d788b57051
Some tests in FPU emulation code were wrongly using float64_is_nan()
before commit 185698715d
, and wrongly
using float64_is_quiet_nan() after. Fix them by using float64_is_any_nan()
instead.
Reviewed-by: Nathan Froyd <froydnj@codesourcery.com>
Signed-off-by: Aurelien Jarno <aurelien@aurel32.net>
4173 lines
125 KiB
C
4173 lines
125 KiB
C
/*
|
|
* PowerPC emulation helpers for qemu.
|
|
*
|
|
* Copyright (c) 2003-2007 Jocelyn Mayer
|
|
*
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2 of the License, or (at your option) any later version.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
#include <string.h>
|
|
#include "exec.h"
|
|
#include "host-utils.h"
|
|
#include "helper.h"
|
|
|
|
#include "helper_regs.h"
|
|
|
|
//#define DEBUG_OP
|
|
//#define DEBUG_EXCEPTIONS
|
|
//#define DEBUG_SOFTWARE_TLB
|
|
|
|
#ifdef DEBUG_SOFTWARE_TLB
|
|
# define LOG_SWTLB(...) qemu_log(__VA_ARGS__)
|
|
#else
|
|
# define LOG_SWTLB(...) do { } while (0)
|
|
#endif
|
|
|
|
|
|
/*****************************************************************************/
|
|
/* Exceptions processing helpers */
|
|
|
|
void helper_raise_exception_err (uint32_t exception, uint32_t error_code)
|
|
{
|
|
#if 0
|
|
printf("Raise exception %3x code : %d\n", exception, error_code);
|
|
#endif
|
|
env->exception_index = exception;
|
|
env->error_code = error_code;
|
|
cpu_loop_exit();
|
|
}
|
|
|
|
void helper_raise_exception (uint32_t exception)
|
|
{
|
|
helper_raise_exception_err(exception, 0);
|
|
}
|
|
|
|
/*****************************************************************************/
|
|
/* SPR accesses */
|
|
void helper_load_dump_spr (uint32_t sprn)
|
|
{
|
|
qemu_log("Read SPR %d %03x => " TARGET_FMT_lx "\n", sprn, sprn,
|
|
env->spr[sprn]);
|
|
}
|
|
|
|
void helper_store_dump_spr (uint32_t sprn)
|
|
{
|
|
qemu_log("Write SPR %d %03x <= " TARGET_FMT_lx "\n", sprn, sprn,
|
|
env->spr[sprn]);
|
|
}
|
|
|
|
target_ulong helper_load_tbl (void)
|
|
{
|
|
return (target_ulong)cpu_ppc_load_tbl(env);
|
|
}
|
|
|
|
target_ulong helper_load_tbu (void)
|
|
{
|
|
return cpu_ppc_load_tbu(env);
|
|
}
|
|
|
|
target_ulong helper_load_atbl (void)
|
|
{
|
|
return (target_ulong)cpu_ppc_load_atbl(env);
|
|
}
|
|
|
|
target_ulong helper_load_atbu (void)
|
|
{
|
|
return cpu_ppc_load_atbu(env);
|
|
}
|
|
|
|
target_ulong helper_load_601_rtcl (void)
|
|
{
|
|
return cpu_ppc601_load_rtcl(env);
|
|
}
|
|
|
|
target_ulong helper_load_601_rtcu (void)
|
|
{
|
|
return cpu_ppc601_load_rtcu(env);
|
|
}
|
|
|
|
#if !defined(CONFIG_USER_ONLY)
|
|
#if defined (TARGET_PPC64)
|
|
void helper_store_asr (target_ulong val)
|
|
{
|
|
ppc_store_asr(env, val);
|
|
}
|
|
#endif
|
|
|
|
void helper_store_sdr1 (target_ulong val)
|
|
{
|
|
ppc_store_sdr1(env, val);
|
|
}
|
|
|
|
void helper_store_tbl (target_ulong val)
|
|
{
|
|
cpu_ppc_store_tbl(env, val);
|
|
}
|
|
|
|
void helper_store_tbu (target_ulong val)
|
|
{
|
|
cpu_ppc_store_tbu(env, val);
|
|
}
|
|
|
|
void helper_store_atbl (target_ulong val)
|
|
{
|
|
cpu_ppc_store_atbl(env, val);
|
|
}
|
|
|
|
void helper_store_atbu (target_ulong val)
|
|
{
|
|
cpu_ppc_store_atbu(env, val);
|
|
}
|
|
|
|
void helper_store_601_rtcl (target_ulong val)
|
|
{
|
|
cpu_ppc601_store_rtcl(env, val);
|
|
}
|
|
|
|
void helper_store_601_rtcu (target_ulong val)
|
|
{
|
|
cpu_ppc601_store_rtcu(env, val);
|
|
}
|
|
|
|
target_ulong helper_load_decr (void)
|
|
{
|
|
return cpu_ppc_load_decr(env);
|
|
}
|
|
|
|
void helper_store_decr (target_ulong val)
|
|
{
|
|
cpu_ppc_store_decr(env, val);
|
|
}
|
|
|
|
void helper_store_hid0_601 (target_ulong val)
|
|
{
|
|
target_ulong hid0;
|
|
|
|
hid0 = env->spr[SPR_HID0];
|
|
if ((val ^ hid0) & 0x00000008) {
|
|
/* Change current endianness */
|
|
env->hflags &= ~(1 << MSR_LE);
|
|
env->hflags_nmsr &= ~(1 << MSR_LE);
|
|
env->hflags_nmsr |= (1 << MSR_LE) & (((val >> 3) & 1) << MSR_LE);
|
|
env->hflags |= env->hflags_nmsr;
|
|
qemu_log("%s: set endianness to %c => " TARGET_FMT_lx "\n", __func__,
|
|
val & 0x8 ? 'l' : 'b', env->hflags);
|
|
}
|
|
env->spr[SPR_HID0] = (uint32_t)val;
|
|
}
|
|
|
|
void helper_store_403_pbr (uint32_t num, target_ulong value)
|
|
{
|
|
if (likely(env->pb[num] != value)) {
|
|
env->pb[num] = value;
|
|
/* Should be optimized */
|
|
tlb_flush(env, 1);
|
|
}
|
|
}
|
|
|
|
target_ulong helper_load_40x_pit (void)
|
|
{
|
|
return load_40x_pit(env);
|
|
}
|
|
|
|
void helper_store_40x_pit (target_ulong val)
|
|
{
|
|
store_40x_pit(env, val);
|
|
}
|
|
|
|
void helper_store_40x_dbcr0 (target_ulong val)
|
|
{
|
|
store_40x_dbcr0(env, val);
|
|
}
|
|
|
|
void helper_store_40x_sler (target_ulong val)
|
|
{
|
|
store_40x_sler(env, val);
|
|
}
|
|
|
|
void helper_store_booke_tcr (target_ulong val)
|
|
{
|
|
store_booke_tcr(env, val);
|
|
}
|
|
|
|
void helper_store_booke_tsr (target_ulong val)
|
|
{
|
|
store_booke_tsr(env, val);
|
|
}
|
|
|
|
void helper_store_ibatu (uint32_t nr, target_ulong val)
|
|
{
|
|
ppc_store_ibatu(env, nr, val);
|
|
}
|
|
|
|
void helper_store_ibatl (uint32_t nr, target_ulong val)
|
|
{
|
|
ppc_store_ibatl(env, nr, val);
|
|
}
|
|
|
|
void helper_store_dbatu (uint32_t nr, target_ulong val)
|
|
{
|
|
ppc_store_dbatu(env, nr, val);
|
|
}
|
|
|
|
void helper_store_dbatl (uint32_t nr, target_ulong val)
|
|
{
|
|
ppc_store_dbatl(env, nr, val);
|
|
}
|
|
|
|
void helper_store_601_batl (uint32_t nr, target_ulong val)
|
|
{
|
|
ppc_store_ibatl_601(env, nr, val);
|
|
}
|
|
|
|
void helper_store_601_batu (uint32_t nr, target_ulong val)
|
|
{
|
|
ppc_store_ibatu_601(env, nr, val);
|
|
}
|
|
#endif
|
|
|
|
/*****************************************************************************/
|
|
/* Memory load and stores */
|
|
|
|
static inline target_ulong addr_add(target_ulong addr, target_long arg)
|
|
{
|
|
#if defined(TARGET_PPC64)
|
|
if (!msr_sf)
|
|
return (uint32_t)(addr + arg);
|
|
else
|
|
#endif
|
|
return addr + arg;
|
|
}
|
|
|
|
void helper_lmw (target_ulong addr, uint32_t reg)
|
|
{
|
|
for (; reg < 32; reg++) {
|
|
if (msr_le)
|
|
env->gpr[reg] = bswap32(ldl(addr));
|
|
else
|
|
env->gpr[reg] = ldl(addr);
|
|
addr = addr_add(addr, 4);
|
|
}
|
|
}
|
|
|
|
void helper_stmw (target_ulong addr, uint32_t reg)
|
|
{
|
|
for (; reg < 32; reg++) {
|
|
if (msr_le)
|
|
stl(addr, bswap32((uint32_t)env->gpr[reg]));
|
|
else
|
|
stl(addr, (uint32_t)env->gpr[reg]);
|
|
addr = addr_add(addr, 4);
|
|
}
|
|
}
|
|
|
|
void helper_lsw(target_ulong addr, uint32_t nb, uint32_t reg)
|
|
{
|
|
int sh;
|
|
for (; nb > 3; nb -= 4) {
|
|
env->gpr[reg] = ldl(addr);
|
|
reg = (reg + 1) % 32;
|
|
addr = addr_add(addr, 4);
|
|
}
|
|
if (unlikely(nb > 0)) {
|
|
env->gpr[reg] = 0;
|
|
for (sh = 24; nb > 0; nb--, sh -= 8) {
|
|
env->gpr[reg] |= ldub(addr) << sh;
|
|
addr = addr_add(addr, 1);
|
|
}
|
|
}
|
|
}
|
|
/* PPC32 specification says we must generate an exception if
|
|
* rA is in the range of registers to be loaded.
|
|
* In an other hand, IBM says this is valid, but rA won't be loaded.
|
|
* For now, I'll follow the spec...
|
|
*/
|
|
void helper_lswx(target_ulong addr, uint32_t reg, uint32_t ra, uint32_t rb)
|
|
{
|
|
if (likely(xer_bc != 0)) {
|
|
if (unlikely((ra != 0 && reg < ra && (reg + xer_bc) > ra) ||
|
|
(reg < rb && (reg + xer_bc) > rb))) {
|
|
helper_raise_exception_err(POWERPC_EXCP_PROGRAM,
|
|
POWERPC_EXCP_INVAL |
|
|
POWERPC_EXCP_INVAL_LSWX);
|
|
} else {
|
|
helper_lsw(addr, xer_bc, reg);
|
|
}
|
|
}
|
|
}
|
|
|
|
void helper_stsw(target_ulong addr, uint32_t nb, uint32_t reg)
|
|
{
|
|
int sh;
|
|
for (; nb > 3; nb -= 4) {
|
|
stl(addr, env->gpr[reg]);
|
|
reg = (reg + 1) % 32;
|
|
addr = addr_add(addr, 4);
|
|
}
|
|
if (unlikely(nb > 0)) {
|
|
for (sh = 24; nb > 0; nb--, sh -= 8) {
|
|
stb(addr, (env->gpr[reg] >> sh) & 0xFF);
|
|
addr = addr_add(addr, 1);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void do_dcbz(target_ulong addr, int dcache_line_size)
|
|
{
|
|
addr &= ~(dcache_line_size - 1);
|
|
int i;
|
|
for (i = 0 ; i < dcache_line_size ; i += 4) {
|
|
stl(addr + i , 0);
|
|
}
|
|
if (env->reserve_addr == addr)
|
|
env->reserve_addr = (target_ulong)-1ULL;
|
|
}
|
|
|
|
void helper_dcbz(target_ulong addr)
|
|
{
|
|
do_dcbz(addr, env->dcache_line_size);
|
|
}
|
|
|
|
void helper_dcbz_970(target_ulong addr)
|
|
{
|
|
if (((env->spr[SPR_970_HID5] >> 7) & 0x3) == 1)
|
|
do_dcbz(addr, 32);
|
|
else
|
|
do_dcbz(addr, env->dcache_line_size);
|
|
}
|
|
|
|
void helper_icbi(target_ulong addr)
|
|
{
|
|
addr &= ~(env->dcache_line_size - 1);
|
|
/* Invalidate one cache line :
|
|
* PowerPC specification says this is to be treated like a load
|
|
* (not a fetch) by the MMU. To be sure it will be so,
|
|
* do the load "by hand".
|
|
*/
|
|
ldl(addr);
|
|
tb_invalidate_page_range(addr, addr + env->icache_line_size);
|
|
}
|
|
|
|
// XXX: to be tested
|
|
target_ulong helper_lscbx (target_ulong addr, uint32_t reg, uint32_t ra, uint32_t rb)
|
|
{
|
|
int i, c, d;
|
|
d = 24;
|
|
for (i = 0; i < xer_bc; i++) {
|
|
c = ldub(addr);
|
|
addr = addr_add(addr, 1);
|
|
/* ra (if not 0) and rb are never modified */
|
|
if (likely(reg != rb && (ra == 0 || reg != ra))) {
|
|
env->gpr[reg] = (env->gpr[reg] & ~(0xFF << d)) | (c << d);
|
|
}
|
|
if (unlikely(c == xer_cmp))
|
|
break;
|
|
if (likely(d != 0)) {
|
|
d -= 8;
|
|
} else {
|
|
d = 24;
|
|
reg++;
|
|
reg = reg & 0x1F;
|
|
}
|
|
}
|
|
return i;
|
|
}
|
|
|
|
/*****************************************************************************/
|
|
/* Fixed point operations helpers */
|
|
#if defined(TARGET_PPC64)
|
|
|
|
/* multiply high word */
|
|
uint64_t helper_mulhd (uint64_t arg1, uint64_t arg2)
|
|
{
|
|
uint64_t tl, th;
|
|
|
|
muls64(&tl, &th, arg1, arg2);
|
|
return th;
|
|
}
|
|
|
|
/* multiply high word unsigned */
|
|
uint64_t helper_mulhdu (uint64_t arg1, uint64_t arg2)
|
|
{
|
|
uint64_t tl, th;
|
|
|
|
mulu64(&tl, &th, arg1, arg2);
|
|
return th;
|
|
}
|
|
|
|
uint64_t helper_mulldo (uint64_t arg1, uint64_t arg2)
|
|
{
|
|
int64_t th;
|
|
uint64_t tl;
|
|
|
|
muls64(&tl, (uint64_t *)&th, arg1, arg2);
|
|
/* If th != 0 && th != -1, then we had an overflow */
|
|
if (likely((uint64_t)(th + 1) <= 1)) {
|
|
env->xer &= ~(1 << XER_OV);
|
|
} else {
|
|
env->xer |= (1 << XER_OV) | (1 << XER_SO);
|
|
}
|
|
return (int64_t)tl;
|
|
}
|
|
#endif
|
|
|
|
target_ulong helper_cntlzw (target_ulong t)
|
|
{
|
|
return clz32(t);
|
|
}
|
|
|
|
#if defined(TARGET_PPC64)
|
|
target_ulong helper_cntlzd (target_ulong t)
|
|
{
|
|
return clz64(t);
|
|
}
|
|
#endif
|
|
|
|
/* shift right arithmetic helper */
|
|
target_ulong helper_sraw (target_ulong value, target_ulong shift)
|
|
{
|
|
int32_t ret;
|
|
|
|
if (likely(!(shift & 0x20))) {
|
|
if (likely((uint32_t)shift != 0)) {
|
|
shift &= 0x1f;
|
|
ret = (int32_t)value >> shift;
|
|
if (likely(ret >= 0 || (value & ((1 << shift) - 1)) == 0)) {
|
|
env->xer &= ~(1 << XER_CA);
|
|
} else {
|
|
env->xer |= (1 << XER_CA);
|
|
}
|
|
} else {
|
|
ret = (int32_t)value;
|
|
env->xer &= ~(1 << XER_CA);
|
|
}
|
|
} else {
|
|
ret = (int32_t)value >> 31;
|
|
if (ret) {
|
|
env->xer |= (1 << XER_CA);
|
|
} else {
|
|
env->xer &= ~(1 << XER_CA);
|
|
}
|
|
}
|
|
return (target_long)ret;
|
|
}
|
|
|
|
#if defined(TARGET_PPC64)
|
|
target_ulong helper_srad (target_ulong value, target_ulong shift)
|
|
{
|
|
int64_t ret;
|
|
|
|
if (likely(!(shift & 0x40))) {
|
|
if (likely((uint64_t)shift != 0)) {
|
|
shift &= 0x3f;
|
|
ret = (int64_t)value >> shift;
|
|
if (likely(ret >= 0 || (value & ((1 << shift) - 1)) == 0)) {
|
|
env->xer &= ~(1 << XER_CA);
|
|
} else {
|
|
env->xer |= (1 << XER_CA);
|
|
}
|
|
} else {
|
|
ret = (int64_t)value;
|
|
env->xer &= ~(1 << XER_CA);
|
|
}
|
|
} else {
|
|
ret = (int64_t)value >> 63;
|
|
if (ret) {
|
|
env->xer |= (1 << XER_CA);
|
|
} else {
|
|
env->xer &= ~(1 << XER_CA);
|
|
}
|
|
}
|
|
return ret;
|
|
}
|
|
#endif
|
|
|
|
target_ulong helper_popcntb (target_ulong val)
|
|
{
|
|
val = (val & 0x55555555) + ((val >> 1) & 0x55555555);
|
|
val = (val & 0x33333333) + ((val >> 2) & 0x33333333);
|
|
val = (val & 0x0f0f0f0f) + ((val >> 4) & 0x0f0f0f0f);
|
|
return val;
|
|
}
|
|
|
|
#if defined(TARGET_PPC64)
|
|
target_ulong helper_popcntb_64 (target_ulong val)
|
|
{
|
|
val = (val & 0x5555555555555555ULL) + ((val >> 1) & 0x5555555555555555ULL);
|
|
val = (val & 0x3333333333333333ULL) + ((val >> 2) & 0x3333333333333333ULL);
|
|
val = (val & 0x0f0f0f0f0f0f0f0fULL) + ((val >> 4) & 0x0f0f0f0f0f0f0f0fULL);
|
|
return val;
|
|
}
|
|
#endif
|
|
|
|
/*****************************************************************************/
|
|
/* Floating point operations helpers */
|
|
uint64_t helper_float32_to_float64(uint32_t arg)
|
|
{
|
|
CPU_FloatU f;
|
|
CPU_DoubleU d;
|
|
f.l = arg;
|
|
d.d = float32_to_float64(f.f, &env->fp_status);
|
|
return d.ll;
|
|
}
|
|
|
|
uint32_t helper_float64_to_float32(uint64_t arg)
|
|
{
|
|
CPU_FloatU f;
|
|
CPU_DoubleU d;
|
|
d.ll = arg;
|
|
f.f = float64_to_float32(d.d, &env->fp_status);
|
|
return f.l;
|
|
}
|
|
|
|
static inline int isden(float64 d)
|
|
{
|
|
CPU_DoubleU u;
|
|
|
|
u.d = d;
|
|
|
|
return ((u.ll >> 52) & 0x7FF) == 0;
|
|
}
|
|
|
|
uint32_t helper_compute_fprf (uint64_t arg, uint32_t set_fprf)
|
|
{
|
|
CPU_DoubleU farg;
|
|
int isneg;
|
|
int ret;
|
|
farg.ll = arg;
|
|
isneg = float64_is_neg(farg.d);
|
|
if (unlikely(float64_is_any_nan(farg.d))) {
|
|
if (float64_is_signaling_nan(farg.d)) {
|
|
/* Signaling NaN: flags are undefined */
|
|
ret = 0x00;
|
|
} else {
|
|
/* Quiet NaN */
|
|
ret = 0x11;
|
|
}
|
|
} else if (unlikely(float64_is_infinity(farg.d))) {
|
|
/* +/- infinity */
|
|
if (isneg)
|
|
ret = 0x09;
|
|
else
|
|
ret = 0x05;
|
|
} else {
|
|
if (float64_is_zero(farg.d)) {
|
|
/* +/- zero */
|
|
if (isneg)
|
|
ret = 0x12;
|
|
else
|
|
ret = 0x02;
|
|
} else {
|
|
if (isden(farg.d)) {
|
|
/* Denormalized numbers */
|
|
ret = 0x10;
|
|
} else {
|
|
/* Normalized numbers */
|
|
ret = 0x00;
|
|
}
|
|
if (isneg) {
|
|
ret |= 0x08;
|
|
} else {
|
|
ret |= 0x04;
|
|
}
|
|
}
|
|
}
|
|
if (set_fprf) {
|
|
/* We update FPSCR_FPRF */
|
|
env->fpscr &= ~(0x1F << FPSCR_FPRF);
|
|
env->fpscr |= ret << FPSCR_FPRF;
|
|
}
|
|
/* We just need fpcc to update Rc1 */
|
|
return ret & 0xF;
|
|
}
|
|
|
|
/* Floating-point invalid operations exception */
|
|
static inline uint64_t fload_invalid_op_excp(int op)
|
|
{
|
|
uint64_t ret = 0;
|
|
int ve;
|
|
|
|
ve = fpscr_ve;
|
|
switch (op) {
|
|
case POWERPC_EXCP_FP_VXSNAN:
|
|
