qemu-e2k/hw/nvram/fw_cfg.c
Igor Mammedov 5836d16812 fw_cfg: move FW_CFG_NB_CPUS out of fw_cfg_init1()
PC will use this field in other way, so move it outside the common
code so PC could set a different value, i.e. all CPUs
regardless of where they are coming from (-smp X | -device cpu...).

It's quick and dirty hack as it could be implemented in more generic
way in MashineClass. But do it in simple way since only PC is affected
so far.

Later we can generalize it when another affected target gets support
for -device cpu.

Signed-off-by: Igor Mammedov <imammedo@redhat.com>
Message-Id: <1479212236-183810-3-git-send-email-imammedo@redhat.com>
Reviewed-by: Eduardo Habkost <ehabkost@redhat.com>
Signed-off-by: Eduardo Habkost <ehabkost@redhat.com>
2016-11-16 12:09:58 -02:00

1106 lines
32 KiB
C

/*
* QEMU Firmware configuration device emulation
*
* Copyright (c) 2008 Gleb Natapov
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "qemu/osdep.h"
#include "hw/hw.h"
#include "sysemu/sysemu.h"
#include "sysemu/dma.h"
#include "hw/boards.h"
#include "hw/isa/isa.h"
#include "hw/nvram/fw_cfg.h"
#include "hw/sysbus.h"
#include "trace.h"
#include "qemu/error-report.h"
#include "qemu/config-file.h"
#include "qemu/cutils.h"
#define FW_CFG_NAME "fw_cfg"
#define FW_CFG_PATH "/machine/" FW_CFG_NAME
#define TYPE_FW_CFG "fw_cfg"
#define TYPE_FW_CFG_IO "fw_cfg_io"
#define TYPE_FW_CFG_MEM "fw_cfg_mem"
#define FW_CFG(obj) OBJECT_CHECK(FWCfgState, (obj), TYPE_FW_CFG)
#define FW_CFG_IO(obj) OBJECT_CHECK(FWCfgIoState, (obj), TYPE_FW_CFG_IO)
#define FW_CFG_MEM(obj) OBJECT_CHECK(FWCfgMemState, (obj), TYPE_FW_CFG_MEM)
/* FW_CFG_VERSION bits */
#define FW_CFG_VERSION 0x01
#define FW_CFG_VERSION_DMA 0x02
/* FW_CFG_DMA_CONTROL bits */
#define FW_CFG_DMA_CTL_ERROR 0x01
#define FW_CFG_DMA_CTL_READ 0x02
#define FW_CFG_DMA_CTL_SKIP 0x04
#define FW_CFG_DMA_CTL_SELECT 0x08
#define FW_CFG_DMA_SIGNATURE 0x51454d5520434647ULL /* "QEMU CFG" */
typedef struct FWCfgEntry {
uint32_t len;
uint8_t *data;
void *callback_opaque;
FWCfgReadCallback read_callback;
} FWCfgEntry;
struct FWCfgState {
/*< private >*/
SysBusDevice parent_obj;
/*< public >*/
FWCfgEntry entries[2][FW_CFG_MAX_ENTRY];
int entry_order[FW_CFG_MAX_ENTRY];
FWCfgFiles *files;
uint16_t cur_entry;
uint32_t cur_offset;
Notifier machine_ready;
int fw_cfg_order_override;
bool dma_enabled;
dma_addr_t dma_addr;
AddressSpace *dma_as;
MemoryRegion dma_iomem;
};
struct FWCfgIoState {
/*< private >*/
FWCfgState parent_obj;
/*< public >*/
MemoryRegion comb_iomem;
uint32_t iobase, dma_iobase;
};
struct FWCfgMemState {
/*< private >*/
FWCfgState parent_obj;
/*< public >*/
MemoryRegion ctl_iomem, data_iomem;
uint32_t data_width;
MemoryRegionOps wide_data_ops;
};
#define JPG_FILE 0
#define BMP_FILE 1
static char *read_splashfile(char *filename, gsize *file_sizep,
int *file_typep)
{
GError *err = NULL;
gboolean res;
gchar *content;
int file_type;
unsigned int filehead;
int bmp_bpp;
res = g_file_get_contents(filename, &content, file_sizep, &err);
if (res == FALSE) {
error_report("failed to read splash file '%s'", filename);
g_error_free(err);
return NULL;
}
/* check file size */
if (*file_sizep < 30) {
goto error;
}
/* check magic ID */
filehead = ((content[0] & 0xff) + (content[1] << 8)) & 0xffff;
if (filehead == 0xd8ff) {
file_type = JPG_FILE;
} else if (filehead == 0x4d42) {
file_type = BMP_FILE;
} else {
goto error;
}
/* check BMP bpp */
if (file_type == BMP_FILE) {
bmp_bpp = (content[28] + (content[29] << 8)) & 0xffff;
if (bmp_bpp != 24) {
goto error;
}
}
/* return values */
*file_typep = file_type;
return content;
error:
error_report("splash file '%s' format not recognized; must be JPEG "
