b24db6fcd4
Extract 1600+ lines from the big translate.c into a new file. Reviewed-by: Richard Henderson <richard.henderson@linaro.org> Signed-off-by: Philippe Mathieu-Daudé <f4bug@amsat.org> Message-Id: <20210226093111.3865906-14-f4bug@amsat.org>
1610 lines
55 KiB
C
1610 lines
55 KiB
C
/*
|
||
* Ingenic XBurst Media eXtension Unit (MXU) translation routines.
|
||
*
|
||
* Copyright (c) 2004-2005 Jocelyn Mayer
|
||
* Copyright (c) 2006 Marius Groeger (FPU operations)
|
||
* Copyright (c) 2006 Thiemo Seufer (MIPS32R2 support)
|
||
* Copyright (c) 2009 CodeSourcery (MIPS16 and microMIPS support)
|
||
* Copyright (c) 2012 Jia Liu & Dongxue Zhang (MIPS ASE DSP support)
|
||
*
|
||
* SPDX-License-Identifier: LGPL-2.1-or-later
|
||
*
|
||
* Datasheet:
|
||
*
|
||
* "XBurst® Instruction Set Architecture MIPS eXtension/enhanced Unit
|
||
* Programming Manual", Ingenic Semiconductor Co, Ltd., revision June 2, 2017
|
||
*/
|
||
|
||
#include "qemu/osdep.h"
|
||
#include "tcg/tcg-op.h"
|
||
#include "exec/helper-gen.h"
|
||
#include "translate.h"
|
||
|
||
/*
|
||
*
|
||
* AN OVERVIEW OF MXU EXTENSION INSTRUCTION SET
|
||
* ============================================
|
||
*
|
||
*
|
||
* MXU (full name: MIPS eXtension/enhanced Unit) is a SIMD extension of MIPS32
|
||
* instructions set. It is designed to fit the needs of signal, graphical and
|
||
* video processing applications. MXU instruction set is used in Xburst family
|
||
* of microprocessors by Ingenic.
|
||
*
|
||
* MXU unit contains 17 registers called X0-X16. X0 is always zero, and X16 is
|
||
* the control register.
|
||
*
|
||
*
|
||
* The notation used in MXU assembler mnemonics
|
||
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||
*
|
||
* Register operands:
|
||
*
|
||
* XRa, XRb, XRc, XRd - MXU registers
|
||
* Rb, Rc, Rd, Rs, Rt - general purpose MIPS registers
|
||
*
|
||
* Non-register operands:
|
||
*
|
||
* aptn1 - 1-bit accumulate add/subtract pattern
|
||
* aptn2 - 2-bit accumulate add/subtract pattern
|
||
* eptn2 - 2-bit execute add/subtract pattern
|
||
* optn2 - 2-bit operand pattern
|
||
* optn3 - 3-bit operand pattern
|
||
* sft4 - 4-bit shift amount
|
||
* strd2 - 2-bit stride amount
|
||
*
|
||
* Prefixes:
|
||
*
|
||
* Level of parallelism: Operand size:
|
||
* S - single operation at a time 32 - word
|
||
* D - two operations in parallel 16 - half word
|
||
* Q - four operations in parallel 8 - byte
|
||
*
|
||
* Operations:
|
||
*
|
||
* ADD - Add or subtract
|
||
* ADDC - Add with carry-in
|
||
* ACC - Accumulate
|
||
* ASUM - Sum together then accumulate (add or subtract)
|
||
* ASUMC - Sum together then accumulate (add or subtract) with carry-in
|
||
* AVG - Average between 2 operands
|
||
* ABD - Absolute difference
|
||
* ALN - Align data
|
||
* AND - Logical bitwise 'and' operation
|
||
* CPS - Copy sign
|
||
* EXTR - Extract bits
|
||
* I2M - Move from GPR register to MXU register
|
||
* LDD - Load data from memory to XRF
|
||
* LDI - Load data from memory to XRF (and increase the address base)
|
||
* LUI - Load unsigned immediate
|
||
* MUL - Multiply
|
||
* MULU - Unsigned multiply
|
||
* MADD - 64-bit operand add 32x32 product
|
||
* MSUB - 64-bit operand subtract 32x32 product
|
||
* MAC - Multiply and accumulate (add or subtract)
|
||
* MAD - Multiply and add or subtract
|
||
* MAX - Maximum between 2 operands
|
||
* MIN - Minimum between 2 operands
|
||
* M2I - Move from MXU register to GPR register
|
||
* MOVZ - Move if zero
|
||
* MOVN - Move if non-zero
|
||
* NOR - Logical bitwise 'nor' operation
|
||
* OR - Logical bitwise 'or' operation
|
||
* STD - Store data from XRF to memory
|
||
* SDI - Store data from XRF to memory (and increase the address base)
|
||
* SLT - Set of less than comparison
|
||
* SAD - Sum of absolute differences
|
||
* SLL - Logical shift left
|
||
* SLR - Logical shift right
|
||
* SAR - Arithmetic shift right
|
||
* SAT - Saturation
|
||
* SFL - Shuffle
|
||
* SCOP - Calculate x’s scope (-1, means x<0; 0, means x==0; 1, means x>0)
|
||
* XOR - Logical bitwise 'exclusive or' operation
|
||
*
|
||
* Suffixes:
|
||
*
|
||
* E - Expand results
|
||
* F - Fixed point multiplication
|
||
* L - Low part result
|
||
* R - Doing rounding
|
||
* V - Variable instead of immediate
|
||
* W - Combine above L and V
|
||
*
|
||
*
|
||
* The list of MXU instructions grouped by functionality
|
||
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||
*
|
||
* Load/Store instructions Multiplication instructions
|
||
* ----------------------- ---------------------------
|
||
*
|
||
* S32LDD XRa, Rb, s12 S32MADD XRa, XRd, Rs, Rt
|
||
* S32STD XRa, Rb, s12 S32MADDU XRa, XRd, Rs, Rt
|
||
* S32LDDV XRa, Rb, rc, strd2 S32MSUB XRa, XRd, Rs, Rt
|
||
* S32STDV XRa, Rb, rc, strd2 S32MSUBU XRa, XRd, Rs, Rt
|
||
* S32LDI XRa, Rb, s12 S32MUL XRa, XRd, Rs, Rt
|
||
* S32SDI XRa, Rb, s12 S32MULU XRa, XRd, Rs, Rt
|
||