env->fpscr |= 1 << FPSCR_VXSNAN;
|
|
break;
|
|
case POWERPC_EXCP_FP_VXSOFT:
|
|
env->fpscr |= 1 << FPSCR_VXSOFT;
|
|
break;
|
|
case POWERPC_EXCP_FP_VXISI:
|
|
/* Magnitude subtraction of infinities */
|
|
env->fpscr |= 1 << FPSCR_VXISI;
|
|
goto update_arith;
|
|
case POWERPC_EXCP_FP_VXIDI:
|
|
/* Division of infinity by infinity */
|
|
env->fpscr |= 1 << FPSCR_VXIDI;
|
|
goto update_arith;
|
|
case POWERPC_EXCP_FP_VXZDZ:
|
|
/* Division of zero by zero */
|
|
env->fpscr |= 1 << FPSCR_VXZDZ;
|
|
goto update_arith;
|
|
case POWERPC_EXCP_FP_VXIMZ:
|
|
/* Multiplication of zero by infinity */
|
|
env->fpscr |= 1 << FPSCR_VXIMZ;
|
|
goto update_arith;
|
|
case POWERPC_EXCP_FP_VXVC:
|
|
/* Ordered comparison of NaN */
|
|
env->fpscr |= 1 << FPSCR_VXVC;
|
|
env->fpscr &= ~(0xF << FPSCR_FPCC);
|
|
env->fpscr |= 0x11 << FPSCR_FPCC;
|
|
/* We must update the target FPR before raising the exception */
|
|
if (ve != 0) {
|
|
env->exception_index = POWERPC_EXCP_PROGRAM;
|
|
env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_VXVC;
|
|
/* Update the floating-point enabled exception summary */
|
|
env->fpscr |= 1 << FPSCR_FEX;
|
|
/* Exception is differed */
|
|
ve = 0;
|
|
}
|
|
break;
|
|
case POWERPC_EXCP_FP_VXSQRT:
|
|
/* Square root of a negative number */
|
|
env->fpscr |= 1 << FPSCR_VXSQRT;
|
|
update_arith:
|
|
env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI));
|
|
if (ve == 0) {
|
|
/* Set the result to quiet NaN */
|
|
ret = 0x7FF8000000000000ULL;
|
|
env->fpscr &= ~(0xF << FPSCR_FPCC);
|
|
env->fpscr |= 0x11 << FPSCR_FPCC;
|
|
}
|
|
break;
|
|
case POWERPC_EXCP_FP_VXCVI:
|
|
/* Invalid conversion */
|
|
env->fpscr |= 1 << FPSCR_VXCVI;
|
|
env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI));
|
|
if (ve == 0) {
|
|
/* Set the result to quiet NaN */
|
|
ret = 0x7FF8000000000000ULL;
|
|
env->fpscr &= ~(0xF << FPSCR_FPCC);
|
|
env->fpscr |= 0x11 << FPSCR_FPCC;
|
|
}
|
|
break;
|
|
}
|
|
/* Update the floating-point invalid operation summary */
|
|
env->fpscr |= 1 << FPSCR_VX;
|
|
/* Update the floating-point exception summary */
|
|
env->fpscr |= 1 << FPSCR_FX;
|
|
if (ve != 0) {
|
|
/* Update the floating-point enabled exception summary */
|
|
env->fpscr |= 1 << FPSCR_FEX;
|
|
if (msr_fe0 != 0 || msr_fe1 != 0)
|
|
helper_raise_exception_err(POWERPC_EXCP_PROGRAM, POWERPC_EXCP_FP | op);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static inline void float_zero_divide_excp(void)
|
|
{
|
|
env->fpscr |= 1 << FPSCR_ZX;
|
|
env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI));
|
|
/* Update the floating-point exception summary */
|
|
env->fpscr |= 1 << FPSCR_FX;
|
|
if (fpscr_ze != 0) {
|
|
/* Update the floating-point enabled exception summary */
|
|
env->fpscr |= 1 << FPSCR_FEX;
|
|
if (msr_fe0 != 0 || msr_fe1 != 0) {
|
|
helper_raise_exception_err(POWERPC_EXCP_PROGRAM,
|
|
POWERPC_EXCP_FP | POWERPC_EXCP_FP_ZX);
|
|
}
|
|
}
|
|
}
|
|
|
|
static inline void float_overflow_excp(void)
|
|
{
|
|
env->fpscr |= 1 << FPSCR_OX;
|
|
/* Update the floating-point exception summary */
|
|
env->fpscr |= 1 << FPSCR_FX;
|
|
if (fpscr_oe != 0) {
|
|
/* XXX: should adjust the result */
|
|
/* Update the floating-point enabled exception summary */
|
|
env->fpscr |= 1 << FPSCR_FEX;
|
|
/* We must update the target FPR before raising the exception */
|
|
env->exception_index = POWERPC_EXCP_PROGRAM;
|
|
env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_OX;
|
|
} else {
|
|
env->fpscr |= 1 << FPSCR_XX;
|
|
env->fpscr |= 1 << FPSCR_FI;
|
|
}
|
|
}
|
|
|
|
static inline void float_underflow_excp(void)
|
|
{
|
|
env->fpscr |= 1 << FPSCR_UX;
|
|
/* Update the floating-point exception summary */
|
|
env->fpscr |= 1 << FPSCR_FX;
|
|
if (fpscr_ue != 0) {
|
|
/* XXX: should adjust the result */
|
|
/* Update the floating-point enabled exception summary */
|
|
env->fpscr |= 1 << FPSCR_FEX;
|
|
/* We must update the target FPR before raising the exception */
|
|
env->exception_index = POWERPC_EXCP_PROGRAM;
|
|
env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_UX;
|
|
}
|
|
}
|
|
|
|
static inline void float_inexact_excp(void)
|
|
{
|
|
env->fpscr |= 1 << FPSCR_XX;
|
|
/* Update the floating-point exception summary */
|
|
env->fpscr |= 1 << FPSCR_FX;
|
|
if (fpscr_xe != 0) {
|
|
/* Update the floating-point enabled exception summary */
|
|
env->fpscr |= 1 << FPSCR_FEX;
|
|
/* We must update the target FPR before raising the exception */
|
|
env->exception_index = POWERPC_EXCP_PROGRAM;
|
|
env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_XX;
|
|
}
|
|
}
|
|
|
|
static inline void fpscr_set_rounding_mode(void)
|
|
{
|
|
int rnd_type;
|
|
|
|
/* Set rounding mode */
|
|
switch (fpscr_rn) {
|
|
case 0:
|
|
/* Best approximation (round to nearest) */
|
|
rnd_type = float_round_nearest_even;
|
|
break;
|
|
case 1:
|
|
/* Smaller magnitude (round toward zero) */
|
|
rnd_type = float_round_to_zero;
|
|
break;
|
|
case 2:
|
|
/* Round toward +infinite */
|
|
rnd_type = float_round_up;
|
|
break;
|
|
default:
|
|
case 3:
|
|
/* Round toward -infinite */
|
|
rnd_type = float_round_down;
|
|
break;
|
|
}
|
|
set_float_rounding_mode(rnd_type, &env->fp_status);
|
|
}
|
|
|
|
void helper_fpscr_clrbit (uint32_t bit)
|
|
{
|
|
int prev;
|
|
|
|
prev = (env->fpscr >> bit) & 1;
|
|
env->fpscr &= ~(1 << bit);
|
|
if (prev == 1) {
|
|
switch (bit) {
|
|
case FPSCR_RN1:
|
|
case FPSCR_RN:
|
|
fpscr_set_rounding_mode();
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
void helper_fpscr_setbit (uint32_t bit)
|
|
{
|
|
int prev;
|
|
|
|
prev = (env->fpscr >> bit) & 1;
|
|
env->fpscr |= 1 << bit;
|
|
if (prev == 0) {
|
|
switch (bit) {
|
|
case FPSCR_VX:
|
|
env->fpscr |= 1 << FPSCR_FX;
|
|
if (fpscr_ve)
|
|
goto raise_ve;
|
|
case FPSCR_OX:
|
|
env->fpscr |= 1 << FPSCR_FX;
|
|
if (fpscr_oe)
|
|
goto raise_oe;
|
|
break;
|
|
case FPSCR_UX:
|
|
env->fpscr |= 1 << FPSCR_FX;
|
|
if (fpscr_ue)
|
|
goto raise_ue;
|
|
break;
|
|
case FPSCR_ZX:
|
|
env->fpscr |= 1 << FPSCR_FX;
|
|
if (fpscr_ze)
|
|
goto raise_ze;
|
|
break;
|
|
case FPSCR_XX:
|
|
env->fpscr |= 1 << FPSCR_FX;
|
|
if (fpscr_xe)
|
|
goto raise_xe;
|
|
break;
|
|
case FPSCR_VXSNAN:
|
|
case FPSCR_VXISI:
|
|
case FPSCR_VXIDI:
|
|
case FPSCR_VXZDZ:
|
|
case FPSCR_VXIMZ:
|
|
case FPSCR_VXVC:
|
|
case FPSCR_VXSOFT:
|
|
case FPSCR_VXSQRT:
|
|
case FPSCR_VXCVI:
|
|
env->fpscr |= 1 << FPSCR_VX;
|
|
env->fpscr |= 1 << FPSCR_FX;
|
|
if (fpscr_ve != 0)
|
|
goto raise_ve;
|
|
break;
|
|
case FPSCR_VE:
|
|
if (fpscr_vx != 0) {
|
|
raise_ve:
|
|
env->error_code = POWERPC_EXCP_FP;
|
|
if (fpscr_vxsnan)
|
|
env->error_code |= POWERPC_EXCP_FP_VXSNAN;
|
|
if (fpscr_vxisi)
|
|
env->error_code |= POWERPC_EXCP_FP_VXISI;
|
|
if (fpscr_vxidi)
|
|
env->error_code |= POWERPC_EXCP_FP_VXIDI;
|
|
if (fpscr_vxzdz)
|
|
env->error_code |= POWERPC_EXCP_FP_VXZDZ;
|
|
if (fpscr_vximz)
|
|
env->error_code |= POWERPC_EXCP_FP_VXIMZ;
|
|
if (fpscr_vxvc)
|
|
env->error_code |= POWERPC_EXCP_FP_VXVC;
|
|
if (fpscr_vxsoft)
|
|
env->error_code |= POWERPC_EXCP_FP_VXSOFT;
|
|
if (fpscr_vxsqrt)
|
|
env->error_code |= POWERPC_EXCP_FP_VXSQRT;
|
|
if (fpscr_vxcvi)
|
|
env->error_code |= POWERPC_EXCP_FP_VXCVI;
|
|
goto raise_excp;
|
|
}
|
|
break;
|
|
case FPSCR_OE:
|
|
if (fpscr_ox != 0) {
|
|
raise_oe:
|
|
env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_OX;
|
|
goto raise_excp;
|
|
}
|
|
break;
|
|
case FPSCR_UE:
|
|
if (fpscr_ux != 0) {
|
|
raise_ue:
|
|
env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_UX;
|
|
goto raise_excp;
|
|
}
|
|
break;
|
|
case FPSCR_ZE:
|
|
if (fpscr_zx != 0) {
|
|
raise_ze:
|
|
env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_ZX;
|
|
goto raise_excp;
|
|
}
|
|
break;
|
|
case FPSCR_XE:
|
|
if (fpscr_xx != 0) {
|
|
raise_xe:
|
|
env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_XX;
|
|
goto raise_excp;
|
|
}
|
|
break;
|
|
case FPSCR_RN1:
|
|
case FPSCR_RN:
|
|
fpscr_set_rounding_mode();
|
|
break;
|
|
default:
|
|
break;
|
|
raise_excp:
|
|
/* Update the floating-point enabled exception summary */
|
|
env->fpscr |= 1 << FPSCR_FEX;
|
|
/* We have to update Rc1 before raising the exception */
|
|
env->exception_index = POWERPC_EXCP_PROGRAM;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
void helper_store_fpscr (uint64_t arg, uint32_t mask)
|
|
{
|
|
/*
|
|
* We use only the 32 LSB of the incoming fpr
|
|
*/
|
|
uint32_t prev, new;
|
|
int i;
|
|
|
|
prev = env->fpscr;
|
|
new = (uint32_t)arg;
|
|
new &= ~0x60000000;
|
|
new |= prev & 0x60000000;
|
|
for (i = 0; i < 8; i++) {
|
|
if (mask & (1 << i)) {
|
|
env->fpscr &= ~(0xF << (4 * i));
|
|
env->fpscr |= new & (0xF << (4 * i));
|
|
}
|
|
}
|
|
/* Update VX and FEX */
|
|
if (fpscr_ix != 0)
|
|
env->fpscr |= 1 << FPSCR_VX;
|
|
else
|
|
env->fpscr &= ~(1 << FPSCR_VX);
|
|
if ((fpscr_ex & fpscr_eex) != 0) {
|
|
env->fpscr |= 1 << FPSCR_FEX;
|
|
env->exception_index = POWERPC_EXCP_PROGRAM;
|
|
/* XXX: we should compute it properly */
|
|
env->error_code = POWERPC_EXCP_FP;
|
|
}
|
|
else
|
|
env->fpscr &= ~(1 << FPSCR_FEX);
|
|
fpscr_set_rounding_mode();
|
|
}
|
|
|
|
void helper_float_check_status (void)
|
|
{
|
|
#ifdef CONFIG_SOFTFLOAT
|
|
if (env->exception_index == POWERPC_EXCP_PROGRAM &&
|
|
(env->error_code & POWERPC_EXCP_FP)) {
|
|
/* Differred floating-point exception after target FPR update */
|
|
if (msr_fe0 != 0 || msr_fe1 != 0)
|
|
helper_raise_exception_err(env->exception_index, env->error_code);
|
|
} else {
|
|
int status = get_float_exception_flags(&env->fp_status);
|
|
if (status & float_flag_divbyzero) {
|
|
float_zero_divide_excp();
|
|
} else if (status & float_flag_overflow) {
|
|
float_overflow_excp();
|
|
} else if (status & float_flag_underflow) {
|
|
float_underflow_excp();
|
|
} else if (status & float_flag_inexact) {
|
|
float_inexact_excp();
|
|
}
|
|
}
|
|
#else
|
|
if (env->exception_index == POWERPC_EXCP_PROGRAM &&
|
|
(env->error_code & POWERPC_EXCP_FP)) {
|
|
/* Differred floating-point exception after target FPR update */
|
|
if (msr_fe0 != 0 || msr_fe1 != 0)
|
|
helper_raise_exception_err(env->exception_index, env->error_code);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
#ifdef CONFIG_SOFTFLOAT
|
|
void helper_reset_fpstatus (void)
|
|
{
|
|
set_float_exception_flags(0, &env->fp_status);
|
|
}
|
|
#endif
|
|
|
|
/* fadd - fadd. */
|
|
uint64_t helper_fadd (uint64_t arg1, uint64_t arg2)
|
|
{
|
|
CPU_DoubleU farg1, farg2;
|
|
|
|
farg1.ll = arg1;
|
|
farg2.ll = arg2;
|
|
|
|
if (unlikely(float64_is_infinity(farg1.d) && float64_is_infinity(farg2.d) &&
|
|
float64_is_neg(farg1.d) != float64_is_neg(farg2.d))) {
|
|
/* Magnitude subtraction of infinities */
|
|
farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXISI);
|
|
} else {
|
|
if (unlikely(float64_is_signaling_nan(farg1.d) ||
|
|
float64_is_signaling_nan(farg2.d))) {
|
|
/* sNaN addition */
|
|
fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
|
|
}
|
|
farg1.d = float64_add(farg1.d, farg2.d, &env->fp_status);
|
|
}
|
|
|
|
return farg1.ll;
|
|
}
|
|
|
|
/* fsub - fsub. */
|
|
uint64_t helper_fsub (uint64_t arg1, uint64_t arg2)
|
|
{
|
|
CPU_DoubleU farg1, farg2;
|
|
|
|
farg1.ll = arg1;
|
|
farg2.ll = arg2;
|
|
|
|
if (unlikely(float64_is_infinity(farg1.d) && float64_is_infinity(farg2.d) &&
|
|
float64_is_neg(farg1.d) == float64_is_neg(farg2.d))) {
|
|
/* Magnitude subtraction of infinities */
|
|
farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXISI);
|
|
} else {
|
|
if (unlikely(float64_is_signaling_nan(farg1.d) ||
|
|
float64_is_signaling_nan(farg2.d))) {
|
|
/* sNaN subtraction */
|
|
fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
|
|
}
|
|
farg1.d = float64_sub(farg1.d, farg2.d, &env->fp_status);
|
|
}
|
|
|
|
return farg1.ll;
|
|
}
|
|
|
|
/* fmul - fmul. */
|
|
uint64_t helper_fmul (uint64_t arg1, uint64_t arg2)
|
|
{
|
|
CPU_DoubleU farg1, farg2;
|
|
|
|
farg1.ll = arg1;
|
|
farg2.ll = arg2;
|
|
|
|
if (unlikely((float64_is_infinity(farg1.d) && float64_is_zero(farg2.d)) ||
|
|
(float64_is_zero(farg1.d) && float64_is_infinity(farg2.d)))) {
|
|
/* Multiplication of zero by infinity */
|
|
farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXIMZ);
|
|
} else {
|
|
if (unlikely(float64_is_signaling_nan(farg1.d) ||
|
|
float64_is_signaling_nan(farg2.d))) {
|
|
/* sNaN multiplication */
|
|
fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
|
|
}
|
|
farg1.d = float64_mul(farg1.d, farg2.d, &env->fp_status);
|
|
}
|
|
|
|
return farg1.ll;
|
|
}
|
|
|
|
/* fdiv - fdiv. */
|
|
uint64_t helper_fdiv (uint64_t arg1, uint64_t arg2)
|
|
{
|
|
CPU_DoubleU farg1, farg2;
|
|
|
|
farg1.ll = arg1;
|
|
farg2.ll = arg2;
|
|
|
|
if (unlikely(float64_is_infinity(farg1.d) && float64_is_infinity(farg2.d))) {
|
|
/* Division of infinity by infinity */
|
|
farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXIDI);
|
|
} else if (unlikely(float64_is_zero(farg1.d) && float64_is_zero(farg2.d))) {
|
|
/* Division of zero by zero */
|
|
farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXZDZ);
|
|
} else {
|
|
if (unlikely(float64_is_signaling_nan(farg1.d) ||
|
|
float64_is_signaling_nan(farg2.d))) {
|
|
/* sNaN division */
|
|
fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
|
|
}
|
|
farg1.d = float64_div(farg1.d, farg2.d, &env->fp_status);
|
|
}
|
|
|
|
return farg1.ll;
|
|
}
|
|
|
|
/* fabs */
|
|
uint64_t helper_fabs (uint64_t arg)
|
|
{
|
|
CPU_DoubleU farg;
|
|
|
|
farg.ll = arg;
|
|
farg.d = float64_abs(farg.d);
|
|
return farg.ll;
|
|
}
|
|
|
|
/* fnabs */
|
|
uint64_t helper_fnabs (uint64_t arg)
|
|
{
|
|
CPU_DoubleU farg;
|
|
|
|
farg.ll = arg;
|
|
farg.d = float64_abs(farg.d);
|
|
farg.d = float64_chs(farg.d);
|
|
return farg.ll;
|
|
}
|
|
|
|
/* fneg */
|
|
uint64_t helper_fneg (uint64_t arg)
|
|
{
|
|
CPU_DoubleU farg;
|
|
|
|
farg.ll = arg;
|
|
farg.d = float64_chs(farg.d);
|
|
return farg.ll;
|
|
}
|
|
|
|
/* fctiw - fctiw. */
|
|
uint64_t helper_fctiw (uint64_t arg)
|
|
{
|
|
CPU_DoubleU farg;
|
|
farg.ll = arg;
|
|
|
|
if (unlikely(float64_is_signaling_nan(farg.d))) {
|
|
/* sNaN conversion */
|
|
farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI);
|
|
} else if (unlikely(float64_is_quiet_nan(farg.d) || float64_is_infinity(farg.d))) {
|
|
/* qNan / infinity conversion */
|
|
farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI);
|
|
} else {
|
|
farg.ll = float64_to_int32(farg.d, &env->fp_status);
|
|
/* XXX: higher bits are not supposed to be significant.