"or 24 bit BMP", filename);
g_free(content);
return NULL;
}
static void fw_cfg_bootsplash(FWCfgState *s)
{
int boot_splash_time = -1;
const char *boot_splash_filename = NULL;
char *p;
char *filename, *file_data;
gsize file_size;
int file_type;
const char *temp;
/* get user configuration */
QemuOptsList *plist = qemu_find_opts("boot-opts");
QemuOpts *opts = QTAILQ_FIRST(&plist->head);
if (opts != NULL) {
temp = qemu_opt_get(opts, "splash");
if (temp != NULL) {
boot_splash_filename = temp;
}
temp = qemu_opt_get(opts, "splash-time");
if (temp != NULL) {
p = (char *)temp;
boot_splash_time = strtol(p, &p, 10);
}
}
/* insert splash time if user configurated */
if (boot_splash_time >= 0) {
/* validate the input */
if (boot_splash_time > 0xffff) {
error_report("splash time is big than 65535, force it to 65535.");
boot_splash_time = 0xffff;
}
/* use little endian format */
qemu_extra_params_fw[0] = (uint8_t)(boot_splash_time & 0xff);
qemu_extra_params_fw[1] = (uint8_t)((boot_splash_time >> 8) & 0xff);
fw_cfg_add_file(s, "etc/boot-menu-wait", qemu_extra_params_fw, 2);
}
/* insert splash file if user configurated */
if (boot_splash_filename != NULL) {
filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, boot_splash_filename);
if (filename == NULL) {
error_report("failed to find file '%s'.", boot_splash_filename);
return;
}
/* loading file data */
file_data = read_splashfile(filename, &file_size, &file_type);
if (file_data == NULL) {
g_free(filename);
return;
}
g_free(boot_splash_filedata);
boot_splash_filedata = (uint8_t *)file_data;
boot_splash_filedata_size = file_size;
/* insert data */
if (file_type == JPG_FILE) {
fw_cfg_add_file(s, "bootsplash.jpg",
boot_splash_filedata, boot_splash_filedata_size);
} else {
fw_cfg_add_file(s, "bootsplash.bmp",
boot_splash_filedata, boot_splash_filedata_size);
}
g_free(filename);
}
}
static void fw_cfg_reboot(FWCfgState *s)
{
int reboot_timeout = -1;
char *p;
const char *temp;
/* get user configuration */
QemuOptsList *plist = qemu_find_opts("boot-opts");
QemuOpts *opts = QTAILQ_FIRST(&plist->head);
if (opts != NULL) {
temp = qemu_opt_get(opts, "reboot-timeout");
if (temp != NULL) {
p = (char *)temp;
reboot_timeout = strtol(p, &p, 10);
}
}
/* validate the input */
if (reboot_timeout > 0xffff) {
error_report("reboot timeout is larger than 65535, force it to 65535.");
reboot_timeout = 0xffff;
}
fw_cfg_add_file(s, "etc/boot-fail-wait", g_memdup(&reboot_timeout, 4), 4);
}
static void fw_cfg_write(FWCfgState *s, uint8_t value)
{
/* nothing, write support removed in QEMU v2.4+ */
}
static int fw_cfg_select(FWCfgState *s, uint16_t key)
{
int arch, ret;
FWCfgEntry *e;
s->cur_offset = 0;
if ((key & FW_CFG_ENTRY_MASK) >= FW_CFG_MAX_ENTRY) {
s->cur_entry = FW_CFG_INVALID;
ret = 0;
} else {
s->cur_entry = key;
ret = 1;
/* entry successfully selected, now run callback if present */
arch = !!(key & FW_CFG_ARCH_LOCAL);
e = &s->entries[arch][key & FW_CFG_ENTRY_MASK];
if (e->read_callback) {
e->read_callback(e->callback_opaque);
}
}
trace_fw_cfg_select(s, key, ret);
return ret;
}
static uint64_t fw_cfg_data_read(void *opaque, hwaddr addr, unsigned size)
{
FWCfgState *s = opaque;
int arch = !!(s->cur_entry & FW_CFG_ARCH_LOCAL);
FWCfgEntry *e = (s->cur_entry == FW_CFG_INVALID) ? NULL :
&s->entries[arch][s->cur_entry & FW_CFG_ENTRY_MASK];
uint64_t value = 0;
assert(size > 0 && size <= sizeof(value));
if (s->cur_entry != FW_CFG_INVALID && e->data && s->cur_offset < e->len) {
/* The least significant 'size' bytes of the return value are
* expected to contain a string preserving portion of the item
* data, padded with zeros on the right in case we run out early.