* S32LDIV XRa, Rb, rc, strd2 D16MUL XRa, XRb, XRc, XRd, optn2
|
||
* S32SDIV XRa, Rb, rc, strd2 D16MULE XRa, XRb, XRc, optn2
|
||
* S32LDDR XRa, Rb, s12 D16MULF XRa, XRb, XRc, optn2
|
||
* S32STDR XRa, Rb, s12 D16MAC XRa, XRb, XRc, XRd, aptn2, optn2
|
||
* S32LDDVR XRa, Rb, rc, strd2 D16MACE XRa, XRb, XRc, XRd, aptn2, optn2
|
||
* S32STDVR XRa, Rb, rc, strd2 D16MACF XRa, XRb, XRc, XRd, aptn2, optn2
|
||
* S32LDIR XRa, Rb, s12 D16MADL XRa, XRb, XRc, XRd, aptn2, optn2
|
||
* S32SDIR XRa, Rb, s12 S16MAD XRa, XRb, XRc, XRd, aptn1, optn2
|
||
* S32LDIVR XRa, Rb, rc, strd2 Q8MUL XRa, XRb, XRc, XRd
|
||
* S32SDIVR XRa, Rb, rc, strd2 Q8MULSU XRa, XRb, XRc, XRd
|
||
* S16LDD XRa, Rb, s10, eptn2 Q8MAC XRa, XRb, XRc, XRd, aptn2
|
||
* S16STD XRa, Rb, s10, eptn2 Q8MACSU XRa, XRb, XRc, XRd, aptn2
|
||
* S16LDI XRa, Rb, s10, eptn2 Q8MADL XRa, XRb, XRc, XRd, aptn2
|
||
* S16SDI XRa, Rb, s10, eptn2
|
||
* S8LDD XRa, Rb, s8, eptn3
|
||
* S8STD XRa, Rb, s8, eptn3 Addition and subtraction instructions
|
||
* S8LDI XRa, Rb, s8, eptn3 -------------------------------------
|
||
* S8SDI XRa, Rb, s8, eptn3
|
||
* LXW Rd, Rs, Rt, strd2 D32ADD XRa, XRb, XRc, XRd, eptn2
|
||
* LXH Rd, Rs, Rt, strd2 D32ADDC XRa, XRb, XRc, XRd
|
||
* LXHU Rd, Rs, Rt, strd2 D32ACC XRa, XRb, XRc, XRd, eptn2
|
||
* LXB Rd, Rs, Rt, strd2 D32ACCM XRa, XRb, XRc, XRd, eptn2
|
||
* LXBU Rd, Rs, Rt, strd2 D32ASUM XRa, XRb, XRc, XRd, eptn2
|
||
* S32CPS XRa, XRb, XRc
|
||
* Q16ADD XRa, XRb, XRc, XRd, eptn2, optn2
|
||
* Comparison instructions Q16ACC XRa, XRb, XRc, XRd, eptn2
|
||
* ----------------------- Q16ACCM XRa, XRb, XRc, XRd, eptn2
|
||
* D16ASUM XRa, XRb, XRc, XRd, eptn2
|
||
* S32MAX XRa, XRb, XRc D16CPS XRa, XRb,
|
||
* S32MIN XRa, XRb, XRc D16AVG XRa, XRb, XRc
|
||
* S32SLT XRa, XRb, XRc D16AVGR XRa, XRb, XRc
|
||
* S32MOVZ XRa, XRb, XRc Q8ADD XRa, XRb, XRc, eptn2
|
||
* S32MOVN XRa, XRb, XRc Q8ADDE XRa, XRb, XRc, XRd, eptn2
|
||
* D16MAX XRa, XRb, XRc Q8ACCE XRa, XRb, XRc, XRd, eptn2
|
||
* D16MIN XRa, XRb, XRc Q8ABD XRa, XRb, XRc
|
||
* D16SLT XRa, XRb, XRc Q8SAD XRa, XRb, XRc, XRd
|
||
* D16MOVZ XRa, XRb, XRc Q8AVG XRa, XRb, XRc
|
||
* D16MOVN XRa, XRb, XRc Q8AVGR XRa, XRb, XRc
|
||
* Q8MAX XRa, XRb, XRc D8SUM XRa, XRb, XRc, XRd
|
||
* Q8MIN XRa, XRb, XRc D8SUMC XRa, XRb, XRc, XRd
|
||
* Q8SLT XRa, XRb, XRc
|
||
* Q8SLTU XRa, XRb, XRc
|
||
* Q8MOVZ XRa, XRb, XRc Shift instructions
|
||
* Q8MOVN XRa, XRb, XRc ------------------
|
||
*
|
||
* D32SLL XRa, XRb, XRc, XRd, sft4
|
||
* Bitwise instructions D32SLR XRa, XRb, XRc, XRd, sft4
|
||
* -------------------- D32SAR XRa, XRb, XRc, XRd, sft4
|
||
* D32SARL XRa, XRb, XRc, sft4
|
||
* S32NOR XRa, XRb, XRc D32SLLV XRa, XRb, Rb
|
||
* S32AND XRa, XRb, XRc D32SLRV XRa, XRb, Rb
|
||
* S32XOR XRa, XRb, XRc D32SARV XRa, XRb, Rb
|
||
* S32OR XRa, XRb, XRc D32SARW XRa, XRb, XRc, Rb
|
||
* Q16SLL XRa, XRb, XRc, XRd, sft4
|
||
* Q16SLR XRa, XRb, XRc, XRd, sft4
|
||
* Miscellaneous instructions Q16SAR XRa, XRb, XRc, XRd, sft4
|
||
* ------------------------- Q16SLLV XRa, XRb, Rb
|
||
* Q16SLRV XRa, XRb, Rb
|
||
* S32SFL XRa, XRb, XRc, XRd, optn2 Q16SARV XRa, XRb, Rb
|
||
* S32ALN XRa, XRb, XRc, Rb
|
||
* S32ALNI XRa, XRb, XRc, s3
|
||
* S32LUI XRa, s8, optn3 Move instructions
|
||
* S32EXTR XRa, XRb, Rb, bits5 -----------------
|
||
* S32EXTRV XRa, XRb, Rs, Rt
|
||
* Q16SCOP XRa, XRb, XRc, XRd S32M2I XRa, Rb
|
||
* Q16SAT XRa, XRb, XRc S32I2M XRa, Rb
|
||
*
|
||
*
|
||
* The opcode organization of MXU instructions
|
||
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||
*
|
||
* The bits 31..26 of all MXU instructions are equal to 0x1C (also referred
|
||
* as opcode SPECIAL2 in the base MIPS ISA). The organization and meaning of
|
||
* other bits up to the instruction level is as follows:
|
||
*
|
||
* bits
|
||
* 05..00
|
||
*
|
||
* ┌─ 000000 ─ OPC_MXU_S32MADD
|
||
* ├─ 000001 ─ OPC_MXU_S32MADDU
|
||
* ├─ 000010 ─ <not assigned> (non-MXU OPC_MUL)
|
||
* │
|
||
* │ 20..18
|
||
* ├─ 000011 ─ OPC_MXU__POOL00 ─┬─ 000 ─ OPC_MXU_S32MAX
|
||
* │ ├─ 001 ─ OPC_MXU_S32MIN
|
||
* │ ├─ 010 ─ OPC_MXU_D16MAX
|
||
* │ ├─ 011 ─ OPC_MXU_D16MIN
|
||
* │ ├─ 100 ─ OPC_MXU_Q8MAX
|
||
* │ ├─ 101 ─ OPC_MXU_Q8MIN
|
||
* │ ├─ 110 ─ OPC_MXU_Q8SLT
|
||
* │ └─ 111 ─ OPC_MXU_Q8SLTU
|
||
* ├─ 000100 ─ OPC_MXU_S32MSUB
|
||
* ├─ 000101 ─ OPC_MXU_S32MSUBU 20..18
|
||
* ├─ 000110 ─ OPC_MXU__POOL01 ─┬─ 000 ─ OPC_MXU_S32SLT
|
||
* │ ├─ 001 ─ OPC_MXU_D16SLT
|
||
* │ ├─ 010 ─ OPC_MXU_D16AVG
|
||
* │ ├─ 011 ─ OPC_MXU_D16AVGR
|
||
* │ ├─ 100 ─ OPC_MXU_Q8AVG
|
||
* │ ├─ 101 ─ OPC_MXU_Q8AVGR
|
||
* │ └─ 111 ─ OPC_MXU_Q8ADD
|
||
* │
|
||
* │ 20..18
|
||
* ├─ 000111 ─ OPC_MXU__POOL02 ─┬─ 000 ─ OPC_MXU_S32CPS
|
||
* │ ├─ 010 ─ OPC_MXU_D16CPS
|
||
* │ ├─ 100 ─ OPC_MXU_Q8ABD
|
||
* │ └─ 110 ─ OPC_MXU_Q16SAT
|
||
* ├─ 001000 ─ OPC_MXU_D16MUL
|
||
* │ 25..24
|
||
* ├─ 001001 ─ OPC_MXU__POOL03 ─┬─ 00 ─ OPC_MXU_D16MULF
|
||
* │ └─ 01 ─ OPC_MXU_D16MULE
|
||