|
|
* to make tests easier, return the same as a real PowerPC 750
|
|
*/
|
|
farg.ll |= 0xFFF80000ULL << 32;
|
|
}
|
|
return farg.ll;
|
|
}
|
|
|
|
/* fctiwz - fctiwz. */
|
|
uint64_t helper_fctiwz (uint64_t arg)
|
|
{
|
|
CPU_DoubleU farg;
|
|
farg.ll = arg;
|
|
|
|
if (unlikely(float64_is_signaling_nan(farg.d))) {
|
|
/* sNaN conversion */
|
|
farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI);
|
|
} else if (unlikely(float64_is_quiet_nan(farg.d) || float64_is_infinity(farg.d))) {
|
|
/* qNan / infinity conversion */
|
|
farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI);
|
|
} else {
|
|
farg.ll = float64_to_int32_round_to_zero(farg.d, &env->fp_status);
|
|
/* XXX: higher bits are not supposed to be significant.
|
|
* to make tests easier, return the same as a real PowerPC 750
|
|
*/
|
|
farg.ll |= 0xFFF80000ULL << 32;
|
|
}
|
|
return farg.ll;
|
|
}
|
|
|
|
#if defined(TARGET_PPC64)
|
|
/* fcfid - fcfid. */
|
|
uint64_t helper_fcfid (uint64_t arg)
|
|
{
|
|
CPU_DoubleU farg;
|
|
farg.d = int64_to_float64(arg, &env->fp_status);
|
|
return farg.ll;
|
|
}
|
|
|
|
/* fctid - fctid. */
|
|
uint64_t helper_fctid (uint64_t arg)
|
|
{
|
|
CPU_DoubleU farg;
|
|
farg.ll = arg;
|
|
|
|
if (unlikely(float64_is_signaling_nan(farg.d))) {
|
|
/* sNaN conversion */
|
|
farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI);
|
|
} else if (unlikely(float64_is_quiet_nan(farg.d) || float64_is_infinity(farg.d))) {
|
|
/* qNan / infinity conversion */
|
|
farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI);
|
|
} else {
|
|
farg.ll = float64_to_int64(farg.d, &env->fp_status);
|
|
}
|
|
return farg.ll;
|
|
}
|
|
|
|
/* fctidz - fctidz. */
|
|
uint64_t helper_fctidz (uint64_t arg)
|
|
{
|
|
CPU_DoubleU farg;
|
|
farg.ll = arg;
|
|
|
|
if (unlikely(float64_is_signaling_nan(farg.d))) {
|
|
/* sNaN conversion */
|
|
farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI);
|
|
} else if (unlikely(float64_is_quiet_nan(farg.d) || float64_is_infinity(farg.d))) {
|
|
/* qNan / infinity conversion */
|
|
farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI);
|
|
} else {
|
|
farg.ll = float64_to_int64_round_to_zero(farg.d, &env->fp_status);
|
|
}
|
|
return farg.ll;
|
|
}
|
|
|
|
#endif
|
|
|
|
static inline uint64_t do_fri(uint64_t arg, int rounding_mode)
|
|
{
|
|
CPU_DoubleU farg;
|
|
farg.ll = arg;
|
|
|
|
if (unlikely(float64_is_signaling_nan(farg.d))) {
|
|
/* sNaN round */
|
|
farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI);
|
|
} else if (unlikely(float64_is_quiet_nan(farg.d) || float64_is_infinity(farg.d))) {
|
|
/* qNan / infinity round */
|
|
farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI);
|
|
} else {
|
|
set_float_rounding_mode(rounding_mode, &env->fp_status);
|
|
farg.ll = float64_round_to_int(farg.d, &env->fp_status);
|
|
/* Restore rounding mode from FPSCR */
|
|
fpscr_set_rounding_mode();
|
|
}
|
|
return farg.ll;
|
|
}
|
|
|
|
uint64_t helper_frin (uint64_t arg)
|
|
{
|
|
return do_fri(arg, float_round_nearest_even);
|
|
}
|
|
|
|
uint64_t helper_friz (uint64_t arg)
|
|
{
|
|
return do_fri(arg, float_round_to_zero);
|
|
}
|
|
|
|
uint64_t helper_frip (uint64_t arg)
|
|
{
|
|
return do_fri(arg, float_round_up);
|
|
}
|
|
|
|
uint64_t helper_frim (uint64_t arg)
|
|
{
|
|
return do_fri(arg, float_round_down);
|
|
}
|
|
|
|
/* fmadd - fmadd. */
|
|
uint64_t helper_fmadd (uint64_t arg1, uint64_t arg2, uint64_t arg3)
|
|
{
|
|
CPU_DoubleU farg1, farg2, farg3;
|
|
|
|
farg1.ll = arg1;
|
|
farg2.ll = arg2;
|
|
farg3.ll = arg3;
|
|
|
|
if (unlikely((float64_is_infinity(farg1.d) && float64_is_zero(farg2.d)) ||
|
|
(float64_is_zero(farg1.d) && float64_is_infinity(farg2.d)))) {
|
|
/* Multiplication of zero by infinity */
|
|
farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXIMZ);
|
|
} else {
|
|
if (unlikely(float64_is_signaling_nan(farg1.d) ||
|
|
float64_is_signaling_nan(farg2.d) ||
|
|
float64_is_signaling_nan(farg3.d))) {
|
|
/* sNaN operation */
|
|
fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
|
|
}
|
|
#ifdef FLOAT128
|
|
/* This is the way the PowerPC specification defines it */
|
|
float128 ft0_128, ft1_128;
|
|
|
|
ft0_128 = float64_to_float128(farg1.d, &env->fp_status);
|
|
ft1_128 = float64_to_float128(farg2.d, &env->fp_status);
|
|
ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status);
|
|
if (unlikely(float128_is_infinity(ft0_128) && float64_is_infinity(farg3.d) &&
|
|
float128_is_neg(ft0_128) != float64_is_neg(farg3.d))) {
|
|
/* Magnitude subtraction of infinities */
|
|
farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXISI);
|
|
} else {
|
|
ft1_128 = float64_to_float128(farg3.d, &env->fp_status);
|
|
ft0_128 = float128_add(ft0_128, ft1_128, &env->fp_status);
|
|
farg1.d = float128_to_float64(ft0_128, &env->fp_status);
|
|
}
|
|
#else
|
|
/* This is OK on x86 hosts */
|
|
farg1.d = (farg1.d * farg2.d) + farg3.d;
|
|
#endif
|
|
}
|
|
|
|
return farg1.ll;
|
|
}
|
|
|
|
/* fmsub - fmsub. */
|
|
uint64_t helper_fmsub (uint64_t arg1, uint64_t arg2, uint64_t arg3)
|
|
{
|
|
CPU_DoubleU farg1, farg2, farg3;
|
|
|
|
farg1.ll = arg1;
|
|
farg2.ll = arg2;
|
|
farg3.ll = arg3;
|
|
|
|
if (unlikely((float64_is_infinity(farg1.d) && float64_is_zero(farg2.d)) ||
|
|
(float64_is_zero(farg1.d) && float64_is_infinity(farg2.d)))) {
|
|
/* Multiplication of zero by infinity */
|
|
farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXIMZ);
|
|
} else {
|
|
if (unlikely(float64_is_signaling_nan(farg1.d) ||
|
|
float64_is_signaling_nan(farg2.d) ||
|
|
float64_is_signaling_nan(farg3.d))) {
|
|
/* sNaN operation */
|
|
fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
|
|
}
|
|
#ifdef FLOAT128
|
|
/* This is the way the PowerPC specification defines it */
|
|
float128 ft0_128, ft1_128;
|
|
|
|
ft0_128 = float64_to_float128(farg1.d, &env->fp_status);
|
|
ft1_128 = float64_to_float128(farg2.d, &env->fp_status);
|
|
ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status);
|
|
if (unlikely(float128_is_infinity(ft0_128) && float64_is_infinity(farg3.d) &&
|
|
float128_is_neg(ft0_128) == float64_is_neg(farg3.d))) {
|
|
/* Magnitude subtraction of infinities */
|
|
farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXISI);
|
|
} else {
|
|
ft1_128 = float64_to_float128(farg3.d, &env->fp_status);
|
|
ft0_128 = float128_sub(ft0_128, ft1_128, &env->fp_status);
|
|
farg1.d = float128_to_float64(ft0_128, &env->fp_status);
|
|
}
|
|
#else
|
|
/* This is OK on x86 hosts */
|
|
farg1.d = (farg1.d * farg2.d) - farg3.d;
|
|
#endif
|
|
}
|
|
return farg1.ll;
|
|
}
|
|
|
|
/* fnmadd - fnmadd. */
|
|
uint64_t helper_fnmadd (uint64_t arg1, uint64_t arg2, uint64_t arg3)
|
|
{
|
|
CPU_DoubleU farg1, farg2, farg3;
|
|
|
|
farg1.ll = arg1;
|
|
farg2.ll = arg2;
|
|
farg3.ll = arg3;
|
|
|
|
if (unlikely((float64_is_infinity(farg1.d) && float64_is_zero(farg2.d)) ||
|
|
(float64_is_zero(farg1.d) && float64_is_infinity(farg2.d)))) {
|
|
/* Multiplication of zero by infinity */
|
|
farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXIMZ);
|
|
} else {
|
|
if (unlikely(float64_is_signaling_nan(farg1.d) ||
|
|
float64_is_signaling_nan(farg2.d) ||
|
|
float64_is_signaling_nan(farg3.d))) {
|
|
/* sNaN operation */
|
|
fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
|
|
}
|
|
#ifdef FLOAT128
|
|
/* This is the way the PowerPC specification defines it */
|
|
float128 ft0_128, ft1_128;
|
|
|
|
ft0_128 = float64_to_float128(farg1.d, &env->fp_status);
|
|
ft1_128 = float64_to_float128(farg2.d, &env->fp_status);
|
|
ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status);
|
|
if (unlikely(float128_is_infinity(ft0_128) && float64_is_infinity(farg3.d) &&
|
|
float128_is_neg(ft0_128) != float64_is_neg(farg3.d))) {
|
|
/* Magnitude subtraction of infinities */
|
|
farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXISI);
|
|
} else {
|
|
ft1_128 = float64_to_float128(farg3.d, &env->fp_status);
|
|
ft0_128 = float128_add(ft0_128, ft1_128, &env->fp_status);
|
|
farg1.d = float128_to_float64(ft0_128, &env->fp_status);
|
|
}
|
|
#else
|
|
/* This is OK on x86 hosts */
|
|
farg1.d = (farg1.d * farg2.d) + farg3.d;
|
|
#endif
|
|
if (likely(!float64_is_any_nan(farg1.d))) {
|
|
farg1.d = float64_chs(farg1.d);
|
|
}
|
|
}
|
|
return farg1.ll;
|
|
}
|
|
|
|
/* fnmsub - fnmsub. */
|
|
uint64_t helper_fnmsub (uint64_t arg1, uint64_t arg2, uint64_t arg3)
|
|
{
|
|
CPU_DoubleU farg1, farg2, farg3;
|
|
|
|
farg1.ll = arg1;
|
|
farg2.ll = arg2;
|
|
farg3.ll = arg3;
|
|
|
|
if (unlikely((float64_is_infinity(farg1.d) && float64_is_zero(farg2.d)) ||
|
|
(float64_is_zero(farg1.d) && float64_is_infinity(farg2.d)))) {
|
|
/* Multiplication of zero by infinity */
|
|
farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXIMZ);
|
|
} else {
|
|
if (unlikely(float64_is_signaling_nan(farg1.d) ||
|
|
float64_is_signaling_nan(farg2.d) ||
|
|
float64_is_signaling_nan(farg3.d))) {
|
|
/* sNaN operation */
|
|
fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
|
|
}
|
|
#ifdef FLOAT128
|
|
/* This is the way the PowerPC specification defines it */
|
|
float128 ft0_128, ft1_128;
|
|
|
|
ft0_128 = float64_to_float128(farg1.d, &env->fp_status);
|
|
ft1_128 = float64_to_float128(farg2.d, &env->fp_status);
|
|
ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status);
|
|
if (unlikely(float128_is_infinity(ft0_128) && float64_is_infinity(farg3.d) &&
|
|
float128_is_neg(ft0_128) == float64_is_neg(farg3.d))) {
|
|
/* Magnitude subtraction of infinities */
|
|
farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXISI);
|
|
} else {
|
|
ft1_128 = float64_to_float128(farg3.d, &env->fp_status);
|
|
ft0_128 = float128_sub(ft0_128, ft1_128, &env->fp_status);
|
|
farg1.d = float128_to_float64(ft0_128, &env->fp_status);
|
|
}
|
|
#else
|
|
/* This is OK on x86 hosts */
|
|
farg1.d = (farg1.d * farg2.d) - farg3.d;
|
|
#endif
|
|
if (likely(!float64_is_any_nan(farg1.d))) {
|
|
farg1.d = float64_chs(farg1.d);
|
|
}
|
|
}
|
|
return farg1.ll;
|
|
}
|
|
|
|
/* frsp - frsp. */
|
|
uint64_t helper_frsp (uint64_t arg)
|
|
{
|
|
CPU_DoubleU farg;
|
|
float32 f32;
|
|
farg.ll = arg;
|
|
|
|
if (unlikely(float64_is_signaling_nan(farg.d))) {
|
|
/* sNaN square root */
|
|
fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
|
|
}
|
|
f32 = float64_to_float32(farg.d, &env->fp_status);
|
|
farg.d = float32_to_float64(f32, &env->fp_status);
|
|
|
|
return farg.ll;
|
|
}
|
|
|
|
/* fsqrt - fsqrt. */
|
|
uint64_t helper_fsqrt (uint64_t arg)
|
|
{
|
|
CPU_DoubleU farg;
|
|
farg.ll = arg;
|
|
|
|
if (unlikely(float64_is_neg(farg.d) && !float64_is_zero(farg.d))) {
|
|
/* Square root of a negative nonzero number */
|
|
farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSQRT);
|
|
} else {
|
|
if (unlikely(float64_is_signaling_nan(farg.d))) {
|
|
/* sNaN square root */
|
|
fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
|
|
}
|
|
farg.d = float64_sqrt(farg.d, &env->fp_status);
|
|
}
|
|
return farg.ll;
|
|
}
|
|
|
|
/* fre - fre. */
|
|
uint64_t helper_fre (uint64_t arg)
|
|
{
|
|
CPU_DoubleU farg;
|
|
farg.ll = arg;
|
|
|
|
if (unlikely(float64_is_signaling_nan(farg.d))) {
|
|
/* sNaN reciprocal */
|
|
fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
|
|
}
|
|
farg.d = float64_div(float64_one, farg.d, &env->fp_status);
|
|
return farg.d;
|
|
}
|
|
|
|
/* fres - fres. */
|
|
uint64_t helper_fres (uint64_t arg)
|
|
{
|
|
CPU_DoubleU farg;
|
|
float32 f32;
|
|
farg.ll = arg;
|
|
|
|
if (unlikely(float64_is_signaling_nan(farg.d))) {
|
|
/* sNaN reciprocal */
|
|
fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
|
|
}
|
|
farg.d = float64_div(float64_one, farg.d, &env->fp_status);
|
|
f32 = float64_to_float32(farg.d, &env->fp_status);
|
|
farg.d = float32_to_float64(f32, &env->fp_status);
|
|
|
|
return farg.ll;
|
|
}
|
|
|
|
/* frsqrte - frsqrte. */
|
|
uint64_t helper_frsqrte (uint64_t arg)
|
|
{
|
|
CPU_DoubleU farg;
|
|
float32 f32;
|
|
farg.ll = arg;
|
|
|
|
if (unlikely(float64_is_neg(farg.d) && !float64_is_zero(farg.d))) {
|
|
/* Reciprocal square root of a negative nonzero number */
|
|
farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSQRT);
|
|
} else {
|
|
if (unlikely(float64_is_signaling_nan(farg.d))) {
|
|
/* sNaN reciprocal square root */
|
|
fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
|
|
}
|
|
farg.d = float64_sqrt(farg.d, &env->fp_status);
|
|
farg.d = float64_div(float64_one, farg.d, &env->fp_status);
|
|
f32 = float64_to_float32(farg.d, &env->fp_status);
|
|
farg.d = float32_to_float64(f32, &env->fp_status);
|
|
}
|
|
return farg.ll;
|
|
}
|
|
|
|
/* fsel - fsel. */
|
|
uint64_t helper_fsel (uint64_t arg1, uint64_t arg2, uint64_t arg3)
|
|
{
|
|
CPU_DoubleU farg1;
|
|
|
|
farg1.ll = arg1;
|
|
|
|
if ((!float64_is_neg(farg1.d) || float64_is_zero(farg1.d)) && !float64_is_any_nan(farg1.d)) {
|
|
return arg2;
|
|
} else {
|
|
return arg3;
|
|
}
|
|
}
|
|
|
|
void helper_fcmpu (uint64_t arg1, uint64_t arg2, uint32_t crfD)
|
|
{
|
|
CPU_DoubleU farg1, farg2;
|
|
uint32_t ret = 0;
|
|
farg1.ll = arg1;
|
|
farg2.ll = arg2;
|
|
|
|
if (unlikely(float64_is_any_nan(farg1.d) ||
|
|
float64_is_any_nan(farg2.d))) {
|
|
ret = 0x01UL;
|
|
} else if (float64_lt(farg1.d, farg2.d, &env->fp_status)) {
|
|
ret = 0x08UL;
|
|
} else if (!float64_le(farg1.d, farg2.d, &env->fp_status)) {
|
|
ret = 0x04UL;
|
|
} else {
|
|
ret = 0x02UL;
|
|
}
|
|
|
|
env->fpscr &= ~(0x0F << FPSCR_FPRF);
|
|
env->fpscr |= ret << FPSCR_FPRF;
|
|
env->crf[crfD] = ret;
|
|
if (unlikely(ret == 0x01UL
|
|
&& (float64_is_signaling_nan(farg1.d) ||
|
|
float64_is_signaling_nan(farg2.d)))) {
|
|
/* sNaN comparison */
|
|
fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
|
|
}
|
|
}
|
|
|
|
void helper_fcmpo (uint64_t arg1, uint64_t arg2, uint32_t crfD)
|
|
{
|
|
CPU_DoubleU farg1, farg2;
|
|
uint32_t ret = 0;
|
|
farg1.ll = arg1;
|
|
farg2.ll = arg2;
|
|
|
|
if (unlikely(float64_is_any_nan(farg1.d) ||
|
|
float64_is_any_nan(farg2.d))) {
|
|
ret = 0x01UL;
|
|
} else if (float64_lt(farg1.d, farg2.d, &env->fp_status)) {
|
|
ret = 0x08UL;
|
|
} else if (!float64_le(farg1.d, farg2.d, &env->fp_status)) {
|
|
ret = 0x04UL;
|
|
} else {
|
|
ret = 0x02UL;
|
|
}
|
|
|
|
env->fpscr &= ~(0x0F << FPSCR_FPRF);
|
|
env->fpscr |= ret << FPSCR_FPRF;
|
|
env->crf[crfD] = ret;
|
|
if (unlikely (ret == 0x01UL)) {
|
|
if (float64_is_signaling_nan(farg1.d) ||
|
|
float64_is_signaling_nan(farg2.d)) {
|
|
/* sNaN comparison */
|
|
fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN |
|
|
POWERPC_EXCP_FP_VXVC);
|
|
} else {
|
|
/* qNaN comparison */
|
|
fload_invalid_op_excp(POWERPC_EXCP_FP_VXVC);
|
|
}
|
|
}
|
|
}
|
|
|
|
#if !defined (CONFIG_USER_ONLY)
|
|
void helper_store_msr (target_ulong val)
|
|
{
|
|
val = hreg_store_msr(env, val, 0);
|
|
if (val != 0) {
|
|
env->interrupt_request |= CPU_INTERRUPT_EXITTB;
|
|
helper_raise_exception(val);
|
|
}
|
|
}
|
|
|
|
static inline void do_rfi(target_ulong nip, target_ulong msr,
|
|
target_ulong msrm, int keep_msrh)
|
|
{
|
|
#if defined(TARGET_PPC64)
|
|
if (msr & (1ULL << MSR_SF)) {
|
|
nip = (uint64_t)nip;
|
|
msr &= (uint64_t)msrm;
|
|
} else {
|
|
nip = (uint32_t)nip;
|
|
msr = (uint32_t)(msr & msrm);
|
|
if (keep_msrh)
|
|
msr |= env->msr & ~((uint64_t)0xFFFFFFFF);
|
|
}
|
|
#else
|
|
nip = (uint32_t)nip;
|
|
msr &= (uint32_t)msrm;
|
|
#endif
|
|
/* XXX: beware: this is false if VLE is supported */
|
|
env->nip = nip & ~((target_ulong)0x00000003);
|
|
hreg_store_msr(env, msr, 1);
|
|
#if defined (DEBUG_OP)
|
|
cpu_dump_rfi(env->nip, env->msr);
|
|
#endif
|
|
/* No need to raise an exception here,
|
|
* as rfi is always the last insn of a TB
|
|
*/
|
|
env->interrupt_request |= CPU_INTERRUPT_EXITTB;
|
|
}
|
|
|
|
void helper_rfi (void)
|
|
{
|
|
do_rfi(env->spr[SPR_SRR0], env->spr[SPR_SRR1],
|
|
~((target_ulong)0x783F0000), 1);
|
|
}
|
|
|
|
#if defined(TARGET_PPC64)
|
|
void helper_rfid (void)
|
|
{
|
|
do_rfi(env->spr[SPR_SRR0], env->spr[SPR_SRR1],
|
|
~((target_ulong)0x783F0000), 0);
|
|
}
|
|
|
|
void helper_hrfid (void)
|
|
{
|
|
do_rfi(env->spr[SPR_HSRR0], env->spr[SPR_HSRR1],
|
|
~((target_ulong)0x783F0000), 0);
|
|
}
|
|
#endif
|
|
#endif
|
|
|
|
void helper_tw (target_ulong arg1, target_ulong arg2, uint32_t flags)
|
|
{
|
|
if (!likely(!(((int32_t)arg1 < (int32_t)arg2 && (flags & 0x10)) ||
|
|
((int32_t)arg1 > (int32_t)arg2 && (flags & 0x08)) ||
|
|
((int32_t)arg1 == (int32_t)arg2 && (flags & 0x04)) ||
|
|
((uint32_t)arg1 < (uint32_t)arg2 && (flags & 0x02)) ||
|
|
((uint32_t)arg1 > (uint32_t)arg2 && (flags & 0x01))))) {
|
|
helper_raise_exception_err(POWERPC_EXCP_PROGRAM, POWERPC_EXCP_TRAP);
|
|
}
|
|
}
|
|
|
|
#if defined(TARGET_PPC64)
|
|
void helper_td (target_ulong arg1, target_ulong arg2, uint32_t flags)
|
|
{
|
|
if (!likely(!(((int64_t)arg1 < (int64_t)arg2 && (flags & 0x10)) ||
|
|
((int64_t)arg1 > (int64_t)arg2 && (flags & 0x08)) ||
|
|
((int64_t)arg1 == (int64_t)arg2 && (flags & 0x04)) ||
|
|
((uint64_t)arg1 < (uint64_t)arg2 && (flags & 0x02)) ||
|
|
((uint64_t)arg1 > (uint64_t)arg2 && (flags & 0x01)))))
|
|
helper_raise_exception_err(POWERPC_EXCP_PROGRAM, POWERPC_EXCP_TRAP);
|
|
}
|
|
#endif
|
|
|
|
/*****************************************************************************/
|
|
/* PowerPC 601 specific instructions (POWER bridge) */
|
|
|
|
target_ulong helper_clcs (uint32_t arg)
|
|
{
|
|
switch (arg) {
|
|
case 0x0CUL:
|
|
/* Instruction cache line size */
|
|
return env->icache_line_size;
|
|
break;
|
|
case 0x0DUL:
|
|
/* Data cache line size */
|
|
return env->dcache_line_size;
|
|
break;
|
|
case 0x0EUL:
|
|
/* Minimum cache line size */
|
|
return (env->icache_line_size < env->dcache_line_size) ?