* In technical terms, we're composing the host-endian representation
* of the big endian interpretation of the fw_cfg string.
*/
do {
value = (value << 8) | e->data[s->cur_offset++];
} while (--size && s->cur_offset < e->len);
/* If size is still not zero, we *did* run out early, so continue
* left-shifting, to add the appropriate number of padding zeros
* on the right.
*/
value <<= 8 * size;
}
trace_fw_cfg_read(s, value);
return value;
}
static void fw_cfg_data_mem_write(void *opaque, hwaddr addr,
uint64_t value, unsigned size)
{
FWCfgState *s = opaque;
unsigned i = size;
do {
fw_cfg_write(s, value >> (8 * --i));
} while (i);
}
static void fw_cfg_dma_transfer(FWCfgState *s)
{
dma_addr_t len;
FWCfgDmaAccess dma;
int arch;
FWCfgEntry *e;
int read;
dma_addr_t dma_addr;
/* Reset the address before the next access */
dma_addr = s->dma_addr;
s->dma_addr = 0;
if (dma_memory_read(s->dma_as, dma_addr, &dma, sizeof(dma))) {
stl_be_dma(s->dma_as, dma_addr + offsetof(FWCfgDmaAccess, control),
FW_CFG_DMA_CTL_ERROR);
return;
}
dma.address = be64_to_cpu(dma.address);
dma.length = be32_to_cpu(dma.length);
dma.control = be32_to_cpu(dma.control);
if (dma.control & FW_CFG_DMA_CTL_SELECT) {
fw_cfg_select(s, dma.control >> 16);
}
arch = !!(s->cur_entry & FW_CFG_ARCH_LOCAL);
e = (s->cur_entry == FW_CFG_INVALID) ? NULL :
&s->entries[arch][s->cur_entry & FW_CFG_ENTRY_MASK];
if (dma.control & FW_CFG_DMA_CTL_READ) {
read = 1;
} else if (dma.control & FW_CFG_DMA_CTL_SKIP) {
read = 0;
} else {
dma.length = 0;
}
dma.control = 0;
while (dma.length > 0 && !(dma.control & FW_CFG_DMA_CTL_ERROR)) {
if (s->cur_entry == FW_CFG_INVALID || !e->data ||
s->cur_offset >= e->len) {
len = dma.length;
/* If the access is not a read access, it will be a skip access,
* tested before.
*/
if (read) {
if (dma_memory_set(s->dma_as, dma.address, 0, len)) {
dma.control |= FW_CFG_DMA_CTL_ERROR;
}
}
} else {
if (dma.length <= (e->len - s->cur_offset)) {
len = dma.length;
} else {
len = (e->len - s->cur_offset);
}
/* If the access is not a read access, it will be a skip access,
* tested before.