* ├─ 001010 ─ OPC_MXU_D16MAC
|
||
* ├─ 001011 ─ OPC_MXU_D16MACF
|
||
* ├─ 001100 ─ OPC_MXU_D16MADL
|
||
* ├─ 001101 ─ OPC_MXU_S16MAD
|
||
* ├─ 001110 ─ OPC_MXU_Q16ADD
|
||
* ├─ 001111 ─ OPC_MXU_D16MACE 23
|
||
* │ ┌─ 0 ─ OPC_MXU_S32LDD
|
||
* ├─ 010000 ─ OPC_MXU__POOL04 ─┴─ 1 ─ OPC_MXU_S32LDDR
|
||
* │
|
||
* │ 23
|
||
* ├─ 010001 ─ OPC_MXU__POOL05 ─┬─ 0 ─ OPC_MXU_S32STD
|
||
* │ └─ 1 ─ OPC_MXU_S32STDR
|
||
* │
|
||
* │ 13..10
|
||
* ├─ 010010 ─ OPC_MXU__POOL06 ─┬─ 0000 ─ OPC_MXU_S32LDDV
|
||
* │ └─ 0001 ─ OPC_MXU_S32LDDVR
|
||
* │
|
||
* │ 13..10
|
||
* ├─ 010011 ─ OPC_MXU__POOL07 ─┬─ 0000 ─ OPC_MXU_S32STDV
|
||
* │ └─ 0001 ─ OPC_MXU_S32STDVR
|
||
* │
|
||
* │ 23
|
||
* ├─ 010100 ─ OPC_MXU__POOL08 ─┬─ 0 ─ OPC_MXU_S32LDI
|
||
* │ └─ 1 ─ OPC_MXU_S32LDIR
|
||
* │
|
||
* │ 23
|
||
* ├─ 010101 ─ OPC_MXU__POOL09 ─┬─ 0 ─ OPC_MXU_S32SDI
|
||
* │ └─ 1 ─ OPC_MXU_S32SDIR
|
||
* │
|
||
* │ 13..10
|
||
* ├─ 010110 ─ OPC_MXU__POOL10 ─┬─ 0000 ─ OPC_MXU_S32LDIV
|
||
* │ └─ 0001 ─ OPC_MXU_S32LDIVR
|
||
* │
|
||
* │ 13..10
|
||
* ├─ 010111 ─ OPC_MXU__POOL11 ─┬─ 0000 ─ OPC_MXU_S32SDIV
|
||
* │ └─ 0001 ─ OPC_MXU_S32SDIVR
|
||
* ├─ 011000 ─ OPC_MXU_D32ADD
|
||
* │ 23..22
|
||
* MXU ├─ 011001 ─ OPC_MXU__POOL12 ─┬─ 00 ─ OPC_MXU_D32ACC
|
||
* opcodes ─┤ ├─ 01 ─ OPC_MXU_D32ACCM
|
||
* │ └─ 10 ─ OPC_MXU_D32ASUM
|
||
* ├─ 011010 ─ <not assigned>
|
||
* │ 23..22
|
||
* ├─ 011011 ─ OPC_MXU__POOL13 ─┬─ 00 ─ OPC_MXU_Q16ACC
|
||
* │ ├─ 01 ─ OPC_MXU_Q16ACCM
|
||
* │ └─ 10 ─ OPC_MXU_Q16ASUM
|
||
* │
|
||
* │ 23..22
|
||
* ├─ 011100 ─ OPC_MXU__POOL14 ─┬─ 00 ─ OPC_MXU_Q8ADDE
|
||
* │ ├─ 01 ─ OPC_MXU_D8SUM
|
||
* ├─ 011101 ─ OPC_MXU_Q8ACCE └─ 10 ─ OPC_MXU_D8SUMC
|
||
* ├─ 011110 ─ <not assigned>
|
||
* ├─ 011111 ─ <not assigned>
|
||
* ├─ 100000 ─ <not assigned> (overlaps with CLZ)
|
||
* ├─ 100001 ─ <not assigned> (overlaps with CLO)
|
||
* ├─ 100010 ─ OPC_MXU_S8LDD
|
||
* ├─ 100011 ─ OPC_MXU_S8STD 15..14
|
||
* ├─ 100100 ─ OPC_MXU_S8LDI ┌─ 00 ─ OPC_MXU_S32MUL
|
||
* ├─ 100101 ─ OPC_MXU_S8SDI ├─ 00 ─ OPC_MXU_S32MULU
|
||
* │ ├─ 00 ─ OPC_MXU_S32EXTR
|
||
* ├─ 100110 ─ OPC_MXU__POOL15 ─┴─ 00 ─ OPC_MXU_S32EXTRV
|
||
* │
|
||
* │ 20..18
|
||
* ├─ 100111 ─ OPC_MXU__POOL16 ─┬─ 000 ─ OPC_MXU_D32SARW
|
||
* │ ├─ 001 ─ OPC_MXU_S32ALN
|
||
* │ ├─ 010 ─ OPC_MXU_S32ALNI
|
||
* │ ├─ 011 ─ OPC_MXU_S32LUI
|
||
* │ ├─ 100 ─ OPC_MXU_S32NOR
|
||
* │ ├─ 101 ─ OPC_MXU_S32AND
|
||
* │ ├─ 110 ─ OPC_MXU_S32OR
|
||
* │ └─ 111 ─ OPC_MXU_S32XOR
|
||
* │
|
||
* │ 7..5
|
||
* ├─ 101000 ─ OPC_MXU__POOL17 ─┬─ 000 ─ OPC_MXU_LXB
|
||
* │ ├─ 001 ─ OPC_MXU_LXH
|
||
* ├─ 101001 ─ <not assigned> ├─ 011 ─ OPC_MXU_LXW
|
||
* ├─ 101010 ─ OPC_MXU_S16LDD ├─ 100 ─ OPC_MXU_LXBU
|
||
* ├─ 101011 ─ OPC_MXU_S16STD └─ 101 ─ OPC_MXU_LXHU
|
||
* ├─ 101100 ─ OPC_MXU_S16LDI
|
||
* ├─ 101101 ─ OPC_MXU_S16SDI
|
||
* ├─ 101110 ─ OPC_MXU_S32M2I
|
||
* ├─ 101111 ─ OPC_MXU_S32I2M
|
||
* ├─ 110000 ─ OPC_MXU_D32SLL
|
||
* ├─ 110001 ─ OPC_MXU_D32SLR 20..18
|
||
* ├─ 110010 ─ OPC_MXU_D32SARL ┌─ 000 ─ OPC_MXU_D32SLLV
|
||
* ├─ 110011 ─ OPC_MXU_D32SAR ├─ 001 ─ OPC_MXU_D32SLRV
|
||
* ├─ 110100 ─ OPC_MXU_Q16SLL ├─ 010 ─ OPC_MXU_D32SARV
|
||
* ├─ 110101 ─ OPC_MXU_Q16SLR ├─ 011 ─ OPC_MXU_Q16SLLV
|
||
* │ ├─ 100 ─ OPC_MXU_Q16SLRV
|
||
* ├─ 110110 ─ OPC_MXU__POOL18 ─┴─ 101 ─ OPC_MXU_Q16SARV
|
||
* │
|
||
* ├─ 110111 ─ OPC_MXU_Q16SAR
|
||
* │ 23..22
|
||
* ├─ 111000 ─ OPC_MXU__POOL19 ─┬─ 00 ─ OPC_MXU_Q8MUL
|
||
* │ └─ 01 ─ OPC_MXU_Q8MULSU
|
||
* │
|
||
* │ 20..18
|
||
* ├─ 111001 ─ OPC_MXU__POOL20 ─┬─ 000 ─ OPC_MXU_Q8MOVZ
|
||
* │ ├─ 001 ─ OPC_MXU_Q8MOVN
|
||
* │ ├─ 010 ─ OPC_MXU_D16MOVZ
|
||
* │ ├─ 011 ─ OPC_MXU_D16MOVN
|
||
* │ ├─ 100 ─ OPC_MXU_S32MOVZ
|
||
* │ └─ 101 ─ OPC_MXU_S32MOVN
|
||
* │
|
||
* │ 23..22
|
||
* ├─ 111010 ─ OPC_MXU__POOL21 ─┬─ 00 ─ OPC_MXU_Q8MAC
|
||
* │ └─ 10 ─ OPC_MXU_Q8MACSU
|
||
* ├─ 111011 ─ OPC_MXU_Q16SCOP
|
||
* ├─ 111100 ─ OPC_MXU_Q8MADL
|
||
* ├─ 111101 ─ OPC_MXU_S32SFL
|
||
* ├─ 111110 ─ OPC_MXU_Q8SAD
|
||
* └─ 111111 ─ <not assigned> (overlaps with SDBBP)
|
||
*
|
||
*
|
||
* Compiled after:
|
||
*
|
||
* "XBurst® Instruction Set Architecture MIPS eXtension/enhanced Unit
|
||
* Programming Manual", Ingenic Semiconductor Co, Ltd., revision June 2, 2017
|
||
*/
|
||
|
||
enum {
|
||
OPC_MXU__POOL00 = 0x03,
|
||
OPC_MXU_D16MUL = 0x08,
|
||
OPC_MXU_D16MAC = 0x0A,
|
||
OPC_MXU__POOL04 = 0x10,
|
||
OPC_MXU_S8LDD = 0x22,
|
||
OPC_MXU__POOL16 = 0x27,
|
||
OPC_MXU_S32M2I = 0x2E,
|
||
OPC_MXU_S32I2M = 0x2F,
|
||
OPC_MXU__POOL19 = 0x38,
|
||
};
|
||
|
||
|
||
/*
|
||
* MXU pool 00
|
||
*/
|
||
enum {
|
||
OPC_MXU_S32MAX = 0x00,
|
||
OPC_MXU_S32MIN = 0x01,
|
||
OPC_MXU_D16MAX = 0x02,
|
||
OPC_MXU_D16MIN = 0x03,
|
||
OPC_MXU_Q8MAX = 0x04,
|
||
OPC_MXU_Q8MIN = 0x05,
|
||
};
|
||
|
||
/*
|
||
* MXU pool 04
|
||
*/
|
||
enum {
|
||
OPC_MXU_S32LDD = 0x00,
|
||
OPC_MXU_S32LDDR = 0x01,
|
||
};
|
||
|
||
/*
|
||
* MXU pool 16
|
||
*/
|
||
enum {
|
||
OPC_MXU_S32ALNI = 0x02,
|
||
OPC_MXU_S32NOR = 0x04,
|
||