|
|
env->icache_line_size : env->dcache_line_size;
|
|
break;
|
|
case 0x0FUL:
|
|
/* Maximum cache line size */
|
|
return (env->icache_line_size > env->dcache_line_size) ?
|
|
env->icache_line_size : env->dcache_line_size;
|
|
break;
|
|
default:
|
|
/* Undefined */
|
|
return 0;
|
|
break;
|
|
}
|
|
}
|
|
|
|
target_ulong helper_div (target_ulong arg1, target_ulong arg2)
|
|
{
|
|
uint64_t tmp = (uint64_t)arg1 << 32 | env->spr[SPR_MQ];
|
|
|
|
if (((int32_t)tmp == INT32_MIN && (int32_t)arg2 == (int32_t)-1) ||
|
|
(int32_t)arg2 == 0) {
|
|
env->spr[SPR_MQ] = 0;
|
|
return INT32_MIN;
|
|
} else {
|
|
env->spr[SPR_MQ] = tmp % arg2;
|
|
return tmp / (int32_t)arg2;
|
|
}
|
|
}
|
|
|
|
target_ulong helper_divo (target_ulong arg1, target_ulong arg2)
|
|
{
|
|
uint64_t tmp = (uint64_t)arg1 << 32 | env->spr[SPR_MQ];
|
|
|
|
if (((int32_t)tmp == INT32_MIN && (int32_t)arg2 == (int32_t)-1) ||
|
|
(int32_t)arg2 == 0) {
|
|
env->xer |= (1 << XER_OV) | (1 << XER_SO);
|
|
env->spr[SPR_MQ] = 0;
|
|
return INT32_MIN;
|
|
} else {
|
|
env->spr[SPR_MQ] = tmp % arg2;
|
|
tmp /= (int32_t)arg2;
|
|
if ((int32_t)tmp != tmp) {
|
|
env->xer |= (1 << XER_OV) | (1 << XER_SO);
|
|
} else {
|
|
env->xer &= ~(1 << XER_OV);
|
|
}
|
|
return tmp;
|
|
}
|
|
}
|
|
|
|
target_ulong helper_divs (target_ulong arg1, target_ulong arg2)
|
|
{
|
|
if (((int32_t)arg1 == INT32_MIN && (int32_t)arg2 == (int32_t)-1) ||
|
|
(int32_t)arg2 == 0) {
|
|
env->spr[SPR_MQ] = 0;
|
|
return INT32_MIN;
|
|
} else {
|
|
env->spr[SPR_MQ] = (int32_t)arg1 % (int32_t)arg2;
|
|
return (int32_t)arg1 / (int32_t)arg2;
|
|
}
|
|
}
|
|
|
|
target_ulong helper_divso (target_ulong arg1, target_ulong arg2)
|
|
{
|
|
if (((int32_t)arg1 == INT32_MIN && (int32_t)arg2 == (int32_t)-1) ||
|
|
(int32_t)arg2 == 0) {
|
|
env->xer |= (1 << XER_OV) | (1 << XER_SO);
|
|
env->spr[SPR_MQ] = 0;
|
|
return INT32_MIN;
|
|
} else {
|
|
env->xer &= ~(1 << XER_OV);
|
|
env->spr[SPR_MQ] = (int32_t)arg1 % (int32_t)arg2;
|
|
return (int32_t)arg1 / (int32_t)arg2;
|
|
}
|
|
}
|
|
|
|
#if !defined (CONFIG_USER_ONLY)
|
|
target_ulong helper_rac (target_ulong addr)
|
|
{
|
|
mmu_ctx_t ctx;
|
|
int nb_BATs;
|
|
target_ulong ret = 0;
|
|
|
|
/* We don't have to generate many instances of this instruction,
|
|
* as rac is supervisor only.
|
|
*/
|
|
/* XXX: FIX THIS: Pretend we have no BAT */
|
|
nb_BATs = env->nb_BATs;
|
|
env->nb_BATs = 0;
|
|
if (get_physical_address(env, &ctx, addr, 0, ACCESS_INT) == 0)
|
|
ret = ctx.raddr;
|
|
env->nb_BATs = nb_BATs;
|
|
return ret;
|
|
}
|
|
|
|
void helper_rfsvc (void)
|
|
{
|
|
do_rfi(env->lr, env->ctr, 0x0000FFFF, 0);
|
|
}
|
|
#endif
|
|
|
|
/*****************************************************************************/
|
|
/* 602 specific instructions */
|
|
/* mfrom is the most crazy instruction ever seen, imho ! */
|
|
/* Real implementation uses a ROM table. Do the same */
|
|
/* Extremly decomposed:
|
|
* -arg / 256
|
|
* return 256 * log10(10 + 1.0) + 0.5
|
|
*/
|
|
#if !defined (CONFIG_USER_ONLY)
|
|
target_ulong helper_602_mfrom (target_ulong arg)
|
|
{
|
|
if (likely(arg < 602)) {
|
|
#include "mfrom_table.c"
|
|
return mfrom_ROM_table[arg];
|
|
} else {
|
|
return 0;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/*****************************************************************************/
|
|
/* Embedded PowerPC specific helpers */
|
|
|
|
/* XXX: to be improved to check access rights when in user-mode */
|
|
target_ulong helper_load_dcr (target_ulong dcrn)
|
|
{
|
|
uint32_t val = 0;
|
|
|
|
if (unlikely(env->dcr_env == NULL)) {
|
|
qemu_log("No DCR environment\n");
|
|
helper_raise_exception_err(POWERPC_EXCP_PROGRAM,
|
|
POWERPC_EXCP_INVAL | POWERPC_EXCP_INVAL_INVAL);
|
|
} else if (unlikely(ppc_dcr_read(env->dcr_env, (uint32_t)dcrn, &val) != 0)) {
|
|
qemu_log("DCR read error %d %03x\n", (uint32_t)dcrn, (uint32_t)dcrn);
|
|
helper_raise_exception_err(POWERPC_EXCP_PROGRAM,
|
|
POWERPC_EXCP_INVAL | POWERPC_EXCP_PRIV_REG);
|
|
}
|
|
return val;
|
|
}
|
|
|
|
void helper_store_dcr (target_ulong dcrn, target_ulong val)
|
|
{
|
|
if (unlikely(env->dcr_env == NULL)) {
|
|
qemu_log("No DCR environment\n");
|
|
helper_raise_exception_err(POWERPC_EXCP_PROGRAM,
|
|
POWERPC_EXCP_INVAL | POWERPC_EXCP_INVAL_INVAL);
|
|
} else if (unlikely(ppc_dcr_write(env->dcr_env, (uint32_t)dcrn, (uint32_t)val) != 0)) {
|
|
qemu_log("DCR write error %d %03x\n", (uint32_t)dcrn, (uint32_t)dcrn);
|
|
helper_raise_exception_err(POWERPC_EXCP_PROGRAM,
|
|
POWERPC_EXCP_INVAL | POWERPC_EXCP_PRIV_REG);
|
|
}
|
|
}
|
|
|
|
#if !defined(CONFIG_USER_ONLY)
|
|
void helper_40x_rfci (void)
|
|
{
|
|
do_rfi(env->spr[SPR_40x_SRR2], env->spr[SPR_40x_SRR3],
|
|
~((target_ulong)0xFFFF0000), 0);
|
|
}
|
|
|
|
void helper_rfci (void)
|
|
{
|
|
do_rfi(env->spr[SPR_BOOKE_CSRR0], SPR_BOOKE_CSRR1,
|
|
~((target_ulong)0x3FFF0000), 0);
|
|
}
|
|
|
|
void helper_rfdi (void)
|
|
{
|
|
do_rfi(env->spr[SPR_BOOKE_DSRR0], SPR_BOOKE_DSRR1,
|
|
~((target_ulong)0x3FFF0000), 0);
|
|
}
|
|
|
|
void helper_rfmci (void)
|
|
{
|
|
do_rfi(env->spr[SPR_BOOKE_MCSRR0], SPR_BOOKE_MCSRR1,
|
|
~((target_ulong)0x3FFF0000), 0);
|
|
}
|
|
#endif
|
|
|
|
/* 440 specific */
|
|
target_ulong helper_dlmzb (target_ulong high, target_ulong low, uint32_t update_Rc)
|
|
{
|
|
target_ulong mask;
|
|
int i;
|
|
|
|
i = 1;
|
|
for (mask = 0xFF000000; mask != 0; mask = mask >> 8) {
|
|
if ((high & mask) == 0) {
|
|
if (update_Rc) {
|
|
env->crf[0] = 0x4;
|
|
}
|
|
goto done;
|
|
}
|
|
i++;
|
|
}
|
|
for (mask = 0xFF000000; mask != 0; mask = mask >> 8) {
|
|
if ((low & mask) == 0) {
|
|
if (update_Rc) {
|
|
env->crf[0] = 0x8;
|
|
}
|
|
goto done;
|
|
}
|
|
i++;
|
|
}
|
|
if (update_Rc) {
|
|
env->crf[0] = 0x2;
|
|
}
|
|
done:
|
|
env->xer = (env->xer & ~0x7F) | i;
|
|
if (update_Rc) {
|
|
env->crf[0] |= xer_so;
|
|
}
|
|
return i;
|
|
}
|
|
|
|
/*****************************************************************************/
|
|
/* Altivec extension helpers */
|
|
#if defined(HOST_WORDS_BIGENDIAN)
|
|
#define HI_IDX 0
|
|
#define LO_IDX 1
|
|
#else
|
|
#define HI_IDX 1
|
|
#define LO_IDX 0
|
|
#endif
|
|
|
|
#if defined(HOST_WORDS_BIGENDIAN)
|
|
#define VECTOR_FOR_INORDER_I(index, element) \
|
|
for (index = 0; index < ARRAY_SIZE(r->element); index++)
|
|
#else
|
|
#define VECTOR_FOR_INORDER_I(index, element) \
|
|
for (index = ARRAY_SIZE(r->element)-1; index >= 0; index--)
|
|
#endif
|
|
|
|
/* If X is a NaN, store the corresponding QNaN into RESULT. Otherwise,
|
|
* execute the following block. */
|
|
#define DO_HANDLE_NAN(result, x) \
|
|
if (float32_is_any_nan(x)) { \
|
|
CPU_FloatU __f; \
|
|
__f.f = x; \
|
|
__f.l = __f.l | (1 << 22); /* Set QNaN bit. */ \
|
|
result = __f.f; \
|
|
} else
|
|
|
|
#define HANDLE_NAN1(result, x) \
|
|
DO_HANDLE_NAN(result, x)
|
|
#define HANDLE_NAN2(result, x, y) \
|
|
DO_HANDLE_NAN(result, x) DO_HANDLE_NAN(result, y)
|
|
#define HANDLE_NAN3(result, x, y, z) \
|
|
DO_HANDLE_NAN(result, x) DO_HANDLE_NAN(result, y) DO_HANDLE_NAN(result, z)
|
|
|
|
/* Saturating arithmetic helpers. */
|
|
#define SATCVT(from, to, from_type, to_type, min, max) \
|
|
static inline to_type cvt##from##to(from_type x, int *sat) \
|
|
{ \
|
|
to_type r; \
|
|
if (x < (from_type)min) { \
|
|
r = min; \
|
|
*sat = 1; \
|
|
} else if (x > (from_type)max) { \
|
|
r = max; \
|
|
*sat = 1; \
|
|
} else { \
|
|
r = x; \
|
|
} \
|
|
return r; \
|
|
}
|
|
#define SATCVTU(from, to, from_type, to_type, min, max) \
|
|
static inline to_type cvt##from##to(from_type x, int *sat) \
|
|
{ \
|
|
to_type r; \
|
|
if (x > (from_type)max) { \
|
|
r = max; \
|
|
*sat = 1; \
|
|
} else { \
|
|
r = x; \
|
|
} \
|
|
return r; \
|
|
}
|
|
SATCVT(sh, sb, int16_t, int8_t, INT8_MIN, INT8_MAX)
|
|
SATCVT(sw, sh, int32_t, int16_t, INT16_MIN, INT16_MAX)
|
|
SATCVT(sd, sw, int64_t, int32_t, INT32_MIN, INT32_MAX)
|
|
|
|
SATCVTU(uh, ub, uint16_t, uint8_t, 0, UINT8_MAX)
|
|
SATCVTU(uw, uh, uint32_t, uint16_t, 0, UINT16_MAX)
|
|
SATCVTU(ud, uw, uint64_t, uint32_t, 0, UINT32_MAX)
|
|
SATCVT(sh, ub, int16_t, uint8_t, 0, UINT8_MAX)
|
|
SATCVT(sw, uh, int32_t, uint16_t, 0, UINT16_MAX)
|
|
SATCVT(sd, uw, int64_t, uint32_t, 0, UINT32_MAX)
|
|
#undef SATCVT
|
|
#undef SATCVTU
|
|
|
|
#define LVE(name, access, swap, element) \
|
|
void helper_##name (ppc_avr_t *r, target_ulong addr) \
|
|
{ \
|
|
size_t n_elems = ARRAY_SIZE(r->element); \
|
|
int adjust = HI_IDX*(n_elems-1); \
|
|
int sh = sizeof(r->element[0]) >> 1; \
|
|
int index = (addr & 0xf) >> sh; \
|
|
if(msr_le) { \
|
|
r->element[LO_IDX ? index : (adjust - index)] = swap(access(addr)); \
|
|
} else { \
|
|
r->element[LO_IDX ? index : (adjust - index)] = access(addr); \
|
|
} \
|
|
}
|
|
#define I(x) (x)
|
|
LVE(lvebx, ldub, I, u8)
|
|
LVE(lvehx, lduw, bswap16, u16)
|
|
LVE(lvewx, ldl, bswap32, u32)
|
|
#undef I
|
|
#undef LVE
|
|
|
|
void helper_lvsl (ppc_avr_t *r, target_ulong sh)
|
|
{
|
|
int i, j = (sh & 0xf);
|
|
|
|
VECTOR_FOR_INORDER_I (i, u8) {
|
|
r->u8[i] = j++;
|
|
}
|
|
}
|
|
|
|
void helper_lvsr (ppc_avr_t *r, target_ulong sh)
|
|
{
|
|
int i, j = 0x10 - (sh & 0xf);
|
|
|
|
VECTOR_FOR_INORDER_I (i, u8) {
|
|
r->u8[i] = j++;
|
|
}
|
|
}
|
|
|
|
#define STVE(name, access, swap, element) \
|
|
void helper_##name (ppc_avr_t *r, target_ulong addr) \
|
|
{ \
|
|
size_t n_elems = ARRAY_SIZE(r->element); \
|
|
int adjust = HI_IDX*(n_elems-1); \
|
|
int sh = sizeof(r->element[0]) >> 1; \
|
|
int index = (addr & 0xf) >> sh; \
|
|
if(msr_le) { \
|
|
access(addr, swap(r->element[LO_IDX ? index : (adjust - index)])); \
|
|
} else { \
|
|
access(addr, r->element[LO_IDX ? index : (adjust - index)]); \
|
|
} \
|
|
}
|
|
#define I(x) (x)
|
|
STVE(stvebx, stb, I, u8)
|
|
STVE(stvehx, stw, bswap16, u16)
|
|
STVE(stvewx, stl, bswap32, u32)
|
|
#undef I
|
|
#undef LVE
|
|
|
|
void helper_mtvscr (ppc_avr_t *r)
|
|
{
|
|
#if defined(HOST_WORDS_BIGENDIAN)
|
|
env->vscr = r->u32[3];
|
|
#else
|
|
env->vscr = r->u32[0];
|
|
#endif
|
|
set_flush_to_zero(vscr_nj, &env->vec_status);
|
|
}
|
|
|
|
void helper_vaddcuw (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
|
|
{
|
|
int i;
|
|
for (i = 0; i < ARRAY_SIZE(r->u32); i++) {
|
|
r->u32[i] = ~a->u32[i] < b->u32[i];
|
|
}
|
|
}
|
|
|
|
#define VARITH_DO(name, op, element) \
|
|
void helper_v##name (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
|
|
{ \
|
|
int i; \
|
|
for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
|
|
r->element[i] = a->element[i] op b->element[i]; \
|
|
} \
|
|
}
|
|
#define VARITH(suffix, element) \
|
|
VARITH_DO(add##suffix, +, element) \
|
|
VARITH_DO(sub##suffix, -, element)
|
|
VARITH(ubm, u8)
|
|
VARITH(uhm, u16)
|
|
VARITH(uwm, u32)
|
|
#undef VARITH_DO
|
|
#undef VARITH
|
|
|
|
#define VARITHFP(suffix, func) \
|
|
void helper_v##suffix (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
|
|
{ \
|
|
int i; \
|
|
for (i = 0; i < ARRAY_SIZE(r->f); i++) { \
|
|
HANDLE_NAN2(r->f[i], a->f[i], b->f[i]) { \
|
|
r->f[i] = func(a->f[i], b->f[i], &env->vec_status); \
|
|
} \
|
|
} \
|
|
}
|
|
VARITHFP(addfp, float32_add)
|
|
VARITHFP(subfp, float32_sub)
|
|
#undef VARITHFP
|
|
|
|
#define VARITHSAT_CASE(type, op, cvt, element) \
|
|
{ \
|
|
type result = (type)a->element[i] op (type)b->element[i]; \
|
|
r->element[i] = cvt(result, &sat); \
|
|
}
|
|
|
|
#define VARITHSAT_DO(name, op, optype, cvt, element) \
|
|
void helper_v##name (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
|
|
{ \
|
|
int sat = 0; \
|
|
int i; \
|
|
for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
|
|
switch (sizeof(r->element[0])) { \
|
|
case 1: VARITHSAT_CASE(optype, op, cvt, element); break; \
|
|
case 2: VARITHSAT_CASE(optype, op, cvt, element); break; \
|
|
case 4: VARITHSAT_CASE(optype, op, cvt, element); break; \
|
|
} \
|
|
} \
|
|
if (sat) { \
|
|
env->vscr |= (1 << VSCR_SAT); \
|
|
} \
|
|
}
|
|
#define VARITHSAT_SIGNED(suffix, element, optype, cvt) \
|
|
VARITHSAT_DO(adds##suffix##s, +, optype, cvt, element) \
|
|
VARITHSAT_DO(subs##suffix##s, -, optype, cvt, element)
|
|
#define VARITHSAT_UNSIGNED(suffix, element, optype, cvt) \
|
|
VARITHSAT_DO(addu##suffix##s, +, optype, cvt, element) \
|
|
VARITHSAT_DO(subu##suffix##s, -, optype, cvt, element)
|
|
VARITHSAT_SIGNED(b, s8, int16_t, cvtshsb)
|
|
VARITHSAT_SIGNED(h, s16, int32_t, cvtswsh)
|
|
VARITHSAT_SIGNED(w, s32, int64_t, cvtsdsw)
|
|
VARITHSAT_UNSIGNED(b, u8, uint16_t, cvtshub)
|
|
VARITHSAT_UNSIGNED(h, u16, uint32_t, cvtswuh)
|
|
VARITHSAT_UNSIGNED(w, u32, uint64_t, cvtsduw)
|
|
#undef VARITHSAT_CASE
|
|
#undef VARITHSAT_DO
|
|
#undef VARITHSAT_SIGNED
|
|
#undef VARITHSAT_UNSIGNED
|
|
|
|
#define VAVG_DO(name, element, etype) \
|
|
void helper_v##name (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
|
|
{ \
|
|
int i; \
|
|
for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
|
|
etype x = (etype)a->element[i] + (etype)b->element[i] + 1; \
|
|
r->element[i] = x >> 1; \
|
|
} \
|
|
}
|
|
|
|
#define VAVG(type, signed_element, signed_type, unsigned_element, unsigned_type) \
|
|
VAVG_DO(avgs##type, signed_element, signed_type) \
|
|
VAVG_DO(avgu##type, unsigned_element, unsigned_type)
|
|
VAVG(b, s8, int16_t, u8, uint16_t)
|
|
VAVG(h, s16, int32_t, u16, uint32_t)
|
|
VAVG(w, s32, int64_t, u32, uint64_t)
|
|
#undef VAVG_DO
|
|
#undef VAVG
|
|
|
|
#define VCF(suffix, cvt, element) \
|
|