*/
if (read) {
if (dma_memory_write(s->dma_as, dma.address,
&e->data[s->cur_offset], len)) {
dma.control |= FW_CFG_DMA_CTL_ERROR;
}
}
s->cur_offset += len;
}
dma.address += len;
dma.length -= len;
}
stl_be_dma(s->dma_as, dma_addr + offsetof(FWCfgDmaAccess, control),
dma.control);
trace_fw_cfg_read(s, 0);
}
static uint64_t fw_cfg_dma_mem_read(void *opaque, hwaddr addr,
unsigned size)
{
/* Return a signature value (and handle various read sizes) */
return extract64(FW_CFG_DMA_SIGNATURE, (8 - addr - size) * 8, size * 8);
}
static void fw_cfg_dma_mem_write(void *opaque, hwaddr addr,
uint64_t value, unsigned size)
{
FWCfgState *s = opaque;
if (size == 4) {
if (addr == 0) {
/* FWCfgDmaAccess high address */
s->dma_addr = value << 32;
} else if (addr == 4) {
/* FWCfgDmaAccess low address */
s->dma_addr |= value;
fw_cfg_dma_transfer(s);
}
} else if (size == 8 && addr == 0) {
s->dma_addr = value;
fw_cfg_dma_transfer(s);
}
}
static bool fw_cfg_dma_mem_valid(void *opaque, hwaddr addr,
unsigned size, bool is_write)
{
return !is_write || ((size == 4 && (addr == 0 || addr == 4)) ||
(size == 8 && addr == 0));
}
static bool fw_cfg_data_mem_valid(void *opaque, hwaddr addr,
unsigned size, bool is_write)
{
return addr == 0;
}
static void fw_cfg_ctl_mem_write(void *opaque, hwaddr addr,
uint64_t value, unsigned size)
{
fw_cfg_select(opaque, (uint16_t)value);
}
static bool fw_cfg_ctl_mem_valid(void *opaque, hwaddr addr,
unsigned size, bool is_write)
{
return is_write && size == 2;
}
static void fw_cfg_comb_write(void *opaque, hwaddr addr,
uint64_t value, unsigned size)
{
switch (size) {
case 1:
fw_cfg_write(opaque, (uint8_t)value);
break;
case 2:
fw_cfg_select(opaque, (uint16_t)value);
break;
}
}
static bool fw_cfg_comb_valid(void *opaque, hwaddr addr,
unsigned size, bool is_write)
{
return (size == 1) || (is_write && size == 2);
}
static const MemoryRegionOps fw_cfg_ctl_mem_ops = {
.write = fw_cfg_ctl_mem_write,
.endianness = DEVICE_BIG_ENDIAN,
.valid.accepts = fw_cfg_ctl_mem_valid,
};
static const MemoryRegionOps fw_cfg_data_mem_ops = {
.read = fw_cfg_data_read,
.write = fw_cfg_data_mem_write,
.endianness = DEVICE_BIG_ENDIAN,
.valid = {
.min_access_size = 1,
.max_access_size = 1,
.accepts = fw_cfg_data_mem_valid,
},
};
static const MemoryRegionOps fw_cfg_comb_mem_ops = {
.read = fw_cfg_data_read,
.write = fw_cfg_comb_write,
.endianness = DEVICE_LITTLE_ENDIAN,
.valid.accepts = fw_cfg_comb_valid,
};
static const MemoryRegionOps fw_cfg_dma_mem_ops = {
.read = fw_cfg_dma_mem_read,
.write = fw_cfg_dma_mem_write,
.endianness = DEVICE_BIG_ENDIAN,
.valid.accepts = fw_cfg_dma_mem_valid,
.valid.max_access_size = 8,
.impl.max_access_size = 8,
};
static void fw_cfg_reset(DeviceState *d)
{
FWCfgState *s = FW_CFG(d);
/* we never register a read callback for FW_CFG_SIGNATURE */
fw_cfg_select(s, FW_CFG_SIGNATURE);
}
/* Save restore 32 bit int as uint16_t
This is a Big hack, but it is how the old state did it.
Or we broke compatibility in the state, or we can't use struct tm
*/
static int get_uint32_as_uint16(QEMUFile *f, void *pv, size_t size)
{
uint32_t *v = pv;
*v = qemu_get_be16(f);
return 0;
}
static void put_unused(QEMUFile *f, void *pv, size_t size)
{
fprintf(stderr, "uint32_as_uint16 is only used for backward compatibility.\n");
fprintf(stderr, "This functions shouldn't be called.\n");
}
static const VMStateInfo vmstate_hack_uint32_as_uint16 = {
.name = "int32_as_uint16",
.get = get_uint32_as_uint16,
.put = put_unused,
};
#define VMSTATE_UINT16_HACK(_f, _s, _t) \
VMSTATE_SINGLE_TEST(_f, _s, _t, 0, vmstate_hack_uint32_as_uint16, uint32_t)
static bool is_version_1(void *opaque, int version_id)
{