OPC_MXU_S32AND = 0x05,
|
||
OPC_MXU_S32OR = 0x06,
|
||
OPC_MXU_S32XOR = 0x07,
|
||
};
|
||
|
||
/*
|
||
* MXU pool 19
|
||
*/
|
||
enum {
|
||
OPC_MXU_Q8MUL = 0x00,
|
||
OPC_MXU_Q8MULSU = 0x01,
|
||
};
|
||
|
||
/* MXU accumulate add/subtract 1-bit pattern 'aptn1' */
|
||
#define MXU_APTN1_A 0
|
||
#define MXU_APTN1_S 1
|
||
|
||
/* MXU accumulate add/subtract 2-bit pattern 'aptn2' */
|
||
#define MXU_APTN2_AA 0
|
||
#define MXU_APTN2_AS 1
|
||
#define MXU_APTN2_SA 2
|
||
#define MXU_APTN2_SS 3
|
||
|
||
/* MXU execute add/subtract 2-bit pattern 'eptn2' */
|
||
#define MXU_EPTN2_AA 0
|
||
#define MXU_EPTN2_AS 1
|
||
#define MXU_EPTN2_SA 2
|
||
#define MXU_EPTN2_SS 3
|
||
|
||
/* MXU operand getting pattern 'optn2' */
|
||
#define MXU_OPTN2_PTN0 0
|
||
#define MXU_OPTN2_PTN1 1
|
||
#define MXU_OPTN2_PTN2 2
|
||
#define MXU_OPTN2_PTN3 3
|
||
/* alternative naming scheme for 'optn2' */
|
||
#define MXU_OPTN2_WW 0
|
||
#define MXU_OPTN2_LW 1
|
||
#define MXU_OPTN2_HW 2
|
||
#define MXU_OPTN2_XW 3
|
||
|
||
/* MXU operand getting pattern 'optn3' */
|
||
#define MXU_OPTN3_PTN0 0
|
||
#define MXU_OPTN3_PTN1 1
|
||
#define MXU_OPTN3_PTN2 2
|
||
#define MXU_OPTN3_PTN3 3
|
||
#define MXU_OPTN3_PTN4 4
|
||
#define MXU_OPTN3_PTN5 5
|
||
#define MXU_OPTN3_PTN6 6
|
||
#define MXU_OPTN3_PTN7 7
|
||
|
||
/* MXU registers */
|
||
static TCGv mxu_gpr[NUMBER_OF_MXU_REGISTERS - 1];
|
||
static TCGv mxu_CR;
|
||
|
||
static const char * const mxuregnames[] = {
|
||
"XR1", "XR2", "XR3", "XR4", "XR5", "XR6", "XR7", "XR8",
|
||
"XR9", "XR10", "XR11", "XR12", "XR13", "XR14", "XR15", "MXU_CR",
|
||
};
|
||
|
||
void mxu_translate_init(void)
|
||
{
|
||
for (unsigned i = 0; i < NUMBER_OF_MXU_REGISTERS - 1; i++) {
|
||
mxu_gpr[i] = tcg_global_mem_new(cpu_env,
|
||
offsetof(CPUMIPSState, active_tc.mxu_gpr[i]),
|
||
mxuregnames[i]);
|
||
}
|
||
|
||
mxu_CR = tcg_global_mem_new(cpu_env,
|
||
offsetof(CPUMIPSState, active_tc.mxu_cr),
|
||
mxuregnames[NUMBER_OF_MXU_REGISTERS - 1]);
|
||
}
|
||
|
||
/* MXU General purpose registers moves. */
|
||
static inline void gen_load_mxu_gpr(TCGv t, unsigned int reg)
|
||
{
|
||
if (reg == 0) {
|
||
tcg_gen_movi_tl(t, 0);
|
||
} else if (reg <= 15) {
|
||
tcg_gen_mov_tl(t, mxu_gpr[reg - 1]);
|
||
}
|
||
}
|
||
|
||
static inline void gen_store_mxu_gpr(TCGv t, unsigned int reg)
|
||
{
|
||
if (reg > 0 && reg <= 15) {
|
||
tcg_gen_mov_tl(mxu_gpr[reg - 1], t);
|
||
}
|
||
}
|
||
|
||
/* MXU control register moves. */
|
||
static inline void gen_load_mxu_cr(TCGv t)
|
||
{
|
||
tcg_gen_mov_tl(t, mxu_CR);
|
||
}
|
||
|
||
static inline void gen_store_mxu_cr(TCGv t)
|
||
{
|
||
/* TODO: Add handling of RW rules for MXU_CR. */
|
||
tcg_gen_mov_tl(mxu_CR, t);
|
||
}
|
||
|
||
/*
|
||
* S32I2M XRa, rb - Register move from GRF to XRF
|
||
*/
|
||
static void gen_mxu_s32i2m(DisasContext *ctx)
|
||
{
|
||
TCGv t0;
|
||
uint32_t XRa, Rb;
|
||
|
||
t0 = tcg_temp_new();
|
||
|
||
XRa = extract32(ctx->opcode, 6, 5);
|
||
Rb = extract32(ctx->opcode, 16, 5);
|
||
|
||
gen_load_gpr(t0, Rb);
|
||
if (XRa <= 15) {
|
||
gen_store_mxu_gpr(t0, XRa);
|
||
} else if (XRa == 16) {
|
||
gen_store_mxu_cr(t0);
|
||
}
|
||
|
||
tcg_temp_free(t0);
|
||
}
|
||
|
||
/*
|
||
* S32M2I XRa, rb - Register move from XRF to GRF
|
||
*/
|
||
static void gen_mxu_s32m2i(DisasContext *ctx)
|
||
{
|
||
TCGv t0;
|
||
uint32_t XRa, Rb;
|
||
|
||
t0 = tcg_temp_new();
|
||
|
||
XRa = extract32(ctx->opcode, 6, 5);
|
||
Rb = extract32(ctx->opcode, 16, 5);
|
||
|
||
if (XRa <= 15) {
|
||
gen_load_mxu_gpr(t0, XRa);
|
||
} else if (XRa == 16) {
|
||
gen_load_mxu_cr(t0);
|
||
}
|
||
|
||
gen_store_gpr(t0, Rb);
|
||
|
||
tcg_temp_free(t0);
|
||
}
|
||
|
||
/*
|
||
* S8LDD XRa, Rb, s8, optn3 - Load a byte from memory to XRF
|
||
*/
|
||
static void gen_mxu_s8ldd(DisasContext *ctx)
|
||
{
|
||
TCGv t0, t1;
|
||
uint32_t XRa, Rb, s8, optn3;
|
||
|
||
t0 = tcg_temp_new();
|
||
t1 = tcg_temp_new();
|
||
|
||
XRa = extract32(ctx->opcode, 6, 4);
|
||
s8 = extract32(ctx->opcode, 10, 8);
|
||
optn3 = extract32(ctx->opcode, 18, 3);
|
||
Rb = extract32(ctx->opcode, 21, 5);
|
||
|
||
gen_load_gpr(t0, Rb);
|
||
tcg_gen_addi_tl(t0, t0, (int8_t)s8);
|
||
|
||
switch (optn3) {
|
||
/* XRa[7:0] = tmp8 */
|
||
case MXU_OPTN3_PTN0:
|
||
tcg_gen_qemu_ld_tl(t1, t0, ctx->mem_idx, MO_UB);
|
||
gen_load_mxu_gpr(t0, XRa);
|
||
tcg_gen_deposit_tl(t0, t0, t1, 0, 8);
|
||
break;
|
||
/* XRa[15:8] = tmp8 */
|
||
case MXU_OPTN3_PTN1:
|
||
tcg_gen_qemu_ld_tl(t1, t0, ctx->mem_idx, MO_UB);
|
||
gen_load_mxu_gpr(t0, XRa);
|
||
tcg_gen_deposit_tl(t0, t0, t1, 8, 8);
|
||
break;
|
||
/* XRa[23:16] = tmp8 */
|
||
case MXU_OPTN3_PTN2:
|
||
tcg_gen_qemu_ld_tl(t1, t0, ctx->mem_idx, MO_UB);
|
||
gen_load_mxu_gpr(t0, XRa);
|
||
tcg_gen_deposit_tl(t0, t0, t1, 16, 8);
|
||
break;
|
||
/* XRa[31:24] = tmp8 */
|
||
case MXU_OPTN3_PTN3:
|
||
tcg_gen_qemu_ld_tl(t1, t0, ctx->mem_idx, MO_UB);
|
||
gen_load_mxu_gpr(t0, XRa);