void helper_vcf##suffix (ppc_avr_t *r, ppc_avr_t *b, uint32_t uim) \
|
|
{ \
|
|
int i; \
|
|
for (i = 0; i < ARRAY_SIZE(r->f); i++) { \
|
|
float32 t = cvt(b->element[i], &env->vec_status); \
|
|
r->f[i] = float32_scalbn (t, -uim, &env->vec_status); \
|
|
} \
|
|
}
|
|
VCF(ux, uint32_to_float32, u32)
|
|
VCF(sx, int32_to_float32, s32)
|
|
#undef VCF
|
|
|
|
#define VCMP_DO(suffix, compare, element, record) \
|
|
void helper_vcmp##suffix (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
|
|
{ \
|
|
uint32_t ones = (uint32_t)-1; \
|
|
uint32_t all = ones; \
|
|
uint32_t none = 0; \
|
|
int i; \
|
|
for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
|
|
uint32_t result = (a->element[i] compare b->element[i] ? ones : 0x0); \
|
|
switch (sizeof (a->element[0])) { \
|
|
case 4: r->u32[i] = result; break; \
|
|
case 2: r->u16[i] = result; break; \
|
|
case 1: r->u8[i] = result; break; \
|
|
} \
|
|
all &= result; \
|
|
none |= result; \
|
|
} \
|
|
if (record) { \
|
|
env->crf[6] = ((all != 0) << 3) | ((none == 0) << 1); \
|
|
} \
|
|
}
|
|
#define VCMP(suffix, compare, element) \
|
|
VCMP_DO(suffix, compare, element, 0) \
|
|
VCMP_DO(suffix##_dot, compare, element, 1)
|
|
VCMP(equb, ==, u8)
|
|
VCMP(equh, ==, u16)
|
|
VCMP(equw, ==, u32)
|
|
VCMP(gtub, >, u8)
|
|
VCMP(gtuh, >, u16)
|
|
VCMP(gtuw, >, u32)
|
|
VCMP(gtsb, >, s8)
|
|
VCMP(gtsh, >, s16)
|
|
VCMP(gtsw, >, s32)
|
|
#undef VCMP_DO
|
|
#undef VCMP
|
|
|
|
#define VCMPFP_DO(suffix, compare, order, record) \
|
|
void helper_vcmp##suffix (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
|
|
{ \
|
|
uint32_t ones = (uint32_t)-1; \
|
|
uint32_t all = ones; \
|
|
uint32_t none = 0; \
|
|
int i; \
|
|
for (i = 0; i < ARRAY_SIZE(r->f); i++) { \
|
|
uint32_t result; \
|
|
int rel = float32_compare_quiet(a->f[i], b->f[i], &env->vec_status); \
|
|
if (rel == float_relation_unordered) { \
|
|
result = 0; \
|
|
} else if (rel compare order) { \
|
|
result = ones; \
|
|
} else { \
|
|
result = 0; \
|
|
} \
|
|
r->u32[i] = result; \
|
|
all &= result; \
|
|
none |= result; \
|
|
} \
|
|
if (record) { \
|
|
env->crf[6] = ((all != 0) << 3) | ((none == 0) << 1); \
|
|
} \
|
|
}
|
|
#define VCMPFP(suffix, compare, order) \
|
|
VCMPFP_DO(suffix, compare, order, 0) \
|
|
VCMPFP_DO(suffix##_dot, compare, order, 1)
|
|
VCMPFP(eqfp, ==, float_relation_equal)
|
|
VCMPFP(gefp, !=, float_relation_less)
|
|
VCMPFP(gtfp, ==, float_relation_greater)
|
|
#undef VCMPFP_DO
|
|
#undef VCMPFP
|
|
|
|
static inline void vcmpbfp_internal(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b,
|
|
int record)
|
|
{
|
|
int i;
|
|
int all_in = 0;
|
|
for (i = 0; i < ARRAY_SIZE(r->f); i++) {
|
|
int le_rel = float32_compare_quiet(a->f[i], b->f[i], &env->vec_status);
|
|
if (le_rel == float_relation_unordered) {
|
|
r->u32[i] = 0xc0000000;
|
|
/* ALL_IN does not need to be updated here. */
|
|
} else {
|
|
float32 bneg = float32_chs(b->f[i]);
|
|
int ge_rel = float32_compare_quiet(a->f[i], bneg, &env->vec_status);
|
|
int le = le_rel != float_relation_greater;
|
|
int ge = ge_rel != float_relation_less;
|
|
r->u32[i] = ((!le) << 31) | ((!ge) << 30);
|
|
all_in |= (!le | !ge);
|
|
}
|
|
}
|
|
if (record) {
|
|
env->crf[6] = (all_in == 0) << 1;
|
|
}
|
|
}
|
|
|
|
void helper_vcmpbfp (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
|
|
{
|
|
vcmpbfp_internal(r, a, b, 0);
|
|
}
|
|
|
|
void helper_vcmpbfp_dot (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
|
|
{
|
|
vcmpbfp_internal(r, a, b, 1);
|
|
}
|
|
|
|
#define VCT(suffix, satcvt, element) \
|
|
void helper_vct##suffix (ppc_avr_t *r, ppc_avr_t *b, uint32_t uim) \
|
|
{ \
|
|
int i; \
|
|
int sat = 0; \
|
|
float_status s = env->vec_status; \
|
|
set_float_rounding_mode(float_round_to_zero, &s); \
|
|
for (i = 0; i < ARRAY_SIZE(r->f); i++) { \
|
|
if (float32_is_any_nan(b->f[i])) { \
|
|
r->element[i] = 0; \
|
|
} else { \
|
|
float64 t = float32_to_float64(b->f[i], &s); \
|
|
int64_t j; \
|
|
t = float64_scalbn(t, uim, &s); \
|
|
j = float64_to_int64(t, &s); \
|
|
r->element[i] = satcvt(j, &sat); \
|
|
} \
|
|
} \
|
|
if (sat) { \
|
|
env->vscr |= (1 << VSCR_SAT); \
|
|
} \
|
|
}
|
|
VCT(uxs, cvtsduw, u32)
|
|
VCT(sxs, cvtsdsw, s32)
|
|
#undef VCT
|
|
|
|
void helper_vmaddfp (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
|
|
{
|
|
int i;
|
|
for (i = 0; i < ARRAY_SIZE(r->f); i++) {
|
|
HANDLE_NAN3(r->f[i], a->f[i], b->f[i], c->f[i]) {
|
|
/* Need to do the computation in higher precision and round
|
|
* once at the end. */
|
|
float64 af, bf, cf, t;
|
|
af = float32_to_float64(a->f[i], &env->vec_status);
|
|
bf = float32_to_float64(b->f[i], &env->vec_status);
|
|
cf = float32_to_float64(c->f[i], &env->vec_status);
|
|
t = float64_mul(af, cf, &env->vec_status);
|
|
t = float64_add(t, bf, &env->vec_status);
|
|
r->f[i] = float64_to_float32(t, &env->vec_status);
|
|
}
|
|
}
|
|
}
|
|
|
|
void helper_vmhaddshs (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
|
|
{
|
|
int sat = 0;
|
|
int i;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(r->s16); i++) {
|
|
int32_t prod = a->s16[i] * b->s16[i];
|
|
int32_t t = (int32_t)c->s16[i] + (prod >> 15);
|
|
r->s16[i] = cvtswsh (t, &sat);
|
|
}
|
|
|
|
if (sat) {
|
|
env->vscr |= (1 << VSCR_SAT);
|
|
}
|
|
}
|
|
|
|
void helper_vmhraddshs (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
|
|
{
|
|
int sat = 0;
|
|
int i;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(r->s16); i++) {
|
|
int32_t prod = a->s16[i] * b->s16[i] + 0x00004000;
|
|
int32_t t = (int32_t)c->s16[i] + (prod >> 15);
|
|
r->s16[i] = cvtswsh (t, &sat);
|
|
}
|
|
|
|
if (sat) {
|
|
env->vscr |= (1 << VSCR_SAT);
|
|
}
|
|
}
|
|
|
|
#define VMINMAX_DO(name, compare, element) \
|
|
void helper_v##name (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
|
|
{ \
|
|
int i; \
|
|
for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
|
|
if (a->element[i] compare b->element[i]) { \
|
|
r->element[i] = b->element[i]; \
|
|
} else { \
|
|
r->element[i] = a->element[i]; \
|
|
} \
|
|
} \
|
|
}
|
|
#define VMINMAX(suffix, element) \
|
|
VMINMAX_DO(min##suffix, >, element) \
|
|
VMINMAX_DO(max##suffix, <, element)
|
|
VMINMAX(sb, s8)
|
|
VMINMAX(sh, s16)
|
|
VMINMAX(sw, s32)
|
|
VMINMAX(ub, u8)
|
|
VMINMAX(uh, u16)
|
|
VMINMAX(uw, u32)
|
|
#undef VMINMAX_DO
|
|
#undef VMINMAX
|
|
|
|
#define VMINMAXFP(suffix, rT, rF) \
|
|
void helper_v##suffix (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
|
|
{ \
|
|
int i; \
|
|
for (i = 0; i < ARRAY_SIZE(r->f); i++) { \
|
|
HANDLE_NAN2(r->f[i], a->f[i], b->f[i]) { \
|
|
if (float32_lt_quiet(a->f[i], b->f[i], &env->vec_status)) { \
|
|
r->f[i] = rT->f[i]; \
|
|
} else { \
|
|
r->f[i] = rF->f[i]; \
|
|
} \
|
|
} \
|
|
} \
|
|
}
|
|
VMINMAXFP(minfp, a, b)
|
|
VMINMAXFP(maxfp, b, a)
|
|
#undef VMINMAXFP
|
|
|
|
void helper_vmladduhm (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
|
|
{
|
|
int i;
|
|
for (i = 0; i < ARRAY_SIZE(r->s16); i++) {
|
|
int32_t prod = a->s16[i] * b->s16[i];
|
|
r->s16[i] = (int16_t) (prod + c->s16[i]);
|
|
}
|
|
}
|
|
|
|
#define VMRG_DO(name, element, highp) \
|
|
void helper_v##name (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
|
|
{ \
|
|
ppc_avr_t result; \
|
|
int i; \
|
|
size_t n_elems = ARRAY_SIZE(r->element); \
|
|
for (i = 0; i < n_elems/2; i++) { \
|
|
if (highp) { \
|
|
result.element[i*2+HI_IDX] = a->element[i]; \
|
|
result.element[i*2+LO_IDX] = b->element[i]; \
|
|
} else { \
|
|
result.element[n_elems - i*2 - (1+HI_IDX)] = b->element[n_elems - i - 1]; \
|
|
result.element[n_elems - i*2 - (1+LO_IDX)] = a->element[n_elems - i - 1]; \
|
|
} \
|
|
} \
|
|
*r = result; \
|
|
}
|
|
#if defined(HOST_WORDS_BIGENDIAN)
|
|
#define MRGHI 0
|
|
#define MRGLO 1
|
|
#else
|
|
#define MRGHI 1
|
|
#define MRGLO 0
|
|
#endif
|
|
#define VMRG(suffix, element) \
|
|
VMRG_DO(mrgl##suffix, element, MRGHI) \
|
|
VMRG_DO(mrgh##suffix, element, MRGLO)
|
|
VMRG(b, u8)
|
|
VMRG(h, u16)
|
|
VMRG(w, u32)
|
|
#undef VMRG_DO
|
|
#undef VMRG
|
|
#undef MRGHI
|
|
#undef MRGLO
|
|
|
|
void helper_vmsummbm (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
|
|
{
|
|
int32_t prod[16];
|
|
int i;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(r->s8); i++) {
|
|
prod[i] = (int32_t)a->s8[i] * b->u8[i];
|
|
}
|
|
|
|
VECTOR_FOR_INORDER_I(i, s32) {
|
|
r->s32[i] = c->s32[i] + prod[4*i] + prod[4*i+1] + prod[4*i+2] + prod[4*i+3];
|
|
}
|
|
}
|
|
|
|
void helper_vmsumshm (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
|
|
{
|
|
int32_t prod[8];
|
|
int i;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(r->s16); i++) {
|
|
prod[i] = a->s16[i] * b->s16[i];
|
|
}
|
|
|
|
VECTOR_FOR_INORDER_I(i, s32) {
|
|
r->s32[i] = c->s32[i] + prod[2*i] + prod[2*i+1];
|
|
}
|
|
}
|
|
|
|
void helper_vmsumshs (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
|
|
{
|
|
int32_t prod[8];
|
|
int i;
|
|
int sat = 0;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(r->s16); i++) {
|
|
prod[i] = (int32_t)a->s16[i] * b->s16[i];
|
|
}
|
|
|
|
VECTOR_FOR_INORDER_I (i, s32) {
|
|
int64_t t = (int64_t)c->s32[i] + prod[2*i] + prod[2*i+1];
|
|
r->u32[i] = cvtsdsw(t, &sat);
|
|
}
|
|
|
|
if (sat) {
|
|
env->vscr |= (1 << VSCR_SAT);
|
|
}
|
|
}
|
|
|
|
void helper_vmsumubm (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
|
|
{
|
|
uint16_t prod[16];
|
|
int i;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(r->u8); i++) {
|
|
prod[i] = a->u8[i] * b->u8[i];
|
|
}
|
|
|
|
VECTOR_FOR_INORDER_I(i, u32) {
|
|
r->u32[i] = c->u32[i] + prod[4*i] + prod[4*i+1] + prod[4*i+2] + prod[4*i+3];
|
|
}
|
|
}
|
|
|
|
void helper_vmsumuhm (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
|
|
{
|
|
uint32_t prod[8];
|
|
int i;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(r->u16); i++) {
|
|
prod[i] = a->u16[i] * b->u16[i];
|
|
}
|
|
|
|
VECTOR_FOR_INORDER_I(i, u32) {
|
|
r->u32[i] = c->u32[i] + prod[2*i] + prod[2*i+1];
|
|
}
|
|
}
|
|
|
|
void helper_vmsumuhs (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
|
|
{
|
|
uint32_t prod[8];
|
|
int i;
|
|
int sat = 0;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(r->u16); i++) {
|
|
prod[i] = a->u16[i] * b->u16[i];
|
|
}
|
|
|
|
VECTOR_FOR_INORDER_I (i, s32) {
|
|
uint64_t t = (uint64_t)c->u32[i] + prod[2*i] + prod[2*i+1];
|
|
r->u32[i] = cvtuduw(t, &sat);
|
|
}
|
|
|
|
if (sat) {
|
|
env->vscr |= (1 << VSCR_SAT);
|
|
}
|
|
}
|
|
|
|
#define VMUL_DO(name, mul_element, prod_element, evenp) \
|
|
void helper_v##name (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
|
|
{ \
|
|
int i; \
|
|
VECTOR_FOR_INORDER_I(i, prod_element) { \
|
|
if (evenp) { \
|
|
r->prod_element[i] = a->mul_element[i*2+HI_IDX] * b->mul_element[i*2+HI_IDX]; \
|
|
} else { \
|
|
r->prod_element[i] = a->mul_element[i*2+LO_IDX] * b->mul_element[i*2+LO_IDX]; \
|
|
} \
|
|
} \
|
|
}
|
|
#define VMUL(suffix, mul_element, prod_element) \
|
|
VMUL_DO(mule##suffix, mul_element, prod_element, 1) \
|
|
VMUL_DO(mulo##suffix, mul_element, prod_element, 0)
|
|
VMUL(sb, s8, s16)
|
|
VMUL(sh, s16, s32)
|
|
VMUL(ub, u8, u16)
|
|
VMUL(uh, u16, u32)
|
|
#undef VMUL_DO
|
|
#undef VMUL
|
|
|
|
void helper_vnmsubfp (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
|
|
{
|
|
int i;
|
|
for (i = 0; i < ARRAY_SIZE(r->f); i++) {
|
|
HANDLE_NAN3(r->f[i], a->f[i], b->f[i], c->f[i]) {
|
|
/* Need to do the computation is higher precision and round
|
|
* once at the end. */
|
|
float64 af, bf, cf, t;
|
|
af = float32_to_float64(a->f[i], &env->vec_status);
|
|
bf = float32_to_float64(b->f[i], &env->vec_status);
|
|
cf = float32_to_float64(c->f[i], &env->vec_status);
|
|
t = float64_mul(af, cf, &env->vec_status);
|
|
t = float64_sub(t, bf, &env->vec_status);
|
|
t = float64_chs(t);
|
|
r->f[i] = float64_to_float32(t, &env->vec_status);
|
|
}
|
|
}
|
|
}
|
|
|
|
void helper_vperm (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
|
|
{
|
|
ppc_avr_t result;
|
|
int i;
|
|
VECTOR_FOR_INORDER_I (i, u8) {
|
|
int s = c->u8[i] & 0x1f;
|
|
#if defined(HOST_WORDS_BIGENDIAN)
|
|
int index = s & 0xf;
|
|
#else
|
|
int index = 15 - (s & 0xf);
|
|
#endif
|
|
if (s & 0x10) {
|
|
result.u8[i] = b->u8[index];
|
|
} else {
|
|
result.u8[i] = a->u8[index];
|
|
}
|
|
}
|
|
*r = result;
|
|
}
|
|
|
|
#if defined(HOST_WORDS_BIGENDIAN)
|
|
#define PKBIG 1
|
|
#else
|
|
#define PKBIG 0
|
|
#endif
|
|
void helper_vpkpx (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
|
|
{
|
|
int i, j;
|
|
ppc_avr_t result;
|
|
#if defined(HOST_WORDS_BIGENDIAN)
|
|
const ppc_avr_t *x[2] = { a, b };
|
|
#else
|
|
const ppc_avr_t *x[2] = { b, a };
|
|
#endif
|
|
|
|
VECTOR_FOR_INORDER_I (i, u64) {
|
|
VECTOR_FOR_INORDER_I (j, u32){
|
|
uint32_t e = x[i]->u32[j];
|
|
result.u16[4*i+j] = (((e >> 9) & 0xfc00) |
|
|
((e >> 6) & 0x3e0) |
|
|
((e >> 3) & 0x1f));
|
|
}
|
|
}
|
|
*r = result;
|
|
}
|
|
|
|
#define VPK(suffix, from, to, cvt, dosat) \
|
|
void helper_vpk##suffix (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
|
|
{ \
|
|
int i; \
|
|
int sat = 0; \
|
|
ppc_avr_t result; \
|
|
ppc_avr_t *a0 = PKBIG ? a : b; \
|
|
ppc_avr_t *a1 = PKBIG ? b : a; \
|
|
VECTOR_FOR_INORDER_I (i, from) { \
|
|
result.to[i] = cvt(a0->from[i], &sat); \
|
|
result.to[i+ARRAY_SIZE(r->from)] = cvt(a1->from[i], &sat); \
|
|
} \
|
|
*r = result; \
|
|
if (dosat && sat) { \
|
|
env->vscr |= (1 << VSCR_SAT); \
|
|
} \
|
|
}
|
|
#define I(x, y) (x)