return version_id == 1;
}
bool fw_cfg_dma_enabled(void *opaque)
{
FWCfgState *s = opaque;
return s->dma_enabled;
}
static const VMStateDescription vmstate_fw_cfg_dma = {
.name = "fw_cfg/dma",
.needed = fw_cfg_dma_enabled,
.fields = (VMStateField[]) {
VMSTATE_UINT64(dma_addr, FWCfgState),
VMSTATE_END_OF_LIST()
},
};
static const VMStateDescription vmstate_fw_cfg = {
.name = "fw_cfg",
.version_id = 2,
.minimum_version_id = 1,
.fields = (VMStateField[]) {
VMSTATE_UINT16(cur_entry, FWCfgState),
VMSTATE_UINT16_HACK(cur_offset, FWCfgState, is_version_1),
VMSTATE_UINT32_V(cur_offset, FWCfgState, 2),
VMSTATE_END_OF_LIST()
},
.subsections = (const VMStateDescription*[]) {
&vmstate_fw_cfg_dma,
NULL,
}
};
static void fw_cfg_add_bytes_read_callback(FWCfgState *s, uint16_t key,
FWCfgReadCallback callback,
void *callback_opaque,
void *data, size_t len)
{
int arch = !!(key & FW_CFG_ARCH_LOCAL);
key &= FW_CFG_ENTRY_MASK;
assert(key < FW_CFG_MAX_ENTRY && len < UINT32_MAX);
assert(s->entries[arch][key].data == NULL); /* avoid key conflict */
s->entries[arch][key].data = data;
s->entries[arch][key].len = (uint32_t)len;
s->entries[arch][key].read_callback = callback;
s->entries[arch][key].callback_opaque = callback_opaque;
}
static void *fw_cfg_modify_bytes_read(FWCfgState *s, uint16_t key,
void *data, size_t len)
{
void *ptr;
int arch = !!(key & FW_CFG_ARCH_LOCAL);
key &= FW_CFG_ENTRY_MASK;
assert(key < FW_CFG_MAX_ENTRY && len < UINT32_MAX);
/* return the old data to the function caller, avoid memory leak */
ptr = s->entries[arch][key].data;
s->entries[arch][key].data = data;
s->entries[arch][key].len = len;
s->entries[arch][key].callback_opaque = NULL;
return ptr;
}
void fw_cfg_add_bytes(FWCfgState *s, uint16_t key, void *data, size_t len)
{
fw_cfg_add_bytes_read_callback(s, key, NULL, NULL, data, len);
}
void fw_cfg_add_string(FWCfgState *s, uint16_t key, const char *value)
{
size_t sz = strlen(value) + 1;
fw_cfg_add_bytes(s, key, g_memdup(value, sz), sz);
}
void fw_cfg_add_i16(FWCfgState *s, uint16_t key, uint16_t value)
{
uint16_t *copy;
copy = g_malloc(sizeof(value));
*copy = cpu_to_le16(value);
fw_cfg_add_bytes(s, key, copy, sizeof(value));
}
void fw_cfg_modify_i16(FWCfgState *s, uint16_t key, uint16_t value)
{
uint16_t *copy, *old;
copy = g_malloc(sizeof(value));
*copy = cpu_to_le16(value);
old = fw_cfg_modify_bytes_read(s, key, copy, sizeof(value));
g_free(old);
}
void fw_cfg_add_i32(FWCfgState *s, uint16_t key, uint32_t value)
{
uint32_t *copy;
copy = g_malloc(sizeof(value));
*copy = cpu_to_le32(value);
fw_cfg_add_bytes(s, key, copy, sizeof(value));
}
void fw_cfg_add_i64(FWCfgState *s, uint16_t key, uint64_t value)
{
uint64_t *copy;
copy = g_malloc(sizeof(value));
*copy = cpu_to_le64(value);
fw_cfg_add_bytes(s, key, copy, sizeof(value));
}
void fw_cfg_set_order_override(FWCfgState *s, int order)
{
assert(s->fw_cfg_order_override == 0);
s->fw_cfg_order_override = order;
}
void fw_cfg_reset_order_override(FWCfgState *s)
{
assert(s->fw_cfg_order_override != 0);
s->fw_cfg_order_override = 0;
}
/*
* This is the legacy order list. For legacy systems, files are in
* the fw_cfg in the order defined below, by the "order" value. Note
* that some entries (VGA ROMs, NIC option ROMS, etc.) go into a
* specific area, but there may be more than one and they occur in the
* order that the user specifies them on the command line. Those are
* handled in a special manner, using the order override above.
*
* For non-legacy, the files are sorted by filename to avoid this kind
* of complexity in the future.
*
* This is only for x86, other arches don't implement versioning so
* they won't set legacy mode.