|
||
tcg_gen_deposit_tl(t0, t0, t1, 24, 8);
|
||
break;
|
||
/* XRa = {8'b0, tmp8, 8'b0, tmp8} */
|
||
case MXU_OPTN3_PTN4:
|
||
tcg_gen_qemu_ld_tl(t1, t0, ctx->mem_idx, MO_UB);
|
||
tcg_gen_deposit_tl(t0, t1, t1, 16, 16);
|
||
break;
|
||
/* XRa = {tmp8, 8'b0, tmp8, 8'b0} */
|
||
case MXU_OPTN3_PTN5:
|
||
tcg_gen_qemu_ld_tl(t1, t0, ctx->mem_idx, MO_UB);
|
||
tcg_gen_shli_tl(t1, t1, 8);
|
||
tcg_gen_deposit_tl(t0, t1, t1, 16, 16);
|
||
break;
|
||
/* XRa = {{8{sign of tmp8}}, tmp8, {8{sign of tmp8}}, tmp8} */
|
||
case MXU_OPTN3_PTN6:
|
||
tcg_gen_qemu_ld_tl(t1, t0, ctx->mem_idx, MO_SB);
|
||
tcg_gen_mov_tl(t0, t1);
|
||
tcg_gen_andi_tl(t0, t0, 0xFF00FFFF);
|
||
tcg_gen_shli_tl(t1, t1, 16);
|
||
tcg_gen_or_tl(t0, t0, t1);
|
||
break;
|
||
/* XRa = {tmp8, tmp8, tmp8, tmp8} */
|
||
case MXU_OPTN3_PTN7:
|
||
tcg_gen_qemu_ld_tl(t1, t0, ctx->mem_idx, MO_UB);
|
||
tcg_gen_deposit_tl(t1, t1, t1, 8, 8);
|
||
tcg_gen_deposit_tl(t0, t1, t1, 16, 16);
|
||
break;
|
||
}
|
||
|
||
gen_store_mxu_gpr(t0, XRa);
|
||
|
||
tcg_temp_free(t0);
|
||
tcg_temp_free(t1);
|
||
}
|
||
|
||
/*
|
||
* D16MUL XRa, XRb, XRc, XRd, optn2 - Signed 16 bit pattern multiplication
|
||
*/
|
||
static void gen_mxu_d16mul(DisasContext *ctx)
|
||
{
|
||
TCGv t0, t1, t2, t3;
|
||
uint32_t XRa, XRb, XRc, XRd, optn2;
|
||
|
||
t0 = tcg_temp_new();
|
||
t1 = tcg_temp_new();
|
||
t2 = tcg_temp_new();
|
||
t3 = tcg_temp_new();
|
||
|
||
XRa = extract32(ctx->opcode, 6, 4);
|
||
XRb = extract32(ctx->opcode, 10, 4);
|
||
XRc = extract32(ctx->opcode, 14, 4);
|
||
XRd = extract32(ctx->opcode, 18, 4);
|
||
optn2 = extract32(ctx->opcode, 22, 2);
|
||
|
||
gen_load_mxu_gpr(t1, XRb);
|
||
tcg_gen_sextract_tl(t0, t1, 0, 16);
|
||
tcg_gen_sextract_tl(t1, t1, 16, 16);
|
||
gen_load_mxu_gpr(t3, XRc);
|
||
tcg_gen_sextract_tl(t2, t3, 0, 16);
|
||
tcg_gen_sextract_tl(t3, t3, 16, 16);
|
||
|
||
switch (optn2) {
|
||
case MXU_OPTN2_WW: /* XRB.H*XRC.H == lop, XRB.L*XRC.L == rop */
|
||
tcg_gen_mul_tl(t3, t1, t3);
|
||
tcg_gen_mul_tl(t2, t0, t2);
|
||
break;
|
||
case MXU_OPTN2_LW: /* XRB.L*XRC.H == lop, XRB.L*XRC.L == rop */
|
||
tcg_gen_mul_tl(t3, t0, t3);
|
||
tcg_gen_mul_tl(t2, t0, t2);
|
||
break;
|
||
case MXU_OPTN2_HW: /* XRB.H*XRC.H == lop, XRB.H*XRC.L == rop */
|
||
tcg_gen_mul_tl(t3, t1, t3);
|
||
tcg_gen_mul_tl(t2, t1, t2);
|
||
break;
|
||
case MXU_OPTN2_XW: /* XRB.L*XRC.H == lop, XRB.H*XRC.L == rop */
|
||
tcg_gen_mul_tl(t3, t0, t3);
|
||
tcg_gen_mul_tl(t2, t1, t2);
|
||
break;
|
||
}
|
||
gen_store_mxu_gpr(t3, XRa);
|
||
gen_store_mxu_gpr(t2, XRd);
|
||
|
||
tcg_temp_free(t0);
|
||
tcg_temp_free(t1);
|
||
tcg_temp_free(t2);
|
||
tcg_temp_free(t3);
|
||
}
|
||
|
||
/*
|
||
* D16MAC XRa, XRb, XRc, XRd, aptn2, optn2 - Signed 16 bit pattern multiply
|
||
* and accumulate
|
||
*/
|
||
static void gen_mxu_d16mac(DisasContext *ctx)
|
||
{
|
||
TCGv t0, t1, t2, t3;
|
||
uint32_t XRa, XRb, XRc, XRd, optn2, aptn2;
|
||
|
||
t0 = tcg_temp_new();
|
||
t1 = tcg_temp_new();
|
||
t2 = tcg_temp_new();
|
||
t3 = tcg_temp_new();
|
||
|
||
XRa = extract32(ctx->opcode, 6, 4);
|
||
XRb = extract32(ctx->opcode, 10, 4);
|
||
XRc = extract32(ctx->opcode, 14, 4);
|
||
XRd = extract32(ctx->opcode, 18, 4);
|
||
optn2 = extract32(ctx->opcode, 22, 2);
|
||
aptn2 = extract32(ctx->opcode, 24, 2);
|
||
|
||
gen_load_mxu_gpr(t1, XRb);
|
||
tcg_gen_sextract_tl(t0, t1, 0, 16);
|
||
tcg_gen_sextract_tl(t1, t1, 16, 16);
|
||
|
||
gen_load_mxu_gpr(t3, XRc);
|
||
tcg_gen_sextract_tl(t2, t3, 0, 16);
|
||
tcg_gen_sextract_tl(t3, t3, 16, 16);
|
||
|
||
switch (optn2) {
|
||
case MXU_OPTN2_WW: /* XRB.H*XRC.H == lop, XRB.L*XRC.L == rop */
|
||
tcg_gen_mul_tl(t3, t1, t3);
|
||
tcg_gen_mul_tl(t2, t0, t2);
|
||
break;
|
||
case MXU_OPTN2_LW: /* XRB.L*XRC.H == lop, XRB.L*XRC.L == rop */
|
||
tcg_gen_mul_tl(t3, t0, t3);
|
||
tcg_gen_mul_tl(t2, t0, t2);
|
||
break;
|
||
case MXU_OPTN2_HW: /* XRB.H*XRC.H == lop, XRB.H*XRC.L == rop */
|
||
tcg_gen_mul_tl(t3, t1, t3);
|
||
tcg_gen_mul_tl(t2, t1, t2);
|
||
break;
|
||
case MXU_OPTN2_XW: /* XRB.L*XRC.H == lop, XRB.H*XRC.L == rop */
|
||
tcg_gen_mul_tl(t3, t0, t3);
|
||
tcg_gen_mul_tl(t2, t1, t2);
|
||
break;
|
||
}
|
||
gen_load_mxu_gpr(t0, XRa);
|
||
gen_load_mxu_gpr(t1, XRd);
|
||
|
||
switch (aptn2) {
|
||
case MXU_APTN2_AA:
|
||
tcg_gen_add_tl(t3, t0, t3);
|
||
tcg_gen_add_tl(t2, t1, t2);
|
||
break;
|
||
case MXU_APTN2_AS:
|
||
tcg_gen_add_tl(t3, t0, t3);
|
||
tcg_gen_sub_tl(t2, t1, t2);
|
||
break;
|
||
case MXU_APTN2_SA:
|
||
tcg_gen_sub_tl(t3, t0, t3);
|
||
tcg_gen_add_tl(t2, t1, t2);
|
||
break;
|
||
case MXU_APTN2_SS:
|
||
tcg_gen_sub_tl(t3, t0, t3);
|
||
tcg_gen_sub_tl(t2, t1, t2);
|
||
break;
|
||
}
|
||
gen_store_mxu_gpr(t3, XRa);
|
||
gen_store_mxu_gpr(t2, XRd);
|
||
|
||
tcg_temp_free(t0);
|
||
tcg_temp_free(t1);
|
||
tcg_temp_free(t2);
|
||
tcg_temp_free(t3);
|
||
}
|
||
|
||
/*
|
||
* Q8MUL XRa, XRb, XRc, XRd - Parallel unsigned 8 bit pattern multiply
