Alexey Kardashevskiy
8c37faa475
vfio-pci, ppc64/spapr: Reorder group-to-container attaching
At the moment VFIO PCI device initialization works as follows: vfio_realize vfio_get_group vfio_connect_container register memory listeners (1) update QEMU groups lists vfio_kvm_device_add_group Then (example for pseries) the machine reset hook triggers region_add() for all regions where listeners from (1) are listening: ppc_spapr_reset spapr_phb_reset spapr_tce_table_enable memory_region_add_subregion vfio_listener_region_add vfio_spapr_create_window This scheme works fine until we need to handle VFIO PCI device hotplug and we want to enable PPC64/sPAPR in-kernel TCE acceleration on, i.e. after PCI hotplug we need a place to call ioctl(vfio_kvm_device_fd, KVM_DEV_VFIO_GROUP_SET_SPAPR_TCE). Since the ioctl needs a LIOBN fd (from sPAPRTCETable) and a IOMMU group fd (from VFIOGroup), vfio_listener_region_add() seems to be the only place for this ioctl(). However this only works during boot time because the machine reset happens strictly after all devices are finalized. When hotplug happens, vfio_listener_region_add() is called when a memory listener is registered but when this happens: 1. new group is not added to the container->group_list yet; 2. VFIO KVM device is unaware of the new IOMMU group. This moves bits around to have all necessary VFIO infrastructure in place for both initial startup and hotplug cases. [aw: ie, register vfio groups with kvm prior to memory listener registration such that kvm-vfio pseudo device ioctls are available during the region_add callback] Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> Reviewed-by: David Gibson <david@gibson.dropbear.id.au> Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
…
QEMU README =========== QEMU is a generic and open source machine & userspace emulator and virtualizer. QEMU is capable of emulating a complete machine in software without any need for hardware virtualization support. By using dynamic translation, it achieves very good performance. QEMU can also integrate with the Xen and KVM hypervisors to provide emulated hardware while allowing the hypervisor to manage the CPU. With hypervisor support, QEMU can achieve near native performance for CPUs. When QEMU emulates CPUs directly it is capable of running operating systems made for one machine (e.g. an ARMv7 board) on a different machine (e.g. an x86_64 PC board). QEMU is also capable of providing userspace API virtualization for Linux and BSD kernel interfaces. This allows binaries compiled against one architecture ABI (e.g. the Linux PPC64 ABI) to be run on a host using a different architecture ABI (e.g. the Linux x86_64 ABI). This does not involve any hardware emulation, simply CPU and syscall emulation. QEMU aims to fit into a variety of use cases. It can be invoked directly by users wishing to have full control over its behaviour and settings. It also aims to facilitate integration into higher level management layers, by providing a stable command line interface and monitor API. It is commonly invoked indirectly via the libvirt library when using open source applications such as oVirt, OpenStack and virt-manager. QEMU as a whole is released under the GNU General Public License, version 2. For full licensing details, consult the LICENSE file. Building ======== QEMU is multi-platform software intended to be buildable on all modern Linux platforms, OS-X, Win32 (via the Mingw64 toolchain) and a variety of other UNIX targets. The simple steps to build QEMU are: mkdir build cd build ../configure make Additional information can also be found online via the QEMU website: http://qemu-project.org/Hosts/Linux http://qemu-project.org/Hosts/Mac http://qemu-project.org/Hosts/W32 Submitting patches ================== The QEMU source code is maintained under the GIT version control system. git clone git://git.qemu-project.org/qemu.git When submitting patches, the preferred approach is to use 'git format-patch' and/or 'git send-email' to format & send the mail to the qemu-devel@nongnu.org mailing list. All patches submitted must contain a 'Signed-off-by' line from the author. Patches should follow the guidelines set out in the HACKING and CODING_STYLE files. Additional information on submitting patches can be found online via the QEMU website http://qemu-project.org/Contribute/SubmitAPatch http://qemu-project.org/Contribute/TrivialPatches Bug reporting ============= The QEMU project uses Launchpad as its primary upstream bug tracker. Bugs found when running code built from QEMU git or upstream released sources should be reported via: https://bugs.launchpad.net/qemu/ If using QEMU via an operating system vendor pre-built binary package, it is preferable to report bugs to the vendor's own bug tracker first. If the bug is also known to affect latest upstream code, it can also be reported via launchpad. For additional information on bug reporting consult: http://qemu-project.org/Contribute/ReportABug Contact ======= The QEMU community can be contacted in a number of ways, with the two main methods being email and IRC - qemu-devel@nongnu.org http://lists.nongnu.org/mailman/listinfo/qemu-devel - #qemu on irc.oftc.net Information on additional methods of contacting the community can be found online via the QEMU website: http://qemu-project.org/Contribute/StartHere -- End
Description
Languages
C
83.1%
C++
6.3%
Python
3.2%
Dylan
2.8%
Shell
1.6%
Other
2.8%