*/
static struct {
const char *name;
int order;
} fw_cfg_order[] = {
{ "etc/boot-menu-wait", 10 },
{ "bootsplash.jpg", 11 },
{ "bootsplash.bmp", 12 },
{ "etc/boot-fail-wait", 15 },
{ "etc/smbios/smbios-tables", 20 },
{ "etc/smbios/smbios-anchor", 30 },
{ "etc/e820", 40 },
{ "etc/reserved-memory-end", 50 },
{ "genroms/kvmvapic.bin", 55 },
{ "genroms/linuxboot.bin", 60 },
{ }, /* VGA ROMs from pc_vga_init come here, 70. */
{ }, /* NIC option ROMs from pc_nic_init come here, 80. */
{ "etc/system-states", 90 },
{ }, /* User ROMs come here, 100. */
{ }, /* Device FW comes here, 110. */
{ "etc/extra-pci-roots", 120 },
{ "etc/acpi/tables", 130 },
{ "etc/table-loader", 140 },
{ "etc/tpm/log", 150 },
{ "etc/acpi/rsdp", 160 },
{ "bootorder", 170 },
#define FW_CFG_ORDER_OVERRIDE_LAST 200
};
static int get_fw_cfg_order(FWCfgState *s, const char *name)
{
int i;
if (s->fw_cfg_order_override > 0) {
return s->fw_cfg_order_override;
}
for (i = 0; i < ARRAY_SIZE(fw_cfg_order); i++) {
if (fw_cfg_order[i].name == NULL) {
continue;
}
if (strcmp(name, fw_cfg_order[i].name) == 0) {
return fw_cfg_order[i].order;
}
}
/* Stick unknown stuff at the end. */
error_report("warning: Unknown firmware file in legacy mode: %s", name);
return FW_CFG_ORDER_OVERRIDE_LAST;
}
void fw_cfg_add_file_callback(FWCfgState *s, const char *filename,
FWCfgReadCallback callback, void *callback_opaque,
void *data, size_t len)
{
int i, index, count;
size_t dsize;
MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
int order = 0;
if (!s->files) {
dsize = sizeof(uint32_t) + sizeof(FWCfgFile) * FW_CFG_FILE_SLOTS;
s->files = g_malloc0(dsize);
fw_cfg_add_bytes(s, FW_CFG_FILE_DIR, s->files, dsize);
}
count = be32_to_cpu(s->files->count);
assert(count < FW_CFG_FILE_SLOTS);
/* Find the insertion point. */
if (mc->legacy_fw_cfg_order) {
/*
* Sort by order. For files with the same order, we keep them
* in the sequence in which they were added.
*/
order = get_fw_cfg_order(s, filename);
for (index = count;
index > 0 && order < s->entry_order[index - 1];
index--);
} else {
/* Sort by file name. */
for (index = count;
index > 0 && strcmp(filename, s->files->f[index - 1].name) < 0;
index--);
}
/*
* Move all the entries from the index point and after down one
* to create a slot for the new entry. Because calculations are
* being done with the index, make it so that "i" is the current
* index and "i - 1" is the one being copied from, thus the
* unusual start and end in the for statement.
*/
for (i = count + 1; i > index; i--) {
s->files->f[i] = s->files->f[i - 1];
s->files->f[i].select = cpu_to_be16(FW_CFG_FILE_FIRST + i);
s->entries[0][FW_CFG_FILE_FIRST + i] =
s->entries[0][FW_CFG_FILE_FIRST + i - 1];
s->entry_order[i] = s->entry_order[i - 1];
}
memset(&s->files->f[index], 0, sizeof(FWCfgFile));
memset(&s->entries[0][FW_CFG_FILE_FIRST + index], 0, sizeof(FWCfgEntry));
pstrcpy(s->files->f[index].name, sizeof(s->files->f[index].name), filename);
for (i = 0; i <= count; i++) {
if (i != index &&
strcmp(s->files->f[index].name, s->files->f[i].name) == 0) {
error_report("duplicate fw_cfg file name: %s",
s->files->f[index].name);
exit(1);
}
}
fw_cfg_add_bytes_read_callback(s, FW_CFG_FILE_FIRST + index,
callback, callback_opaque, data, len);
s->files->f[index].size = cpu_to_be32(len);
s->files->f[index].select = cpu_to_be16(FW_CFG_FILE_FIRST + index);
s->entry_order[index] = order;
trace_fw_cfg_add_file(s, index, s->files->f[index].name, len);
s->files->count = cpu_to_be32(count+1);