|
|
VPK(shss, s16, s8, cvtshsb, 1)
|
|
VPK(shus, s16, u8, cvtshub, 1)
|
|
VPK(swss, s32, s16, cvtswsh, 1)
|
|
VPK(swus, s32, u16, cvtswuh, 1)
|
|
VPK(uhus, u16, u8, cvtuhub, 1)
|
|
VPK(uwus, u32, u16, cvtuwuh, 1)
|
|
VPK(uhum, u16, u8, I, 0)
|
|
VPK(uwum, u32, u16, I, 0)
|
|
#undef I
|
|
#undef VPK
|
|
#undef PKBIG
|
|
|
|
void helper_vrefp (ppc_avr_t *r, ppc_avr_t *b)
|
|
{
|
|
int i;
|
|
for (i = 0; i < ARRAY_SIZE(r->f); i++) {
|
|
HANDLE_NAN1(r->f[i], b->f[i]) {
|
|
r->f[i] = float32_div(float32_one, b->f[i], &env->vec_status);
|
|
}
|
|
}
|
|
}
|
|
|
|
#define VRFI(suffix, rounding) \
|
|
void helper_vrfi##suffix (ppc_avr_t *r, ppc_avr_t *b) \
|
|
{ \
|
|
int i; \
|
|
float_status s = env->vec_status; \
|
|
set_float_rounding_mode(rounding, &s); \
|
|
for (i = 0; i < ARRAY_SIZE(r->f); i++) { \
|
|
HANDLE_NAN1(r->f[i], b->f[i]) { \
|
|
r->f[i] = float32_round_to_int (b->f[i], &s); \
|
|
} \
|
|
} \
|
|
}
|
|
VRFI(n, float_round_nearest_even)
|
|
VRFI(m, float_round_down)
|
|
VRFI(p, float_round_up)
|
|
VRFI(z, float_round_to_zero)
|
|
#undef VRFI
|
|
|
|
#define VROTATE(suffix, element) \
|
|
void helper_vrl##suffix (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
|
|
{ \
|
|
int i; \
|
|
for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
|
|
unsigned int mask = ((1 << (3 + (sizeof (a->element[0]) >> 1))) - 1); \
|
|
unsigned int shift = b->element[i] & mask; \
|
|
r->element[i] = (a->element[i] << shift) | (a->element[i] >> (sizeof(a->element[0]) * 8 - shift)); \
|
|
} \
|
|
}
|
|
VROTATE(b, u8)
|
|
VROTATE(h, u16)
|
|
VROTATE(w, u32)
|
|
#undef VROTATE
|
|
|
|
void helper_vrsqrtefp (ppc_avr_t *r, ppc_avr_t *b)
|
|
{
|
|
int i;
|
|
for (i = 0; i < ARRAY_SIZE(r->f); i++) {
|
|
HANDLE_NAN1(r->f[i], b->f[i]) {
|
|
float32 t = float32_sqrt(b->f[i], &env->vec_status);
|
|
r->f[i] = float32_div(float32_one, t, &env->vec_status);
|
|
}
|
|
}
|
|
}
|
|
|
|
void helper_vsel (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
|
|
{
|
|
r->u64[0] = (a->u64[0] & ~c->u64[0]) | (b->u64[0] & c->u64[0]);
|
|
r->u64[1] = (a->u64[1] & ~c->u64[1]) | (b->u64[1] & c->u64[1]);
|
|
}
|
|
|
|
void helper_vexptefp (ppc_avr_t *r, ppc_avr_t *b)
|
|
{
|
|
int i;
|
|
for (i = 0; i < ARRAY_SIZE(r->f); i++) {
|
|
HANDLE_NAN1(r->f[i], b->f[i]) {
|
|
r->f[i] = float32_exp2(b->f[i], &env->vec_status);
|
|
}
|
|
}
|
|
}
|
|
|
|
void helper_vlogefp (ppc_avr_t *r, ppc_avr_t *b)
|
|
{
|
|
int i;
|
|
for (i = 0; i < ARRAY_SIZE(r->f); i++) {
|
|
HANDLE_NAN1(r->f[i], b->f[i]) {
|
|
r->f[i] = float32_log2(b->f[i], &env->vec_status);
|
|
}
|
|
}
|
|
}
|
|
|
|
#if defined(HOST_WORDS_BIGENDIAN)
|
|
#define LEFT 0
|
|
#define RIGHT 1
|
|
#else
|
|
#define LEFT 1
|
|
#define RIGHT 0
|
|
#endif
|
|
/* The specification says that the results are undefined if all of the
|
|
* shift counts are not identical. We check to make sure that they are
|
|
* to conform to what real hardware appears to do. */
|
|
#define VSHIFT(suffix, leftp) \
|
|
void helper_vs##suffix (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
|
|
{ \
|
|
int shift = b->u8[LO_IDX*15] & 0x7; \
|
|
int doit = 1; \
|
|
int i; \
|
|
for (i = 0; i < ARRAY_SIZE(r->u8); i++) { \
|
|
doit = doit && ((b->u8[i] & 0x7) == shift); \
|
|
} \
|
|
if (doit) { \
|
|
if (shift == 0) { \
|
|
*r = *a; \
|
|
} else if (leftp) { \
|
|
uint64_t carry = a->u64[LO_IDX] >> (64 - shift); \
|
|
r->u64[HI_IDX] = (a->u64[HI_IDX] << shift) | carry; \
|
|
r->u64[LO_IDX] = a->u64[LO_IDX] << shift; \
|
|
} else { \
|
|
uint64_t carry = a->u64[HI_IDX] << (64 - shift); \
|
|
r->u64[LO_IDX] = (a->u64[LO_IDX] >> shift) | carry; \
|
|
r->u64[HI_IDX] = a->u64[HI_IDX] >> shift; \
|
|
} \
|
|
} \
|
|
}
|
|
VSHIFT(l, LEFT)
|
|
VSHIFT(r, RIGHT)
|
|
#undef VSHIFT
|
|
#undef LEFT
|
|
#undef RIGHT
|
|
|
|
#define VSL(suffix, element) \
|
|
void helper_vsl##suffix (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
|
|
{ \
|
|
int i; \
|
|
for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
|
|
unsigned int mask = ((1 << (3 + (sizeof (a->element[0]) >> 1))) - 1); \
|
|
unsigned int shift = b->element[i] & mask; \
|
|
r->element[i] = a->element[i] << shift; \
|
|
} \
|
|
}
|
|
VSL(b, u8)
|
|
VSL(h, u16)
|
|
VSL(w, u32)
|
|
#undef VSL
|
|
|
|
void helper_vsldoi (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, uint32_t shift)
|
|
{
|
|
int sh = shift & 0xf;
|
|
int i;
|
|
ppc_avr_t result;
|
|
|
|
#if defined(HOST_WORDS_BIGENDIAN)
|
|
for (i = 0; i < ARRAY_SIZE(r->u8); i++) {
|
|
int index = sh + i;
|
|
if (index > 0xf) {
|
|
result.u8[i] = b->u8[index-0x10];
|
|
} else {
|
|
result.u8[i] = a->u8[index];
|
|
}
|
|
}
|
|
#else
|
|
for (i = 0; i < ARRAY_SIZE(r->u8); i++) {
|
|
int index = (16 - sh) + i;
|
|
if (index > 0xf) {
|
|
result.u8[i] = a->u8[index-0x10];
|
|
} else {
|
|
result.u8[i] = b->u8[index];
|
|
}
|
|
}
|
|
#endif
|
|
*r = result;
|
|
}
|
|
|
|
void helper_vslo (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
|
|
{
|
|
int sh = (b->u8[LO_IDX*0xf] >> 3) & 0xf;
|
|
|
|
#if defined (HOST_WORDS_BIGENDIAN)
|
|
memmove (&r->u8[0], &a->u8[sh], 16-sh);
|
|
memset (&r->u8[16-sh], 0, sh);
|
|
#else
|
|
memmove (&r->u8[sh], &a->u8[0], 16-sh);
|
|
memset (&r->u8[0], 0, sh);
|
|
#endif
|
|
}
|
|
|
|
/* Experimental testing shows that hardware masks the immediate. */
|
|
#define _SPLAT_MASKED(element) (splat & (ARRAY_SIZE(r->element) - 1))
|
|
#if defined(HOST_WORDS_BIGENDIAN)
|
|
#define SPLAT_ELEMENT(element) _SPLAT_MASKED(element)
|
|
#else
|
|
#define SPLAT_ELEMENT(element) (ARRAY_SIZE(r->element)-1 - _SPLAT_MASKED(element))
|
|
#endif
|
|
#define VSPLT(suffix, element) \
|
|
void helper_vsplt##suffix (ppc_avr_t *r, ppc_avr_t *b, uint32_t splat) \
|
|
{ \
|
|
uint32_t s = b->element[SPLAT_ELEMENT(element)]; \
|
|
int i; \
|
|
for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
|
|
r->element[i] = s; \
|
|
} \
|
|
}
|
|
VSPLT(b, u8)
|
|
VSPLT(h, u16)
|
|
VSPLT(w, u32)
|
|
#undef VSPLT
|
|
#undef SPLAT_ELEMENT
|
|
#undef _SPLAT_MASKED
|
|
|
|
#define VSPLTI(suffix, element, splat_type) \
|
|
void helper_vspltis##suffix (ppc_avr_t *r, uint32_t splat) \
|
|
{ \
|
|
splat_type x = (int8_t)(splat << 3) >> 3; \
|
|
int i; \
|
|
for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
|
|
r->element[i] = x; \
|
|
} \
|
|
}
|
|
VSPLTI(b, s8, int8_t)
|
|
VSPLTI(h, s16, int16_t)
|
|
VSPLTI(w, s32, int32_t)
|
|
#undef VSPLTI
|
|
|
|
#define VSR(suffix, element) \
|
|
void helper_vsr##suffix (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
|
|
{ \
|
|
int i; \
|
|
for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
|
|
unsigned int mask = ((1 << (3 + (sizeof (a->element[0]) >> 1))) - 1); \
|
|
unsigned int shift = b->element[i] & mask; \
|
|
r->element[i] = a->element[i] >> shift; \
|
|
} \
|
|
}
|
|
VSR(ab, s8)
|
|
VSR(ah, s16)
|
|
VSR(aw, s32)
|
|
VSR(b, u8)
|
|
VSR(h, u16)
|
|
VSR(w, u32)
|
|
#undef VSR
|
|
|
|
void helper_vsro (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
|
|
{
|
|
int sh = (b->u8[LO_IDX*0xf] >> 3) & 0xf;
|
|
|
|
#if defined (HOST_WORDS_BIGENDIAN)
|
|
memmove (&r->u8[sh], &a->u8[0], 16-sh);
|
|
memset (&r->u8[0], 0, sh);
|
|
#else
|
|
memmove (&r->u8[0], &a->u8[sh], 16-sh);
|
|
memset (&r->u8[16-sh], 0, sh);
|
|
#endif
|
|
}
|
|
|
|
void helper_vsubcuw (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
|
|
{
|
|
int i;
|
|
for (i = 0; i < ARRAY_SIZE(r->u32); i++) {
|
|
r->u32[i] = a->u32[i] >= b->u32[i];
|
|
}
|
|
}
|
|
|
|
void helper_vsumsws (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
|
|
{
|
|
int64_t t;
|
|
int i, upper;
|
|
ppc_avr_t result;
|
|
int sat = 0;
|
|
|
|
#if defined(HOST_WORDS_BIGENDIAN)
|
|
upper = ARRAY_SIZE(r->s32)-1;
|
|
#else
|
|
upper = 0;
|
|
#endif
|
|
t = (int64_t)b->s32[upper];
|
|
for (i = 0; i < ARRAY_SIZE(r->s32); i++) {
|
|
t += a->s32[i];
|
|
result.s32[i] = 0;
|
|
}
|
|
result.s32[upper] = cvtsdsw(t, &sat);
|
|
*r = result;
|
|
|
|
if (sat) {
|
|
env->vscr |= (1 << VSCR_SAT);
|
|
}
|
|
}
|
|
|
|
void helper_vsum2sws (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
|
|
{
|
|
int i, j, upper;
|
|
ppc_avr_t result;
|
|
int sat = 0;
|
|
|
|
#if defined(HOST_WORDS_BIGENDIAN)
|
|
upper = 1;
|
|
#else
|
|
upper = 0;
|
|
#endif
|
|
for (i = 0; i < ARRAY_SIZE(r->u64); i++) {
|
|
int64_t t = (int64_t)b->s32[upper+i*2];
|
|
result.u64[i] = 0;
|
|
for (j = 0; j < ARRAY_SIZE(r->u64); j++) {
|
|
t += a->s32[2*i+j];
|
|
}
|
|
result.s32[upper+i*2] = cvtsdsw(t, &sat);
|
|
}
|
|
|
|
*r = result;
|
|
if (sat) {
|
|
env->vscr |= (1 << VSCR_SAT);
|
|
}
|
|
}
|
|
|
|
void helper_vsum4sbs (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
|
|
{
|
|
int i, j;
|
|
int sat = 0;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(r->s32); i++) {
|
|
int64_t t = (int64_t)b->s32[i];
|
|
for (j = 0; j < ARRAY_SIZE(r->s32); j++) {
|
|
t += a->s8[4*i+j];
|
|
}
|
|
r->s32[i] = cvtsdsw(t, &sat);
|
|
}
|
|
|
|
if (sat) {
|
|
env->vscr |= (1 << VSCR_SAT);
|
|
}
|
|
}
|
|
|
|
void helper_vsum4shs (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
|
|
{
|
|
int sat = 0;
|
|
int i;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(r->s32); i++) {
|
|
int64_t t = (int64_t)b->s32[i];
|
|
t += a->s16[2*i] + a->s16[2*i+1];
|
|
r->s32[i] = cvtsdsw(t, &sat);
|
|
}
|
|
|
|
if (sat) {
|
|
env->vscr |= (1 << VSCR_SAT);
|
|
}
|
|
}
|
|
|
|
void helper_vsum4ubs (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
|
|
{
|
|
int i, j;
|
|
int sat = 0;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(r->u32); i++) {
|
|
uint64_t t = (uint64_t)b->u32[i];
|
|
for (j = 0; j < ARRAY_SIZE(r->u32); j++) {
|
|
t += a->u8[4*i+j];
|
|
}
|
|
r->u32[i] = cvtuduw(t, &sat);
|
|
}
|
|
|
|
if (sat) {
|
|
env->vscr |= (1 << VSCR_SAT);
|
|
}
|
|
}
|
|
|
|
#if defined(HOST_WORDS_BIGENDIAN)
|
|
#define UPKHI 1
|
|
#define UPKLO 0
|
|
#else
|
|
#define UPKHI 0
|
|
#define UPKLO 1
|
|
#endif
|
|
#define VUPKPX(suffix, hi) \
|
|
void helper_vupk##suffix (ppc_avr_t *r, ppc_avr_t *b) \
|
|
{ \
|
|
int i; \
|
|
ppc_avr_t result; \
|
|
for (i = 0; i < ARRAY_SIZE(r->u32); i++) { \
|
|
uint16_t e = b->u16[hi ? i : i+4]; \
|
|
uint8_t a = (e >> 15) ? 0xff : 0; \
|
|
uint8_t r = (e >> 10) & 0x1f; \
|
|
uint8_t g = (e >> 5) & 0x1f; \
|
|
uint8_t b = e & 0x1f; \
|
|
result.u32[i] = (a << 24) | (r << 16) | (g << 8) | b; \
|
|
} \
|
|
*r = result; \
|
|
}
|
|
VUPKPX(lpx, UPKLO)
|
|
VUPKPX(hpx, UPKHI)
|
|
#undef VUPKPX
|
|
|
|
#define VUPK(suffix, unpacked, packee, hi) \
|
|
void helper_vupk##suffix (ppc_avr_t *r, ppc_avr_t *b) \
|
|
{ \
|
|
int i; \
|
|
ppc_avr_t result; \
|
|
if (hi) { \
|
|
for (i = 0; i < ARRAY_SIZE(r->unpacked); i++) { \
|
|
result.unpacked[i] = b->packee[i]; \
|
|
} \
|
|
} else { \
|
|
for (i = ARRAY_SIZE(r->unpacked); i < ARRAY_SIZE(r->packee); i++) { \
|
|
result.unpacked[i-ARRAY_SIZE(r->unpacked)] = b->packee[i]; \
|
|
} \
|
|
} \
|
|
*r = result; \
|
|
}
|
|
VUPK(hsb, s16, s8, UPKHI)
|
|
VUPK(hsh, s32, s16, UPKHI)
|
|
VUPK(lsb, s16, s8, UPKLO)
|
|
VUPK(lsh, s32, s16, UPKLO)
|
|
#undef VUPK
|
|
#undef UPKHI
|
|
#undef UPKLO
|
|
|
|
#undef DO_HANDLE_NAN
|
|
#undef HANDLE_NAN1
|
|
#undef HANDLE_NAN2
|
|
#undef HANDLE_NAN3
|
|
#undef VECTOR_FOR_INORDER_I
|
|
#undef HI_IDX
|
|
#undef LO_IDX
|
|
|
|
/*****************************************************************************/
|
|
/* SPE extension helpers */
|
|
/* Use a table to make this quicker */
|
|
static uint8_t hbrev[16] = {
|
|
0x0, 0x8, 0x4, 0xC, 0x2, 0xA, 0x6, 0xE,
|
|
0x1, 0x9, 0x5, 0xD, 0x3, 0xB, 0x7, 0xF,
|
|
};
|
|
|
|
static inline uint8_t byte_reverse(uint8_t val)
|
|
{
|
|
return hbrev[val >> 4] | (hbrev[val & 0xF] << 4);
|
|
}
|
|
|
|
static inline uint32_t word_reverse(uint32_t val)
|
|
{
|
|
return byte_reverse(val >> 24) | (byte_reverse(val >> 16) << 8) |
|
|
(byte_reverse(val >> 8) << 16) | (byte_reverse(val) << 24);
|
|
}
|
|
|
|
#define MASKBITS 16 // Random value - to be fixed (implementation dependant)
|
|
target_ulong helper_brinc (target_ulong arg1, target_ulong arg2)
|
|
{
|
|
uint32_t a, b, d, mask;
|
|
|
|
mask = UINT32_MAX >> (32 - MASKBITS);
|
|
a = arg1 & mask;
|
|
b = arg2 & mask;
|
|
d = word_reverse(1 + word_reverse(a | ~b));
|
|
return (arg1 & ~mask) | (d & b);
|
|
}
|
|
|
|
uint32_t helper_cntlsw32 (uint32_t val)
|
|
{
|
|
if (val & 0x80000000)
|
|
return clz32(~val);
|
|
else
|
|
return clz32(val);
|
|
}
|
|
|
|
uint32_t helper_cntlzw32 (uint32_t val)
|
|
{
|
|
return clz32(val);
|
|
}
|
|
|
|
/* Single-precision floating-point conversions */
|
|
static inline uint32_t efscfsi(uint32_t val)
|
|
{
|
|
CPU_FloatU u;
|
|
|
|
u.f = int32_to_float32(val, &env->vec_status);
|
|
|
|
return u.l;
|
|
}
|
|
|
|
static inline uint32_t efscfui(uint32_t val)
|
|
{
|
|
CPU_FloatU u;
|
|
|
|
u.f = uint32_to_float32(val, &env->vec_status);
|
|
|
|
return u.l;
|
|
}
|
|
|
|
static inline int32_t efsctsi(uint32_t val)
|
|
{
|
|
CPU_FloatU u;
|
|
|
|
u.l = val;
|
|
/* NaN are not treated the same way IEEE 754 does */
|
|
if (unlikely(float32_is_quiet_nan(u.f)))
|
|
return 0;
|
|
|
|
return float32_to_int32(u.f, &env->vec_status);
|
|
}
|
|
|
|
static inline uint32_t efsctui(uint32_t val)
|
|
{
|
|
CPU_FloatU u;
|
|
|
|
u.l = val;
|
|
/* NaN are not treated the same way IEEE 754 does */
|
|
if (unlikely(float32_is_quiet_nan(u.f)))
|
|
return 0;
|
|
|
|
return float32_to_uint32(u.f, &env->vec_status);
|
|
}
|
|
|
|