|
||
* Q8MULSU XRa, XRb, XRc, XRd - Parallel signed 8 bit pattern multiply
|
||
*/
|
||
static void gen_mxu_q8mul_q8mulsu(DisasContext *ctx)
|
||
{
|
||
TCGv t0, t1, t2, t3, t4, t5, t6, t7;
|
||
uint32_t XRa, XRb, XRc, XRd, sel;
|
||
|
||
t0 = tcg_temp_new();
|
||
t1 = tcg_temp_new();
|
||
t2 = tcg_temp_new();
|
||
t3 = tcg_temp_new();
|
||
t4 = tcg_temp_new();
|
||
t5 = tcg_temp_new();
|
||
t6 = tcg_temp_new();
|
||
t7 = tcg_temp_new();
|
||
|
||
XRa = extract32(ctx->opcode, 6, 4);
|
||
XRb = extract32(ctx->opcode, 10, 4);
|
||
XRc = extract32(ctx->opcode, 14, 4);
|
||
XRd = extract32(ctx->opcode, 18, 4);
|
||
sel = extract32(ctx->opcode, 22, 2);
|
||
|
||
gen_load_mxu_gpr(t3, XRb);
|
||
gen_load_mxu_gpr(t7, XRc);
|
||
|
||
if (sel == 0x2) {
|
||
/* Q8MULSU */
|
||
tcg_gen_ext8s_tl(t0, t3);
|
||
tcg_gen_shri_tl(t3, t3, 8);
|
||
tcg_gen_ext8s_tl(t1, t3);
|
||
tcg_gen_shri_tl(t3, t3, 8);
|
||
tcg_gen_ext8s_tl(t2, t3);
|
||
tcg_gen_shri_tl(t3, t3, 8);
|
||
tcg_gen_ext8s_tl(t3, t3);
|
||
} else {
|
||
/* Q8MUL */
|
||
tcg_gen_ext8u_tl(t0, t3);
|
||
tcg_gen_shri_tl(t3, t3, 8);
|
||
tcg_gen_ext8u_tl(t1, t3);
|
||
tcg_gen_shri_tl(t3, t3, 8);
|
||
tcg_gen_ext8u_tl(t2, t3);
|
||
tcg_gen_shri_tl(t3, t3, 8);
|
||
tcg_gen_ext8u_tl(t3, t3);
|
||
}
|
||
|
||
tcg_gen_ext8u_tl(t4, t7);
|
||
tcg_gen_shri_tl(t7, t7, 8);
|
||
tcg_gen_ext8u_tl(t5, t7);
|
||
tcg_gen_shri_tl(t7, t7, 8);
|
||
tcg_gen_ext8u_tl(t6, t7);
|
||
tcg_gen_shri_tl(t7, t7, 8);
|
||
tcg_gen_ext8u_tl(t7, t7);
|
||
|
||
tcg_gen_mul_tl(t0, t0, t4);
|
||
tcg_gen_mul_tl(t1, t1, t5);
|
||
tcg_gen_mul_tl(t2, t2, t6);
|
||
tcg_gen_mul_tl(t3, t3, t7);
|
||
|
||
tcg_gen_andi_tl(t0, t0, 0xFFFF);
|
||
tcg_gen_andi_tl(t1, t1, 0xFFFF);
|
||
tcg_gen_andi_tl(t2, t2, 0xFFFF);
|
||
tcg_gen_andi_tl(t3, t3, 0xFFFF);
|
||
|
||
tcg_gen_shli_tl(t1, t1, 16);
|
||
tcg_gen_shli_tl(t3, t3, 16);
|
||
|
||
tcg_gen_or_tl(t0, t0, t1);
|
||
tcg_gen_or_tl(t1, t2, t3);
|
||
|
||
gen_store_mxu_gpr(t0, XRd);
|
||
gen_store_mxu_gpr(t1, XRa);
|
||
|
||
tcg_temp_free(t0);
|
||
tcg_temp_free(t1);
|
||
tcg_temp_free(t2);
|
||
tcg_temp_free(t3);
|
||
tcg_temp_free(t4);
|
||
tcg_temp_free(t5);
|
||
tcg_temp_free(t6);
|
||
tcg_temp_free(t7);
|
||
}
|
||
|
||
/*
|
||
* S32LDD XRa, Rb, S12 - Load a word from memory to XRF
|
||
* S32LDDR XRa, Rb, S12 - Load a word from memory to XRF, reversed byte seq.
|
||
*/
|
||
static void gen_mxu_s32ldd_s32lddr(DisasContext *ctx)
|
||
{
|
||
TCGv t0, t1;
|
||
uint32_t XRa, Rb, s12, sel;
|
||
|
||
t0 = tcg_temp_new();
|
||
t1 = tcg_temp_new();
|
||
|
||
XRa = extract32(ctx->opcode, 6, 4);
|
||
s12 = extract32(ctx->opcode, 10, 10);
|
||
sel = extract32(ctx->opcode, 20, 1);
|
||
Rb = extract32(ctx->opcode, 21, 5);
|
||
|
||
gen_load_gpr(t0, Rb);
|
||
|
||
tcg_gen_movi_tl(t1, s12);
|
||
tcg_gen_shli_tl(t1, t1, 2);
|
||
if (s12 & 0x200) {
|
||
tcg_gen_ori_tl(t1, t1, 0xFFFFF000);
|
||
}
|
||
tcg_gen_add_tl(t1, t0, t1);
|
||
tcg_gen_qemu_ld_tl(t1, t1, ctx->mem_idx, MO_SL);
|
||
|
||
if (sel == 1) {
|
||
/* S32LDDR */
|
||
tcg_gen_bswap32_tl(t1, t1);
|
||
}
|
||
gen_store_mxu_gpr(t1, XRa);
|
||
|
||
tcg_temp_free(t0);
|
||
tcg_temp_free(t1);
|
||
}
|
||
|
||
|
||
/*
|
||
* MXU instruction category: logic
|
||
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||
*
|
||
* S32NOR S32AND S32OR S32XOR
|
||
*/
|
||
|
||
/*
|
||
* S32NOR XRa, XRb, XRc
|
||
* Update XRa with the result of logical bitwise 'nor' operation
|
||
* applied to the content of XRb and XRc.
|
||
*/
|
||
static void gen_mxu_S32NOR(DisasContext *ctx)
|
||
{
|
||
uint32_t pad, XRc, XRb, XRa;
|
||
|
||
pad = extract32(ctx->opcode, 21, 5);
|
||
XRc = extract32(ctx->opcode, 14, 4);
|
||
XRb = extract32(ctx->opcode, 10, 4);
|
||
XRa = extract32(ctx->opcode, 6, 4);
|
||
|
||
if (unlikely(pad != 0)) {
|
||
/* opcode padding incorrect -> do nothing */
|
||
} else if (unlikely(XRa == 0)) {
|
||
/* destination is zero register -> do nothing */
|
||
} else if (unlikely((XRb == 0) && (XRc == 0))) {
|
||
/* both operands zero registers -> just set destination to all 1s */
|
||
tcg_gen_movi_i32(mxu_gpr[XRa - 1], 0xFFFFFFFF);
|
||
} else if (unlikely(XRb == 0)) {
|
||
/* XRb zero register -> just set destination to the negation of XRc */
|
||
tcg_gen_not_i32(mxu_gpr[XRa - 1], mxu_gpr[XRc - 1]);
|
||
} else if (unlikely(XRc == 0)) {
|
||
/* XRa zero register -> just set destination to the negation of XRb */
|
||
tcg_gen_not_i32(mxu_gpr[XRa - 1], mxu_gpr[XRb - 1]);
|
||
} else if (unlikely(XRb == XRc)) {
|
||
/* both operands same -> just set destination to the negation of XRb */
|
||
tcg_gen_not_i32(mxu_gpr[XRa - 1], mxu_gpr[XRb - 1]);
|
||
} else {
|
||
/* the most general case */
|
||
tcg_gen_nor_i32(mxu_gpr[XRa - 1], mxu_gpr[XRb - 1], mxu_gpr[XRc - 1]);
|
||
}
|
||
}
|
||
|
||
/*
|
||
* S32AND XRa, XRb, XRc
|
||
* Update XRa with the result of logical bitwise 'and' operation
|
||
* applied to the content of XRb and XRc.