}
void fw_cfg_add_file(FWCfgState *s, const char *filename,
void *data, size_t len)
{
fw_cfg_add_file_callback(s, filename, NULL, NULL, data, len);
}
void *fw_cfg_modify_file(FWCfgState *s, const char *filename,
void *data, size_t len)
{
int i, index;
void *ptr = NULL;
assert(s->files);
index = be32_to_cpu(s->files->count);
assert(index < FW_CFG_FILE_SLOTS);
for (i = 0; i < index; i++) {
if (strcmp(filename, s->files->f[i].name) == 0) {
ptr = fw_cfg_modify_bytes_read(s, FW_CFG_FILE_FIRST + i,
data, len);
s->files->f[i].size = cpu_to_be32(len);
return ptr;
}
}
/* add new one */
fw_cfg_add_file_callback(s, filename, NULL, NULL, data, len);
return NULL;
}
static void fw_cfg_machine_reset(void *opaque)
{
void *ptr;
size_t len;
FWCfgState *s = opaque;
char *bootindex = get_boot_devices_list(&len, false);
ptr = fw_cfg_modify_file(s, "bootorder", (uint8_t *)bootindex, len);
g_free(ptr);
}
static void fw_cfg_machine_ready(struct Notifier *n, void *data)
{
FWCfgState *s = container_of(n, FWCfgState, machine_ready);
qemu_register_reset(fw_cfg_machine_reset, s);
}
static void fw_cfg_init1(DeviceState *dev)
{
FWCfgState *s = FW_CFG(dev);
MachineState *machine = MACHINE(qdev_get_machine());
assert(!object_resolve_path(FW_CFG_PATH, NULL));
object_property_add_child(OBJECT(machine), FW_CFG_NAME, OBJECT(s), NULL);
qdev_init_nofail(dev);
fw_cfg_add_bytes(s, FW_CFG_SIGNATURE, (char *)"QEMU", 4);
fw_cfg_add_bytes(s, FW_CFG_UUID, &qemu_uuid, 16);
fw_cfg_add_i16(s, FW_CFG_NOGRAPHIC, (uint16_t)!machine->enable_graphics);
fw_cfg_add_i16(s, FW_CFG_BOOT_MENU, (uint16_t)boot_menu);
fw_cfg_bootsplash(s);
fw_cfg_reboot(s);
s->machine_ready.notify = fw_cfg_machine_ready;
qemu_add_machine_init_done_notifier(&s->machine_ready);
}
FWCfgState *fw_cfg_init_io_dma(uint32_t iobase, uint32_t dma_iobase,
AddressSpace *dma_as)
{
DeviceState *dev;
FWCfgState *s;
uint32_t version = FW_CFG_VERSION;
bool dma_requested = dma_iobase && dma_as;
dev = qdev_create(NULL, TYPE_FW_CFG_IO);
qdev_prop_set_uint32(dev, "iobase", iobase);
qdev_prop_set_uint32(dev, "dma_iobase", dma_iobase);
if (!dma_requested) {
qdev_prop_set_bit(dev, "dma_enabled", false);
}
fw_cfg_init1(dev);
s = FW_CFG(dev);
if (s->dma_enabled) {
/* 64 bits for the address field */
s->dma_as = dma_as;
s->dma_addr = 0;
version |= FW_CFG_VERSION_DMA;
}
fw_cfg_add_i32(s, FW_CFG_ID, version);
return s;
}
FWCfgState *fw_cfg_init_io(uint32_t iobase)
{
return fw_cfg_init_io_dma(iobase, 0, NULL);
}
FWCfgState *fw_cfg_init_mem_wide(hwaddr ctl_addr,
hwaddr data_addr, uint32_t data_width,
hwaddr dma_addr, AddressSpace *dma_as)
{
DeviceState *dev;
SysBusDevice *sbd;
FWCfgState *s;
uint32_t version = FW_CFG_VERSION;
bool dma_requested = dma_addr && dma_as;
dev = qdev_create(NULL, TYPE_FW_CFG_MEM);
qdev_prop_set_uint32(dev, "data_width", data_width);
if (!dma_requested) {
qdev_prop_set_bit(dev, "dma_enabled", false);
}
fw_cfg_init1(dev);
sbd = SYS_BUS_DEVICE(dev);
sysbus_mmio_map(sbd, 0, ctl_addr);
sysbus_mmio_map(sbd, 1, data_addr);
s = FW_CFG(dev);
if (s->dma_enabled) {
s->dma_as = dma_as;
s->dma_addr = 0;
sysbus_mmio_map(sbd, 2, dma_addr);
version |= FW_CFG_VERSION_DMA;
}
fw_cfg_add_i32(s, FW_CFG_ID, version);
return s;
}
FWCfgState *fw_cfg_init_mem(hwaddr ctl_addr, hwaddr data_addr)
{
return fw_cfg_init_mem_wide(ctl_addr, data_addr,
fw_cfg_data_mem_ops.valid.max_access_size,
0, NULL);
}
FWCfgState *fw_cfg_find(void)
{
return FW_CFG(object_resolve_path(FW_CFG_PATH, NULL));
}