static inline uint32_t efsctsiz(uint32_t val)
|
|
{
|
|
CPU_FloatU u;
|
|
|
|
u.l = val;
|
|
/* NaN are not treated the same way IEEE 754 does */
|
|
if (unlikely(float32_is_quiet_nan(u.f)))
|
|
return 0;
|
|
|
|
return float32_to_int32_round_to_zero(u.f, &env->vec_status);
|
|
}
|
|
|
|
static inline uint32_t efsctuiz(uint32_t val)
|
|
{
|
|
CPU_FloatU u;
|
|
|
|
u.l = val;
|
|
/* NaN are not treated the same way IEEE 754 does */
|
|
if (unlikely(float32_is_quiet_nan(u.f)))
|
|
return 0;
|
|
|
|
return float32_to_uint32_round_to_zero(u.f, &env->vec_status);
|
|
}
|
|
|
|
static inline uint32_t efscfsf(uint32_t val)
|
|
{
|
|
CPU_FloatU u;
|
|
float32 tmp;
|
|
|
|
u.f = int32_to_float32(val, &env->vec_status);
|
|
tmp = int64_to_float32(1ULL << 32, &env->vec_status);
|
|
u.f = float32_div(u.f, tmp, &env->vec_status);
|
|
|
|
return u.l;
|
|
}
|
|
|
|
static inline uint32_t efscfuf(uint32_t val)
|
|
{
|
|
CPU_FloatU u;
|
|
float32 tmp;
|
|
|
|
u.f = uint32_to_float32(val, &env->vec_status);
|
|
tmp = uint64_to_float32(1ULL << 32, &env->vec_status);
|
|
u.f = float32_div(u.f, tmp, &env->vec_status);
|
|
|
|
return u.l;
|
|
}
|
|
|
|
static inline uint32_t efsctsf(uint32_t val)
|
|
{
|
|
CPU_FloatU u;
|
|
float32 tmp;
|
|
|
|
u.l = val;
|
|
/* NaN are not treated the same way IEEE 754 does */
|
|
if (unlikely(float32_is_quiet_nan(u.f)))
|
|
return 0;
|
|
tmp = uint64_to_float32(1ULL << 32, &env->vec_status);
|
|
u.f = float32_mul(u.f, tmp, &env->vec_status);
|
|
|
|
return float32_to_int32(u.f, &env->vec_status);
|
|
}
|
|
|
|
static inline uint32_t efsctuf(uint32_t val)
|
|
{
|
|
CPU_FloatU u;
|
|
float32 tmp;
|
|
|
|
u.l = val;
|
|
/* NaN are not treated the same way IEEE 754 does */
|
|
if (unlikely(float32_is_quiet_nan(u.f)))
|
|
return 0;
|
|
tmp = uint64_to_float32(1ULL << 32, &env->vec_status);
|
|
u.f = float32_mul(u.f, tmp, &env->vec_status);
|
|
|
|
return float32_to_uint32(u.f, &env->vec_status);
|
|
}
|
|
|
|
#define HELPER_SPE_SINGLE_CONV(name) \
|
|
uint32_t helper_e##name (uint32_t val) \
|
|
{ \
|
|
return e##name(val); \
|
|
}
|
|
/* efscfsi */
|
|
HELPER_SPE_SINGLE_CONV(fscfsi);
|
|
/* efscfui */
|
|
HELPER_SPE_SINGLE_CONV(fscfui);
|
|
/* efscfuf */
|
|
HELPER_SPE_SINGLE_CONV(fscfuf);
|
|
/* efscfsf */
|
|
HELPER_SPE_SINGLE_CONV(fscfsf);
|
|
/* efsctsi */
|
|
HELPER_SPE_SINGLE_CONV(fsctsi);
|
|
/* efsctui */
|
|
HELPER_SPE_SINGLE_CONV(fsctui);
|
|
/* efsctsiz */
|
|
HELPER_SPE_SINGLE_CONV(fsctsiz);
|
|
/* efsctuiz */
|
|
HELPER_SPE_SINGLE_CONV(fsctuiz);
|
|
/* efsctsf */
|
|
HELPER_SPE_SINGLE_CONV(fsctsf);
|
|
/* efsctuf */
|
|
HELPER_SPE_SINGLE_CONV(fsctuf);
|
|
|
|
#define HELPER_SPE_VECTOR_CONV(name) \
|
|
uint64_t helper_ev##name (uint64_t val) \
|
|
{ \
|
|
return ((uint64_t)e##name(val >> 32) << 32) | \
|
|
(uint64_t)e##name(val); \
|
|
}
|
|
/* evfscfsi */
|
|
HELPER_SPE_VECTOR_CONV(fscfsi);
|
|
/* evfscfui */
|
|
HELPER_SPE_VECTOR_CONV(fscfui);
|
|
/* evfscfuf */
|
|
HELPER_SPE_VECTOR_CONV(fscfuf);
|
|
/* evfscfsf */
|
|
HELPER_SPE_VECTOR_CONV(fscfsf);
|
|
/* evfsctsi */
|
|
HELPER_SPE_VECTOR_CONV(fsctsi);
|
|
/* evfsctui */
|
|
HELPER_SPE_VECTOR_CONV(fsctui);
|
|
/* evfsctsiz */
|
|
HELPER_SPE_VECTOR_CONV(fsctsiz);
|
|
/* evfsctuiz */
|
|
HELPER_SPE_VECTOR_CONV(fsctuiz);
|
|
/* evfsctsf */
|
|
HELPER_SPE_VECTOR_CONV(fsctsf);
|
|
/* evfsctuf */
|
|
HELPER_SPE_VECTOR_CONV(fsctuf);
|
|
|
|
/* Single-precision floating-point arithmetic */
|
|
static inline uint32_t efsadd(uint32_t op1, uint32_t op2)
|
|
{
|
|
CPU_FloatU u1, u2;
|
|
u1.l = op1;
|
|
u2.l = op2;
|
|
u1.f = float32_add(u1.f, u2.f, &env->vec_status);
|
|
return u1.l;
|
|
}
|
|
|
|
static inline uint32_t efssub(uint32_t op1, uint32_t op2)
|
|
{
|
|
CPU_FloatU u1, u2;
|
|
u1.l = op1;
|
|
u2.l = op2;
|
|
u1.f = float32_sub(u1.f, u2.f, &env->vec_status);
|
|
return u1.l;
|
|
}
|
|
|
|
static inline uint32_t efsmul(uint32_t op1, uint32_t op2)
|
|
{
|
|
CPU_FloatU u1, u2;
|
|
u1.l = op1;
|
|
u2.l = op2;
|
|
u1.f = float32_mul(u1.f, u2.f, &env->vec_status);
|
|
return u1.l;
|
|
}
|
|
|
|
static inline uint32_t efsdiv(uint32_t op1, uint32_t op2)
|
|
{
|
|
CPU_FloatU u1, u2;
|
|
u1.l = op1;
|
|
u2.l = op2;
|
|
u1.f = float32_div(u1.f, u2.f, &env->vec_status);
|
|
return u1.l;
|
|
}
|
|
|
|
#define HELPER_SPE_SINGLE_ARITH(name) \
|
|
uint32_t helper_e##name (uint32_t op1, uint32_t op2) \
|
|
{ \
|
|
return e##name(op1, op2); \
|
|
}
|
|
/* efsadd */
|
|
HELPER_SPE_SINGLE_ARITH(fsadd);
|
|
/* efssub */
|
|
HELPER_SPE_SINGLE_ARITH(fssub);
|
|
/* efsmul */
|
|
HELPER_SPE_SINGLE_ARITH(fsmul);
|
|
/* efsdiv */
|
|
HELPER_SPE_SINGLE_ARITH(fsdiv);
|
|
|
|
#define HELPER_SPE_VECTOR_ARITH(name) \
|
|
uint64_t helper_ev##name (uint64_t op1, uint64_t op2) \
|
|
{ \
|
|
return ((uint64_t)e##name(op1 >> 32, op2 >> 32) << 32) | \
|
|
(uint64_t)e##name(op1, op2); \
|
|
}
|
|
/* evfsadd */
|
|
HELPER_SPE_VECTOR_ARITH(fsadd);
|
|
/* evfssub */
|
|
HELPER_SPE_VECTOR_ARITH(fssub);
|
|
/* evfsmul */
|
|
HELPER_SPE_VECTOR_ARITH(fsmul);
|
|
/* evfsdiv */
|
|
HELPER_SPE_VECTOR_ARITH(fsdiv);
|
|
|
|
/* Single-precision floating-point comparisons */
|
|
static inline uint32_t efststlt(uint32_t op1, uint32_t op2)
|
|
{
|
|
CPU_FloatU u1, u2;
|
|
u1.l = op1;
|
|
u2.l = op2;
|
|
return float32_lt(u1.f, u2.f, &env->vec_status) ? 4 : 0;
|
|
}
|
|
|
|
static inline uint32_t efststgt(uint32_t op1, uint32_t op2)
|
|
{
|
|
CPU_FloatU u1, u2;
|
|
u1.l = op1;
|
|
u2.l = op2;
|
|
return float32_le(u1.f, u2.f, &env->vec_status) ? 0 : 4;
|
|
}
|
|
|
|
static inline uint32_t efststeq(uint32_t op1, uint32_t op2)
|
|
{
|
|
CPU_FloatU u1, u2;
|
|
u1.l = op1;
|
|
u2.l = op2;
|
|
return float32_eq(u1.f, u2.f, &env->vec_status) ? 4 : 0;
|
|
}
|
|
|
|
static inline uint32_t efscmplt(uint32_t op1, uint32_t op2)
|
|
{
|
|
/* XXX: TODO: test special values (NaN, infinites, ...) */
|
|
return efststlt(op1, op2);
|
|
}
|
|
|
|
static inline uint32_t efscmpgt(uint32_t op1, uint32_t op2)
|
|
{
|
|
/* XXX: TODO: test special values (NaN, infinites, ...) */
|
|
return efststgt(op1, op2);
|
|
}
|
|
|
|
static inline uint32_t efscmpeq(uint32_t op1, uint32_t op2)
|
|
{
|
|
/* XXX: TODO: test special values (NaN, infinites, ...) */
|
|
return efststeq(op1, op2);
|
|
}
|
|
|
|
#define HELPER_SINGLE_SPE_CMP(name) \
|
|
uint32_t helper_e##name (uint32_t op1, uint32_t op2) \
|
|
{ \
|
|
return e##name(op1, op2) << 2; \
|
|
}
|
|
/* efststlt */
|
|
HELPER_SINGLE_SPE_CMP(fststlt);
|
|
/* efststgt */
|
|
HELPER_SINGLE_SPE_CMP(fststgt);
|
|
/* efststeq */
|
|
HELPER_SINGLE_SPE_CMP(fststeq);
|
|
/* efscmplt */
|
|
HELPER_SINGLE_SPE_CMP(fscmplt);
|
|
/* efscmpgt */
|
|
HELPER_SINGLE_SPE_CMP(fscmpgt);
|
|
/* efscmpeq */
|
|
HELPER_SINGLE_SPE_CMP(fscmpeq);
|
|
|
|
static inline uint32_t evcmp_merge(int t0, int t1)
|
|
{
|
|
return (t0 << 3) | (t1 << 2) | ((t0 | t1) << 1) | (t0 & t1);
|
|
}
|
|
|
|
#define HELPER_VECTOR_SPE_CMP(name) \
|
|
uint32_t helper_ev##name (uint64_t op1, uint64_t op2) \
|
|
{ \
|
|
return evcmp_merge(e##name(op1 >> 32, op2 >> 32), e##name(op1, op2)); \
|
|
}
|
|
/* evfststlt */
|
|
HELPER_VECTOR_SPE_CMP(fststlt);
|
|
/* evfststgt */
|
|
HELPER_VECTOR_SPE_CMP(fststgt);
|
|
/* evfststeq */
|
|
HELPER_VECTOR_SPE_CMP(fststeq);
|
|
/* evfscmplt */
|
|
HELPER_VECTOR_SPE_CMP(fscmplt);
|
|
/* evfscmpgt */
|
|
HELPER_VECTOR_SPE_CMP(fscmpgt);
|
|
/* evfscmpeq */
|
|
HELPER_VECTOR_SPE_CMP(fscmpeq);
|
|
|
|
/* Double-precision floating-point conversion */
|
|
uint64_t helper_efdcfsi (uint32_t val)
|
|
{
|
|
CPU_DoubleU u;
|
|
|
|
u.d = int32_to_float64(val, &env->vec_status);
|
|
|
|
return u.ll;
|
|
}
|
|
|
|
uint64_t helper_efdcfsid (uint64_t val)
|
|
{
|
|
CPU_DoubleU u;
|
|
|
|
u.d = int64_to_float64(val, &env->vec_status);
|
|
|
|
return u.ll;
|
|
}
|
|
|
|
uint64_t helper_efdcfui (uint32_t val)
|
|
{
|
|
CPU_DoubleU u;
|
|
|
|
u.d = uint32_to_float64(val, &env->vec_status);
|
|
|
|
return u.ll;
|
|
}
|
|
|
|
uint64_t helper_efdcfuid (uint64_t val)
|
|
{
|
|
CPU_DoubleU u;
|
|
|
|
u.d = uint64_to_float64(val, &env->vec_status);
|
|
|
|
return u.ll;
|
|
}
|
|
|
|
uint32_t helper_efdctsi (uint64_t val)
|
|
{
|
|
CPU_DoubleU u;
|
|
|
|
u.ll = val;
|
|
/* NaN are not treated the same way IEEE 754 does */
|
|
if (unlikely(float64_is_any_nan(u.d))) {
|
|
return 0;
|
|
}
|
|
|
|
return float64_to_int32(u.d, &env->vec_status);
|
|
}
|
|
|
|
uint32_t helper_efdctui (uint64_t val)
|
|
{
|
|
CPU_DoubleU u;
|
|
|
|
u.ll = val;
|
|
/* NaN are not treated the same way IEEE 754 does */
|
|
if (unlikely(float64_is_any_nan(u.d))) {
|
|
return 0;
|
|
}
|
|
|
|
return float64_to_uint32(u.d, &env->vec_status);
|
|
}
|
|
|
|
uint32_t helper_efdctsiz (uint64_t val)
|
|
{
|
|
CPU_DoubleU u;
|
|
|
|
u.ll = val;
|
|
/* NaN are not treated the same way IEEE 754 does */
|
|
if (unlikely(float64_is_any_nan(u.d))) {
|
|
return 0;
|
|
}
|
|
|
|
return float64_to_int32_round_to_zero(u.d, &env->vec_status);
|
|
}
|
|
|
|
uint64_t helper_efdctsidz (uint64_t val)
|
|
{
|
|
CPU_DoubleU u;
|
|
|
|
u.ll = val;
|
|
/* NaN are not treated the same way IEEE 754 does */
|
|
if (unlikely(float64_is_any_nan(u.d))) {
|
|
return 0;
|
|
}
|
|
|
|
return float64_to_int64_round_to_zero(u.d, &env->vec_status);
|
|
}
|
|
|
|
uint32_t helper_efdctuiz (uint64_t val)
|
|
{
|
|
CPU_DoubleU u;
|
|
|
|
u.ll = val;
|
|
/* NaN are not treated the same way IEEE 754 does */
|
|
if (unlikely(float64_is_any_nan(u.d))) {
|
|
return 0;
|
|
}
|
|
|
|
return float64_to_uint32_round_to_zero(u.d, &env->vec_status);
|
|
}
|
|
|
|
uint64_t helper_efdctuidz (uint64_t val)
|
|
{
|
|
CPU_DoubleU u;
|
|
|
|
u.ll = val;
|
|
/* NaN are not treated the same way IEEE 754 does */
|
|
if (unlikely(float64_is_any_nan(u.d))) {
|
|
return 0;
|
|
}
|
|
|
|
return float64_to_uint64_round_to_zero(u.d, &env->vec_status);
|
|
}
|
|
|
|
uint64_t helper_efdcfsf (uint32_t val)
|
|
{
|
|
CPU_DoubleU u;
|
|
float64 tmp;
|
|
|
|
u.d = int32_to_float64(val, &env->vec_status);
|
|
tmp = int64_to_float64(1ULL << 32, &env->vec_status);
|
|
u.d = float64_div(u.d, tmp, &env->vec_status);
|
|
|
|
return u.ll;
|
|
}
|
|
|
|
uint64_t helper_efdcfuf (uint32_t val)
|
|
{
|
|
CPU_DoubleU u;
|
|
float64 tmp;
|
|
|
|
u.d = uint32_to_float64(val, &env->vec_status);
|
|
tmp = int64_to_float64(1ULL << 32, &env->vec_status);
|
|
u.d = float64_div(u.d, tmp, &env->vec_status);
|
|
|
|
return u.ll;
|
|
}
|
|
|
|
uint32_t helper_efdctsf (uint64_t val)
|
|
{
|
|
CPU_DoubleU u;
|
|
float64 tmp;
|
|
|
|
u.ll = val;
|
|
/* NaN are not treated the same way IEEE 754 does */
|
|
if (unlikely(float64_is_any_nan(u.d))) {
|
|
return 0;
|
|
}
|
|
tmp = uint64_to_float64(1ULL << 32, &env->vec_status);
|
|
u.d = float64_mul(u.d, tmp, &env->vec_status);
|
|
|
|
return float64_to_int32(u.d, &env->vec_status);
|
|
}
|
|
|
|
uint32_t helper_efdctuf (uint64_t val)
|
|
{
|
|
CPU_DoubleU u;
|
|
float64 tmp;
|
|
|
|
u.ll = val;
|
|
/* NaN are not treated the same way IEEE 754 does */
|
|
if (unlikely(float64_is_any_nan(u.d))) {
|
|
return 0;
|
|
}
|
|
tmp = uint64_to_float64(1ULL << 32, &env->vec_status);
|
|
u.d = float64_mul(u.d, tmp, &env->vec_status);
|
|
|
|
return float64_to_uint32(u.d, &env->vec_status);
|
|
}
|
|
|
|
uint32_t helper_efscfd (uint64_t val)
|
|
{
|
|
CPU_DoubleU u1;
|
|
CPU_FloatU u2;
|
|
|
|
u1.ll = val;
|
|
u2.f = float64_to_float32(u1.d, &env->vec_status);
|
|
|
|
return u2.l;
|
|
}
|
|
|
|
uint64_t helper_efdcfs (uint32_t val)
|
|
{
|
|
CPU_DoubleU u2;
|
|
CPU_FloatU u1;
|
|
|
|
u1.l = val;
|
|
u2.d = float32_to_float64(u1.f, &env->vec_status);
|
|
|
|
return u2.ll;
|
|
}
|
|
|
|
/* Double precision fixed-point arithmetic */
|
|
uint64_t helper_efdadd (uint64_t op1, uint64_t op2)
|
|
{
|
|
CPU_DoubleU u1, u2;
|
|
u1.ll = op1;
|
|
u2.ll = op2;
|
|
u1.d = float64_add(u1.d, u2.d, &env->vec_status);
|
|
return u1.ll;
|
|
}
|
|
|
|
uint64_t helper_efdsub (uint64_t op1, uint64_t op2)
|
|
{
|
|
CPU_DoubleU u1, u2;
|
|
u1.ll = op1;
|
|
u2.ll = op2;
|
|
u1.d = float64_sub(u1.d, u2.d, &env->vec_status);
|
|
return u1.ll;
|
|
}
|
|
|
|
uint64_t helper_efdmul (uint64_t op1, uint64_t op2)
|
|
{
|
|
CPU_DoubleU u1, u2;
|
|
u1.ll = op1;
|
|
u2.ll = op2;
|
|
u1.d = float64_mul(u1.d, u2.d, &env->vec_status);
|
|
return u1.ll;
|
|
}
|
|
|
|
uint64_t helper_efddiv (uint64_t op1, uint64_t op2)
|
|
{
|
|
CPU_DoubleU u1, u2;
|
|
u1.ll = op1;
|
|
u2.ll = op2;
|
|
u1.d = float64_div(u1.d, u2.d, &env->vec_status);
|
|
return u1.ll;
|
|
}
|
|
|
|
/* Double precision floating point helpers */
|
|
uint32_t helper_efdtstlt (uint64_t op1, uint64_t op2)
|
|
{
|
|
CPU_DoubleU u1, u2;
|
|
u1.ll = op1;
|
|
u2.ll = op2;
|
|
return float64_lt(u1.d, u2.d, &env->vec_status) ? 4 : 0;
|
|
}
|
|
|
|
uint32_t helper_efdtstgt (uint64_t op1, uint64_t op2)
|
|
{
|
|
CPU_DoubleU u1, u2;
|
|
u1.ll = op1;
|
|
u2.ll = op2;
|
|
return float64_le(u1.d, u2.d, &env->vec_status) ? 0 : 4;
|
|
}
|
|
|
|
uint32_t helper_efdtsteq (uint64_t op1, uint64_t op2)
|
|
{
|
|
CPU_DoubleU u1, u2;
|
|
u1.ll = op1;
|
|
u2.ll = op2;
|
|
return float64_eq(u1.d, u2.d, &env->vec_status) ? 4 : 0;
|
|
}
|
|
|
|
uint32_t helper_efdcmplt (uint64_t op1, uint64_t op2)
|
|
{
|
|
/* XXX: TODO: test special values (NaN, infinites, ...) */
|
|
return helper_efdtstlt(op1, op2);
|
|
}
|
|
|
|
uint32_t helper_efdcmpgt (uint64_t op1, uint64_t op2)
|
|
{
|
|
/* XXX: TODO: test special values (NaN, infinites, ...) */
|
|