|
||
*/
|
||
static void gen_mxu_S32AND(DisasContext *ctx)
|
||
{
|
||
uint32_t pad, XRc, XRb, XRa;
|
||
|
||
pad = extract32(ctx->opcode, 21, 5);
|
||
XRc = extract32(ctx->opcode, 14, 4);
|
||
XRb = extract32(ctx->opcode, 10, 4);
|
||
XRa = extract32(ctx->opcode, 6, 4);
|
||
|
||
if (unlikely(pad != 0)) {
|
||
/* opcode padding incorrect -> do nothing */
|
||
} else if (unlikely(XRa == 0)) {
|
||
/* destination is zero register -> do nothing */
|
||
} else if (unlikely((XRb == 0) || (XRc == 0))) {
|
||
/* one of operands zero register -> just set destination to all 0s */
|
||
tcg_gen_movi_i32(mxu_gpr[XRa - 1], 0);
|
||
} else if (unlikely(XRb == XRc)) {
|
||
/* both operands same -> just set destination to one of them */
|
||
tcg_gen_mov_i32(mxu_gpr[XRa - 1], mxu_gpr[XRb - 1]);
|
||
} else {
|
||
/* the most general case */
|
||
tcg_gen_and_i32(mxu_gpr[XRa - 1], mxu_gpr[XRb - 1], mxu_gpr[XRc - 1]);
|
||
}
|
||
}
|
||
|
||
/*
|
||
* S32OR XRa, XRb, XRc
|
||
* Update XRa with the result of logical bitwise 'or' operation
|
||
* applied to the content of XRb and XRc.
|
||
*/
|
||
static void gen_mxu_S32OR(DisasContext *ctx)
|
||
{
|
||
uint32_t pad, XRc, XRb, XRa;
|
||
|
||
pad = extract32(ctx->opcode, 21, 5);
|
||
XRc = extract32(ctx->opcode, 14, 4);
|
||
XRb = extract32(ctx->opcode, 10, 4);
|
||
XRa = extract32(ctx->opcode, 6, 4);
|
||
|
||
if (unlikely(pad != 0)) {
|
||
/* opcode padding incorrect -> do nothing */
|
||
} else if (unlikely(XRa == 0)) {
|
||
/* destination is zero register -> do nothing */
|
||
} else if (unlikely((XRb == 0) && (XRc == 0))) {
|
||
/* both operands zero registers -> just set destination to all 0s */
|
||
tcg_gen_movi_i32(mxu_gpr[XRa - 1], 0);
|
||
} else if (unlikely(XRb == 0)) {
|
||
/* XRb zero register -> just set destination to the content of XRc */
|
||
tcg_gen_mov_i32(mxu_gpr[XRa - 1], mxu_gpr[XRc - 1]);
|
||
} else if (unlikely(XRc == 0)) {
|
||
/* XRc zero register -> just set destination to the content of XRb */
|
||
tcg_gen_mov_i32(mxu_gpr[XRa - 1], mxu_gpr[XRb - 1]);
|
||
} else if (unlikely(XRb == XRc)) {
|
||
/* both operands same -> just set destination to one of them */
|
||
tcg_gen_mov_i32(mxu_gpr[XRa - 1], mxu_gpr[XRb - 1]);
|
||
} else {
|
||
/* the most general case */
|
||
tcg_gen_or_i32(mxu_gpr[XRa - 1], mxu_gpr[XRb - 1], mxu_gpr[XRc - 1]);
|
||
}
|
||
}
|
||
|
||
/*
|
||
* S32XOR XRa, XRb, XRc
|
||
* Update XRa with the result of logical bitwise 'xor' operation
|
||
* applied to the content of XRb and XRc.
|
||
*/
|
||
static void gen_mxu_S32XOR(DisasContext *ctx)
|
||
{
|
||
uint32_t pad, XRc, XRb, XRa;
|
||
|
||
pad = extract32(ctx->opcode, 21, 5);
|
||
XRc = extract32(ctx->opcode, 14, 4);
|
||
XRb = extract32(ctx->opcode, 10, 4);
|
||
XRa = extract32(ctx->opcode, 6, 4);
|
||
|
||
if (unlikely(pad != 0)) {
|
||
/* opcode padding incorrect -> do nothing */
|
||
} else if (unlikely(XRa == 0)) {
|
||
/* destination is zero register -> do nothing */
|
||
} else if (unlikely((XRb == 0) && (XRc == 0))) {
|
||
/* both operands zero registers -> just set destination to all 0s */
|
||
tcg_gen_movi_i32(mxu_gpr[XRa - 1], 0);
|
||
} else if (unlikely(XRb == 0)) {
|
||
/* XRb zero register -> just set destination to the content of XRc */
|
||
tcg_gen_mov_i32(mxu_gpr[XRa - 1], mxu_gpr[XRc - 1]);
|
||
} else if (unlikely(XRc == 0)) {
|
||
/* XRc zero register -> just set destination to the content of XRb */
|
||
tcg_gen_mov_i32(mxu_gpr[XRa - 1], mxu_gpr[XRb - 1]);
|
||
} else if (unlikely(XRb == XRc)) {
|
||
/* both operands same -> just set destination to all 0s */
|
||
tcg_gen_movi_i32(mxu_gpr[XRa - 1], 0);
|
||
} else {
|
||
/* the most general case */
|
||
tcg_gen_xor_i32(mxu_gpr[XRa - 1], mxu_gpr[XRb - 1], mxu_gpr[XRc - 1]);
|
||
}
|
||
}
|
||
|
||
|
||
/*
|
||
* MXU instruction category max/min
|
||
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||
*
|
||
* S32MAX D16MAX Q8MAX
|
||
* S32MIN D16MIN Q8MIN
|
||
*/
|
||
|
||
/*
|
||
* S32MAX XRa, XRb, XRc
|
||
* Update XRa with the maximum of signed 32-bit integers contained
|
||
* in XRb and XRc.
|
||
*
|
||
* S32MIN XRa, XRb, XRc
|
||
* Update XRa with the minimum of signed 32-bit integers contained
|
||
* in XRb and XRc.
|
||
*/
|
||
static void gen_mxu_S32MAX_S32MIN(DisasContext *ctx)
|
||
{
|
||
uint32_t pad, opc, XRc, XRb, XRa;
|
||
|
||
pad = extract32(ctx->opcode, 21, 5);
|
||
opc = extract32(ctx->opcode, 18, 3);
|
||
XRc = extract32(ctx->opcode, 14, 4);
|
||
XRb = extract32(ctx->opcode, 10, 4);
|
||
XRa = extract32(ctx->opcode, 6, 4);
|
||
|
||
if (unlikely(pad != 0)) {
|
||
/* opcode padding incorrect -> do nothing */
|
||
} else if (unlikely(XRa == 0)) {
|
||
/* destination is zero register -> do nothing */
|
||
} else if (unlikely((XRb == 0) && (XRc == 0))) {
|
||
/* both operands zero registers -> just set destination to zero */
|
||
tcg_gen_movi_i32(mxu_gpr[XRa - 1], 0);
|
||
} else if (unlikely((XRb == 0) || (XRc == 0))) {
|
||
/* exactly one operand is zero register - find which one is not...*/
|
||
uint32_t XRx = XRb ? XRb : XRc;
|
||
/* ...and do max/min operation with one operand 0 */
|
||
if (opc == OPC_MXU_S32MAX) {
|
||
tcg_gen_smax_i32(mxu_gpr[XRa - 1], mxu_gpr[XRx - 1], 0);
|
||
} else {
|
||
tcg_gen_smin_i32(mxu_gpr[XRa - 1], mxu_gpr[XRx - 1], 0);
|
||
}
|
||
} else if (unlikely(XRb == XRc)) {
|
||
/* both operands same -> just set destination to one of them */
|
||
tcg_gen_mov_i32(mxu_gpr[XRa - 1], mxu_gpr[XRb - 1]);
|
||
} else {
|
||
/* the most general case */
|
||
if (opc == OPC_MXU_S32MAX) {
|
||
tcg_gen_smax_i32(mxu_gpr[XRa - 1], mxu_gpr[XRb - 1],
|
||
mxu_gpr[XRc - 1]);
|
||
} else {
|
||
tcg_gen_smin_i32(mxu_gpr[XRa - 1], mxu_gpr[XRb - 1],
|
||
mxu_gpr[XRc - 1]);
|
||
}
|
||
}
|
||
}
|
||
|
||
/*
|
||
* D16MAX
|
||
* Update XRa with the 16-bit-wise maximums of signed integers
|
||
* contained in XRb and XRc.
