|
|
/*
|
|
* Write program headers for memory regions mapped in
|
|
* the target process.
|
|
*/
|
|
for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
|
|
(void) memset(&phdr, 0, sizeof (phdr));
|
|
|
|
phdr.p_type = PT_LOAD;
|
|
phdr.p_offset = offset;
|
|
phdr.p_vaddr = vma->vma_start;
|
|
phdr.p_paddr = 0;
|
|
phdr.p_filesz = vma_dump_size(vma);
|
|
offset += phdr.p_filesz;
|
|
phdr.p_memsz = vma->vma_end - vma->vma_start;
|
|
phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0;
|
|
if (vma->vma_flags & PROT_WRITE)
|
|
phdr.p_flags |= PF_W;
|
|
if (vma->vma_flags & PROT_EXEC)
|
|
phdr.p_flags |= PF_X;
|
|
phdr.p_align = ELF_EXEC_PAGESIZE;
|
|
|
|
bswap_phdr(&phdr, 1);
|
|
if (dump_write(fd, &phdr, sizeof(phdr)) != 0) {
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Next we write notes just after program headers. No
|
|
* alignment needed here.
|
|
*/
|
|
if (write_note_info(&info, fd) < 0)
|
|
goto out;
|
|
|
|
/* align data to page boundary */
|
|
if (lseek(fd, data_offset, SEEK_SET) != data_offset)
|
|
goto out;
|
|
|
|
/*
|
|
* Finally we can dump process memory into corefile as well.
|
|
*/
|
|
for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
|
|
abi_ulong addr;
|
|
abi_ulong end;
|
|
|
|
end = vma->vma_start + vma_dump_size(vma);
|
|
|
|
for (addr = vma->vma_start; addr < end;
|
|
addr += TARGET_PAGE_SIZE) {
|
|
char page[TARGET_PAGE_SIZE];
|
|
int error;
|
|
|
|
/*
|
|
* Read in page from target process memory and
|
|
* write it to coredump file.
|
|
*/
|
|
error = copy_from_user(page, addr, sizeof (page));
|
|
if (error != 0) {
|
|
(void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n",
|
|
addr);
|
|
errno = -error;
|
|
goto out;
|
|
}
|
|
if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0)
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
out:
|
|
free_note_info(&info);
|
|
if (mm != NULL)
|
|
vma_delete(mm);
|
|
(void) close(fd);
|
|
|
|
if (errno != 0)
|
|
return (-errno);
|
|
return (0);
|
|
}
|
|
#endif /* USE_ELF_CORE_DUMP */
|
|
|
|
void do_init_thread(struct target_pt_regs *regs, struct image_info *infop)
|
|
{
|
|
init_thread(regs, infop);
|
|
}
|