return helper_efdtstgt(op1, op2);
|
|
}
|
|
|
|
uint32_t helper_efdcmpeq (uint64_t op1, uint64_t op2)
|
|
{
|
|
/* XXX: TODO: test special values (NaN, infinites, ...) */
|
|
return helper_efdtsteq(op1, op2);
|
|
}
|
|
|
|
/*****************************************************************************/
|
|
/* Softmmu support */
|
|
#if !defined (CONFIG_USER_ONLY)
|
|
|
|
#define MMUSUFFIX _mmu
|
|
|
|
#define SHIFT 0
|
|
#include "softmmu_template.h"
|
|
|
|
#define SHIFT 1
|
|
#include "softmmu_template.h"
|
|
|
|
#define SHIFT 2
|
|
#include "softmmu_template.h"
|
|
|
|
#define SHIFT 3
|
|
#include "softmmu_template.h"
|
|
|
|
/* try to fill the TLB and return an exception if error. If retaddr is
|
|
NULL, it means that the function was called in C code (i.e. not
|
|
from generated code or from helper.c) */
|
|
/* XXX: fix it to restore all registers */
|
|
void tlb_fill (target_ulong addr, int is_write, int mmu_idx, void *retaddr)
|
|
{
|
|
TranslationBlock *tb;
|
|
CPUState *saved_env;
|
|
unsigned long pc;
|
|
int ret;
|
|
|
|
/* XXX: hack to restore env in all cases, even if not called from
|
|
generated code */
|
|
saved_env = env;
|
|
env = cpu_single_env;
|
|
ret = cpu_ppc_handle_mmu_fault(env, addr, is_write, mmu_idx, 1);
|
|
if (unlikely(ret != 0)) {
|
|
if (likely(retaddr)) {
|
|
/* now we have a real cpu fault */
|
|
pc = (unsigned long)retaddr;
|
|
tb = tb_find_pc(pc);
|
|
if (likely(tb)) {
|
|
/* the PC is inside the translated code. It means that we have
|
|
a virtual CPU fault */
|
|
cpu_restore_state(tb, env, pc, NULL);
|
|
}
|
|
}
|
|
helper_raise_exception_err(env->exception_index, env->error_code);
|
|
}
|
|
env = saved_env;
|
|
}
|
|
|
|
/* Segment registers load and store */
|
|
target_ulong helper_load_sr (target_ulong sr_num)
|
|
{
|
|
#if defined(TARGET_PPC64)
|
|
if (env->mmu_model & POWERPC_MMU_64)
|
|
return ppc_load_sr(env, sr_num);
|
|
#endif
|
|
return env->sr[sr_num];
|
|
}
|
|
|
|
void helper_store_sr (target_ulong sr_num, target_ulong val)
|
|
{
|
|
ppc_store_sr(env, sr_num, val);
|
|
}
|
|
|
|
/* SLB management */
|
|
#if defined(TARGET_PPC64)
|
|
target_ulong helper_load_slb (target_ulong slb_nr)
|
|
{
|
|
return ppc_load_slb(env, slb_nr);
|
|
}
|
|
|
|
void helper_store_slb (target_ulong rb, target_ulong rs)
|
|
{
|
|
ppc_store_slb(env, rb, rs);
|
|
}
|
|
|
|
void helper_slbia (void)
|
|
{
|
|
ppc_slb_invalidate_all(env);
|
|
}
|
|
|
|
void helper_slbie (target_ulong addr)
|
|
{
|
|
ppc_slb_invalidate_one(env, addr);
|
|
}
|
|
|
|
#endif /* defined(TARGET_PPC64) */
|
|
|
|
/* TLB management */
|
|
void helper_tlbia (void)
|
|
{
|
|
ppc_tlb_invalidate_all(env);
|
|
}
|
|
|
|
void helper_tlbie (target_ulong addr)
|
|
{
|
|
ppc_tlb_invalidate_one(env, addr);
|
|
}
|
|
|
|
/* Software driven TLBs management */
|
|
/* PowerPC 602/603 software TLB load instructions helpers */
|
|
static void do_6xx_tlb (target_ulong new_EPN, int is_code)
|
|
{
|
|
target_ulong RPN, CMP, EPN;
|
|
int way;
|
|
|
|
RPN = env->spr[SPR_RPA];
|
|
if (is_code) {
|
|
CMP = env->spr[SPR_ICMP];
|
|
EPN = env->spr[SPR_IMISS];
|
|
} else {
|
|
CMP = env->spr[SPR_DCMP];
|
|
EPN = env->spr[SPR_DMISS];
|
|
}
|
|
way = (env->spr[SPR_SRR1] >> 17) & 1;
|
|
(void)EPN; /* avoid a compiler warning */
|
|
LOG_SWTLB("%s: EPN " TARGET_FMT_lx " " TARGET_FMT_lx " PTE0 " TARGET_FMT_lx
|
|
" PTE1 " TARGET_FMT_lx " way %d\n", __func__, new_EPN, EPN, CMP,
|
|
RPN, way);
|
|
/* Store this TLB */
|
|
ppc6xx_tlb_store(env, (uint32_t)(new_EPN & TARGET_PAGE_MASK),
|
|
way, is_code, CMP, RPN);
|
|
}
|
|
|
|
void helper_6xx_tlbd (target_ulong EPN)
|
|
{
|
|
do_6xx_tlb(EPN, 0);
|
|
}
|
|
|
|
void helper_6xx_tlbi (target_ulong EPN)
|
|
{
|
|
do_6xx_tlb(EPN, 1);
|
|
}
|
|
|
|
/* PowerPC 74xx software TLB load instructions helpers */
|
|
static void do_74xx_tlb (target_ulong new_EPN, int is_code)
|
|
{
|
|
target_ulong RPN, CMP, EPN;
|
|
int way;
|
|
|
|
RPN = env->spr[SPR_PTELO];
|
|
CMP = env->spr[SPR_PTEHI];
|
|
EPN = env->spr[SPR_TLBMISS] & ~0x3;
|
|
way = env->spr[SPR_TLBMISS] & 0x3;
|
|
(void)EPN; /* avoid a compiler warning */
|
|
LOG_SWTLB("%s: EPN " TARGET_FMT_lx " " TARGET_FMT_lx " PTE0 " TARGET_FMT_lx
|
|
" PTE1 " TARGET_FMT_lx " way %d\n", __func__, new_EPN, EPN, CMP,
|
|
RPN, way);
|
|
/* Store this TLB */
|
|
ppc6xx_tlb_store(env, (uint32_t)(new_EPN & TARGET_PAGE_MASK),
|
|
way, is_code, CMP, RPN);
|
|
}
|
|
|
|
void helper_74xx_tlbd (target_ulong EPN)
|
|
{
|
|
do_74xx_tlb(EPN, 0);
|
|
}
|
|
|
|
void helper_74xx_tlbi (target_ulong EPN)
|
|
{
|
|
do_74xx_tlb(EPN, 1);
|
|
}
|
|
|
|
static inline target_ulong booke_tlb_to_page_size(int size)
|
|
{
|
|
return 1024 << (2 * size);
|
|
}
|
|
|
|
static inline int booke_page_size_to_tlb(target_ulong page_size)
|
|
{
|
|
int size;
|
|
|
|
switch (page_size) {
|
|
case 0x00000400UL:
|
|
size = 0x0;
|
|
break;
|
|
case 0x00001000UL:
|
|
size = 0x1;
|
|
break;
|
|
case 0x00004000UL:
|
|
size = 0x2;
|
|
break;
|
|
case 0x00010000UL:
|
|
size = 0x3;
|
|
break;
|
|
case 0x00040000UL:
|
|
size = 0x4;
|
|
break;
|
|
case 0x00100000UL:
|
|
size = 0x5;
|
|
break;
|
|
case 0x00400000UL:
|
|
size = 0x6;
|
|
break;
|
|
case 0x01000000UL:
|
|
size = 0x7;
|
|
break;
|
|
case 0x04000000UL:
|
|
size = 0x8;
|
|
break;
|
|
case 0x10000000UL:
|
|
size = 0x9;
|
|
break;
|
|
case 0x40000000UL:
|
|
size = 0xA;
|
|
break;
|
|
#if defined (TARGET_PPC64)
|
|
case 0x000100000000ULL:
|
|
size = 0xB;
|
|
break;
|
|
case 0x000400000000ULL:
|
|
size = 0xC;
|
|
break;
|
|
case 0x001000000000ULL:
|
|
size = 0xD;
|
|
break;
|
|
case 0x004000000000ULL:
|
|
size = 0xE;
|
|
break;
|
|
case 0x010000000000ULL:
|
|
size = 0xF;
|
|
break;
|
|
#endif
|
|
default:
|
|
size = -1;
|
|
break;
|
|
}
|
|
|
|
return size;
|
|
}
|
|
|
|
/* Helpers for 4xx TLB management */
|
|
#define PPC4XX_TLB_ENTRY_MASK 0x0000003f /* Mask for 64 TLB entries */
|
|
|
|
#define PPC4XX_TLBHI_V 0x00000040
|
|
#define PPC4XX_TLBHI_E 0x00000020
|
|
#define PPC4XX_TLBHI_SIZE_MIN 0
|
|
#define PPC4XX_TLBHI_SIZE_MAX 7
|
|
#define PPC4XX_TLBHI_SIZE_DEFAULT 1
|
|
#define PPC4XX_TLBHI_SIZE_SHIFT 7
|
|
#define PPC4XX_TLBHI_SIZE_MASK 0x00000007
|
|
|
|
#define PPC4XX_TLBLO_EX 0x00000200
|
|
#define PPC4XX_TLBLO_WR 0x00000100
|
|
#define PPC4XX_TLBLO_ATTR_MASK 0x000000FF
|
|
#define PPC4XX_TLBLO_RPN_MASK 0xFFFFFC00
|
|
|
|
target_ulong helper_4xx_tlbre_hi (target_ulong entry)
|
|
{
|
|
ppcemb_tlb_t *tlb;
|
|
target_ulong ret;
|
|
int size;
|
|
|
|
entry &= PPC4XX_TLB_ENTRY_MASK;
|
|
tlb = &env->tlb[entry].tlbe;
|
|
ret = tlb->EPN;
|
|
if (tlb->prot & PAGE_VALID) {
|
|
ret |= PPC4XX_TLBHI_V;
|
|
}
|
|
size = booke_page_size_to_tlb(tlb->size);
|
|
if (size < PPC4XX_TLBHI_SIZE_MIN || size > PPC4XX_TLBHI_SIZE_MAX) {
|
|
size = PPC4XX_TLBHI_SIZE_DEFAULT;
|
|
}
|
|
ret |= size << PPC4XX_TLBHI_SIZE_SHIFT;
|
|
env->spr[SPR_40x_PID] = tlb->PID;
|
|
return ret;
|
|
}
|
|
|
|
target_ulong helper_4xx_tlbre_lo (target_ulong entry)
|
|
{
|
|
ppcemb_tlb_t *tlb;
|
|
target_ulong ret;
|
|
|
|
entry &= PPC4XX_TLB_ENTRY_MASK;
|
|
tlb = &env->tlb[entry].tlbe;
|
|
ret = tlb->RPN;
|
|
if (tlb->prot & PAGE_EXEC) {
|
|
ret |= PPC4XX_TLBLO_EX;
|
|
}
|
|
if (tlb->prot & PAGE_WRITE) {
|
|
ret |= PPC4XX_TLBLO_WR;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
void helper_4xx_tlbwe_hi (target_ulong entry, target_ulong val)
|
|
{
|
|
ppcemb_tlb_t *tlb;
|
|
target_ulong page, end;
|
|
|
|
LOG_SWTLB("%s entry %d val " TARGET_FMT_lx "\n", __func__, (int)entry,
|
|
val);
|
|
entry &= PPC4XX_TLB_ENTRY_MASK;
|
|
tlb = &env->tlb[entry].tlbe;
|
|
/* Invalidate previous TLB (if it's valid) */
|
|
if (tlb->prot & PAGE_VALID) {
|
|
end = tlb->EPN + tlb->size;
|
|
LOG_SWTLB("%s: invalidate old TLB %d start " TARGET_FMT_lx " end "
|
|
TARGET_FMT_lx "\n", __func__, (int)entry, tlb->EPN, end);
|
|
for (page = tlb->EPN; page < end; page += TARGET_PAGE_SIZE) {
|
|
tlb_flush_page(env, page);
|
|
}
|
|
}
|
|
tlb->size = booke_tlb_to_page_size((val >> PPC4XX_TLBHI_SIZE_SHIFT)
|
|
& PPC4XX_TLBHI_SIZE_MASK);
|
|
/* We cannot handle TLB size < TARGET_PAGE_SIZE.
|
|
* If this ever occurs, one should use the ppcemb target instead
|
|
* of the ppc or ppc64 one
|
|
*/
|
|
if ((val & PPC4XX_TLBHI_V) && tlb->size < TARGET_PAGE_SIZE) {
|
|
cpu_abort(env, "TLB size " TARGET_FMT_lu " < %u "
|
|
"are not supported (%d)\n",
|
|
tlb->size, TARGET_PAGE_SIZE, (int)((val >> 7) & 0x7));
|
|
}
|
|
tlb->EPN = val & ~(tlb->size - 1);
|
|
if (val & PPC4XX_TLBHI_V) {
|
|
tlb->prot |= PAGE_VALID;
|
|
if (val & PPC4XX_TLBHI_E) {
|
|
/* XXX: TO BE FIXED */
|
|
cpu_abort(env,
|
|
"Little-endian TLB entries are not supported by now\n");
|
|
}
|
|
} else {
|
|
tlb->prot &= ~PAGE_VALID;
|
|
}
|
|
tlb->PID = env->spr[SPR_40x_PID]; /* PID */
|
|
LOG_SWTLB("%s: set up TLB %d RPN " TARGET_FMT_plx " EPN " TARGET_FMT_lx
|
|
" size " TARGET_FMT_lx " prot %c%c%c%c PID %d\n", __func__,
|
|
(int)entry, tlb->RPN, tlb->EPN, tlb->size,
|
|
tlb->prot & PAGE_READ ? 'r' : '-',
|
|
tlb->prot & PAGE_WRITE ? 'w' : '-',
|
|
tlb->prot & PAGE_EXEC ? 'x' : '-',
|
|
tlb->prot & PAGE_VALID ? 'v' : '-', (int)tlb->PID);
|
|
/* Invalidate new TLB (if valid) */
|
|
if (tlb->prot & PAGE_VALID) {
|
|
end = tlb->EPN + tlb->size;
|
|
LOG_SWTLB("%s: invalidate TLB %d start " TARGET_FMT_lx " end "
|
|
TARGET_FMT_lx "\n", __func__, (int)entry, tlb->EPN, end);
|
|
for (page = tlb->EPN; page < end; page += TARGET_PAGE_SIZE) {
|
|
tlb_flush_page(env, page);
|
|
}
|
|
}
|
|
}
|
|
|
|
void helper_4xx_tlbwe_lo (target_ulong entry, target_ulong val)
|
|
{
|
|
ppcemb_tlb_t *tlb;
|
|
|
|
LOG_SWTLB("%s entry %i val " TARGET_FMT_lx "\n", __func__, (int)entry,
|
|
val);
|
|
entry &= PPC4XX_TLB_ENTRY_MASK;
|
|
tlb = &env->tlb[entry].tlbe;
|
|
tlb->attr = val & PPC4XX_TLBLO_ATTR_MASK;
|
|
tlb->RPN = val & PPC4XX_TLBLO_RPN_MASK;
|
|
tlb->prot = PAGE_READ;
|
|
if (val & PPC4XX_TLBLO_EX) {
|
|
tlb->prot |= PAGE_EXEC;
|
|
}
|
|
if (val & PPC4XX_TLBLO_WR) {
|
|
tlb->prot |= PAGE_WRITE;
|
|
}
|
|
LOG_SWTLB("%s: set up TLB %d RPN " TARGET_FMT_plx " EPN " TARGET_FMT_lx
|
|
" size " TARGET_FMT_lx " prot %c%c%c%c PID %d\n", __func__,
|
|
(int)entry, tlb->RPN, tlb->EPN, tlb->size,
|
|
tlb->prot & PAGE_READ ? 'r' : '-',
|
|
tlb->prot & PAGE_WRITE ? 'w' : '-',
|
|
tlb->prot & PAGE_EXEC ? 'x' : '-',
|
|
tlb->prot & PAGE_VALID ? 'v' : '-', (int)tlb->PID);
|
|
}
|
|
|
|
target_ulong helper_4xx_tlbsx (target_ulong address)
|
|
{
|
|
return ppcemb_tlb_search(env, address, env->spr[SPR_40x_PID]);
|
|
}
|
|
|
|
/* PowerPC 440 TLB management */
|
|
void helper_440_tlbwe (uint32_t word, target_ulong entry, target_ulong value)
|
|
{
|
|
ppcemb_tlb_t *tlb;
|
|
target_ulong EPN, RPN, size;
|
|
int do_flush_tlbs;
|
|
|
|
LOG_SWTLB("%s word %d entry %d value " TARGET_FMT_lx "\n",
|
|
__func__, word, (int)entry, value);
|
|
do_flush_tlbs = 0;
|
|
entry &= 0x3F;
|
|
tlb = &env->tlb[entry].tlbe;
|
|
switch (word) {
|
|
default:
|
|
/* Just here to please gcc */
|
|
case 0:
|
|
EPN = value & 0xFFFFFC00;
|
|
if ((tlb->prot & PAGE_VALID) && EPN != tlb->EPN)
|
|
do_flush_tlbs = 1;
|
|
tlb->EPN = EPN;
|
|
size = booke_tlb_to_page_size((value >> 4) & 0xF);
|
|
if ((tlb->prot & PAGE_VALID) && tlb->size < size)
|
|
do_flush_tlbs = 1;
|
|
tlb->size = size;
|
|
tlb->attr &= ~0x1;
|
|
tlb->attr |= (value >> 8) & 1;
|
|
if (value & 0x200) {
|
|
tlb->prot |= PAGE_VALID;
|
|
} else {
|
|
if (tlb->prot & PAGE_VALID) {
|
|
tlb->prot &= ~PAGE_VALID;
|
|
do_flush_tlbs = 1;
|
|
}
|
|
}
|
|
tlb->PID = env->spr[SPR_440_MMUCR] & 0x000000FF;
|
|
if (do_flush_tlbs)
|
|
tlb_flush(env, 1);
|
|
break;
|
|
case 1:
|
|
RPN = value & 0xFFFFFC0F;
|
|
if ((tlb->prot & PAGE_VALID) && tlb->RPN != RPN)
|
|
tlb_flush(env, 1);
|
|
tlb->RPN = RPN;
|
|
break;
|
|
case 2:
|
|
tlb->attr = (tlb->attr & 0x1) | (value & 0x0000FF00);
|
|
tlb->prot = tlb->prot & PAGE_VALID;
|
|
if (value & 0x1)
|
|
tlb->prot |= PAGE_READ << 4;
|
|
if (value & 0x2)
|
|
tlb->prot |= PAGE_WRITE << 4;
|
|
if (value & 0x4)
|
|
tlb->prot |= PAGE_EXEC << 4;
|
|
if (value & 0x8)
|
|
tlb->prot |= PAGE_READ;
|
|
if (value & 0x10)
|
|
tlb->prot |= PAGE_WRITE;
|
|
if (value & 0x20)
|
|
tlb->prot |= PAGE_EXEC;
|
|
break;
|
|
}
|
|
}
|
|
|
|
target_ulong helper_440_tlbre (uint32_t word, target_ulong entry)
|
|
{
|
|
ppcemb_tlb_t *tlb;
|
|
target_ulong ret;
|
|
int size;
|
|
|
|
entry &= 0x3F;
|
|
tlb = &env->tlb[entry].tlbe;
|
|
switch (word) {
|
|
default:
|
|
/* Just here to please gcc */
|
|
case 0:
|
|
ret = tlb->EPN;
|
|
size = booke_page_size_to_tlb(tlb->size);
|
|
if (size < 0 || size > 0xF)
|
|
size = 1;
|
|
ret |= size << 4;
|
|
if (tlb->attr & 0x1)
|
|
ret |= 0x100;
|
|
if (tlb->prot & PAGE_VALID)
|
|
ret |= 0x200;
|
|
env->spr[SPR_440_MMUCR] &= ~0x000000FF;
|
|
env->spr[SPR_440_MMUCR] |= tlb->PID;
|
|
break;
|
|
case 1:
|
|
ret = tlb->RPN;
|
|
break;
|
|
case 2:
|
|
ret = tlb->attr & ~0x1;
|
|
if (tlb->prot & (PAGE_READ << 4))
|
|
ret |= 0x1;
|
|
if (tlb->prot & (PAGE_WRITE << 4))
|
|
ret |= 0x2;
|
|
if (tlb->prot & (PAGE_EXEC << 4))
|
|
ret |= 0x4;
|
|
if (tlb->prot & PAGE_READ)
|
|
ret |= 0x8;
|
|
if (tlb->prot & PAGE_WRITE)
|
|
ret |= 0x10;
|
|
if (tlb->prot & PAGE_EXEC)
|
|
ret |= 0x20;
|
|
break;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
target_ulong helper_440_tlbsx (target_ulong address)
|
|
{
|
|
return ppcemb_tlb_search(env, address, env->spr[SPR_440_MMUCR] & 0xFF);
|
|
}
|
|
|
|
#endif /* !CONFIG_USER_ONLY */
|