static void fw_cfg_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
dc->reset = fw_cfg_reset;
dc->vmsd = &vmstate_fw_cfg;
}
static const TypeInfo fw_cfg_info = {
.name = TYPE_FW_CFG,
.parent = TYPE_SYS_BUS_DEVICE,
.abstract = true,
.instance_size = sizeof(FWCfgState),
.class_init = fw_cfg_class_init,
};
static Property fw_cfg_io_properties[] = {
DEFINE_PROP_UINT32("iobase", FWCfgIoState, iobase, -1),
DEFINE_PROP_UINT32("dma_iobase", FWCfgIoState, dma_iobase, -1),
DEFINE_PROP_BOOL("dma_enabled", FWCfgIoState, parent_obj.dma_enabled,
true),
DEFINE_PROP_END_OF_LIST(),
};
static void fw_cfg_io_realize(DeviceState *dev, Error **errp)
{
FWCfgIoState *s = FW_CFG_IO(dev);
SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
/* when using port i/o, the 8-bit data register ALWAYS overlaps
* with half of the 16-bit control register. Hence, the total size
* of the i/o region used is FW_CFG_CTL_SIZE */
memory_region_init_io(&s->comb_iomem, OBJECT(s), &fw_cfg_comb_mem_ops,
FW_CFG(s), "fwcfg", FW_CFG_CTL_SIZE);
sysbus_add_io(sbd, s->iobase, &s->comb_iomem);
if (FW_CFG(s)->dma_enabled) {
memory_region_init_io(&FW_CFG(s)->dma_iomem, OBJECT(s),
&fw_cfg_dma_mem_ops, FW_CFG(s), "fwcfg.dma",
sizeof(dma_addr_t));
sysbus_add_io(sbd, s->dma_iobase, &FW_CFG(s)->dma_iomem);
}
}
static void fw_cfg_io_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
dc->realize = fw_cfg_io_realize;
dc->props = fw_cfg_io_properties;
}
static const TypeInfo fw_cfg_io_info = {
.name = TYPE_FW_CFG_IO,
.parent = TYPE_FW_CFG,
.instance_size = sizeof(FWCfgIoState),
.class_init = fw_cfg_io_class_init,
};
static Property fw_cfg_mem_properties[] = {
DEFINE_PROP_UINT32("data_width", FWCfgMemState, data_width, -1),
DEFINE_PROP_BOOL("dma_enabled", FWCfgMemState, parent_obj.dma_enabled,
true),
DEFINE_PROP_END_OF_LIST(),
};
static void fw_cfg_mem_realize(DeviceState *dev, Error **errp)
{
FWCfgMemState *s = FW_CFG_MEM(dev);
SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
const MemoryRegionOps *data_ops = &fw_cfg_data_mem_ops;
memory_region_init_io(&s->ctl_iomem, OBJECT(s), &fw_cfg_ctl_mem_ops,
FW_CFG(s), "fwcfg.ctl", FW_CFG_CTL_SIZE);
sysbus_init_mmio(sbd, &s->ctl_iomem);
if (s->data_width > data_ops->valid.max_access_size) {
/* memberwise copy because the "old_mmio" member is const */
s->wide_data_ops.read = data_ops->read;
s->wide_data_ops.write = data_ops->write;
s->wide_data_ops.endianness = data_ops->endianness;
s->wide_data_ops.valid = data_ops->valid;
s->wide_data_ops.impl = data_ops->impl;
s->wide_data_ops.valid.max_access_size = s->data_width;
s->wide_data_ops.impl.max_access_size = s->data_width;
data_ops = &s->wide_data_ops;
}
memory_region_init_io(&s->data_iomem, OBJECT(s), data_ops, FW_CFG(s),
"fwcfg.data", data_ops->valid.max_access_size);
sysbus_init_mmio(sbd, &s->data_iomem);
if (FW_CFG(s)->dma_enabled) {
memory_region_init_io(&FW_CFG(s)->dma_iomem, OBJECT(s),
&fw_cfg_dma_mem_ops, FW_CFG(s), "fwcfg.dma",
sizeof(dma_addr_t));
sysbus_init_mmio(sbd, &FW_CFG(s)->dma_iomem);
}
}
static void fw_cfg_mem_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
dc->realize = fw_cfg_mem_realize;
dc->props = fw_cfg_mem_properties;
}
static const TypeInfo fw_cfg_mem_info = {
.name = TYPE_FW_CFG_MEM,
.parent = TYPE_FW_CFG,
.instance_size = sizeof(FWCfgMemState),
.class_init = fw_cfg_mem_class_init,
};
static void fw_cfg_register_types(void)
{
type_register_static(&fw_cfg_info);
type_register_static(&fw_cfg_io_info);
type_register_static(&fw_cfg_mem_info);
}
type_init(fw_cfg_register_types)