|
||
*
|
||
* D16MIN
|
||
* Update XRa with the 16-bit-wise minimums of signed integers
|
||
* contained in XRb and XRc.
|
||
*/
|
||
static void gen_mxu_D16MAX_D16MIN(DisasContext *ctx)
|
||
{
|
||
uint32_t pad, opc, XRc, XRb, XRa;
|
||
|
||
pad = extract32(ctx->opcode, 21, 5);
|
||
opc = extract32(ctx->opcode, 18, 3);
|
||
XRc = extract32(ctx->opcode, 14, 4);
|
||
XRb = extract32(ctx->opcode, 10, 4);
|
||
XRa = extract32(ctx->opcode, 6, 4);
|
||
|
||
if (unlikely(pad != 0)) {
|
||
/* opcode padding incorrect -> do nothing */
|
||
} else if (unlikely(XRc == 0)) {
|
||
/* destination is zero register -> do nothing */
|
||
} else if (unlikely((XRb == 0) && (XRa == 0))) {
|
||
/* both operands zero registers -> just set destination to zero */
|
||
tcg_gen_movi_i32(mxu_gpr[XRc - 1], 0);
|
||
} else if (unlikely((XRb == 0) || (XRa == 0))) {
|
||
/* exactly one operand is zero register - find which one is not...*/
|
||
uint32_t XRx = XRb ? XRb : XRc;
|
||
/* ...and do half-word-wise max/min with one operand 0 */
|
||
TCGv_i32 t0 = tcg_temp_new();
|
||
TCGv_i32 t1 = tcg_const_i32(0);
|
||
|
||
/* the left half-word first */
|
||
tcg_gen_andi_i32(t0, mxu_gpr[XRx - 1], 0xFFFF0000);
|
||
if (opc == OPC_MXU_D16MAX) {
|
||
tcg_gen_smax_i32(mxu_gpr[XRa - 1], t0, t1);
|
||
} else {
|
||
tcg_gen_smin_i32(mxu_gpr[XRa - 1], t0, t1);
|
||
}
|
||
|
||
/* the right half-word */
|
||
tcg_gen_andi_i32(t0, mxu_gpr[XRx - 1], 0x0000FFFF);
|
||
/* move half-words to the leftmost position */
|
||
tcg_gen_shli_i32(t0, t0, 16);
|
||
/* t0 will be max/min of t0 and t1 */
|
||
if (opc == OPC_MXU_D16MAX) {
|
||
tcg_gen_smax_i32(t0, t0, t1);
|
||
} else {
|
||
tcg_gen_smin_i32(t0, t0, t1);
|
||
}
|
||
/* return resulting half-words to its original position */
|
||
tcg_gen_shri_i32(t0, t0, 16);
|
||
/* finally update the destination */
|
||
tcg_gen_or_i32(mxu_gpr[XRa - 1], mxu_gpr[XRa - 1], t0);
|
||
|
||
tcg_temp_free(t1);
|
||
tcg_temp_free(t0);
|
||
} else if (unlikely(XRb == XRc)) {
|
||
/* both operands same -> just set destination to one of them */
|
||
tcg_gen_mov_i32(mxu_gpr[XRa - 1], mxu_gpr[XRb - 1]);
|
||
} else {
|
||
/* the most general case */
|
||
TCGv_i32 t0 = tcg_temp_new();
|
||
TCGv_i32 t1 = tcg_temp_new();
|
||
|
||
/* the left half-word first */
|
||
tcg_gen_andi_i32(t0, mxu_gpr[XRb - 1], 0xFFFF0000);
|
||
tcg_gen_andi_i32(t1, mxu_gpr[XRc - 1], 0xFFFF0000);
|
||
if (opc == OPC_MXU_D16MAX) {
|
||
tcg_gen_smax_i32(mxu_gpr[XRa - 1], t0, t1);
|
||
} else {
|
||
tcg_gen_smin_i32(mxu_gpr[XRa - 1], t0, t1);
|
||
}
|
||
|
||
/* the right half-word */
|
||
tcg_gen_andi_i32(t0, mxu_gpr[XRb - 1], 0x0000FFFF);
|
||
tcg_gen_andi_i32(t1, mxu_gpr[XRc - 1], 0x0000FFFF);
|
||
/* move half-words to the leftmost position */
|
||
tcg_gen_shli_i32(t0, t0, 16);
|
||
tcg_gen_shli_i32(t1, t1, 16);
|
||
/* t0 will be max/min of t0 and t1 */
|
||
if (opc == OPC_MXU_D16MAX) {
|
||
tcg_gen_smax_i32(t0, t0, t1);
|
||
} else {
|
||
tcg_gen_smin_i32(t0, t0, t1);
|
||
}
|
||
/* return resulting half-words to its original position */
|
||
tcg_gen_shri_i32(t0, t0, 16);
|
||
/* finally update the destination */
|
||
tcg_gen_or_i32(mxu_gpr[XRa - 1], mxu_gpr[XRa - 1], t0);
|
||
|
||
tcg_temp_free(t1);
|
||
tcg_temp_free(t0);
|
||
}
|
||
}
|
||
|
||
/*
|
||
* Q8MAX
|
||
* Update XRa with the 8-bit-wise maximums of signed integers
|
||
* contained in XRb and XRc.
|
||
*
|
||
* Q8MIN
|
||
* Update XRa with the 8-bit-wise minimums of signed integers
|
||
* contained in XRb and XRc.
|
||
*/
|
||
static void gen_mxu_Q8MAX_Q8MIN(DisasContext *ctx)
|
||
{
|
||
uint32_t pad, opc, XRc, XRb, XRa;
|
||
|
||
pad = extract32(ctx->opcode, 21, 5);
|
||
opc = extract32(ctx->opcode, 18, 3);
|
||
XRc = extract32(ctx->opcode, 14, 4);
|
||
XRb = extract32(ctx->opcode, 10, 4);
|
||
XRa = extract32(ctx->opcode, 6, 4);
|
||
|
||
if (unlikely(pad != 0)) {
|
||
/* opcode padding incorrect -> do nothing */
|
||
} else if (unlikely(XRa == 0)) {
|
||
/* destination is zero register -> do nothing */
|
||
} else if (unlikely((XRb == 0) && (XRc == 0))) {
|
||
/* both operands zero registers -> just set destination to zero */
|
||
tcg_gen_movi_i32(mxu_gpr[XRa - 1], 0);
|
||
} else if (unlikely((XRb == 0) || (XRc == 0))) {
|
||
/* exactly one operand is zero register - make it be the first...*/
|
||
uint32_t XRx = XRb ? XRb : XRc;
|
||
/* ...and do byte-wise max/min with one operand 0 */
|
||
TCGv_i32 t0 = tcg_temp_new();
|
||
TCGv_i32 t1 = tcg_const_i32(0);
|
||
int32_t i;
|
||
|
||
/* the leftmost byte (byte 3) first */
|
||
tcg_gen_andi_i32(t0, mxu_gpr[XRx - 1], 0xFF000000);
|
||
if (opc == OPC_MXU_Q8MAX) {
|
||
tcg_gen_smax_i32(mxu_gpr[XRa - 1], t0, t1);
|
||
} else {
|
||
tcg_gen_smin_i32(mxu_gpr[XRa - 1], t0, t1);
|
||
}
|
||
|
||
/* bytes 2, 1, 0 */
|
||
for (i = 2; i >= 0; i--) {
|
||
/* extract the byte */
|
||
tcg_gen_andi_i32(t0, mxu_gpr[XRx - 1], 0xFF << (8 * i));
|
||
/* move the byte to the leftmost position */
|
||
tcg_gen_shli_i32(t0, t0, 8 * (3 - i));
|
||
/* t0 will be max/min of t0 and t1 */
|
||
if (opc == OPC_MXU_Q8MAX) {
|
||
tcg_gen_smax_i32(t0, t0, t1);
|
||
} else {
|
||
tcg_gen_smin_i32(t0, t0, t1);
|
||
}
|
||
/* return resulting byte to its original position */
|
||
tcg_gen_shri_i32(t0, t0, 8 * (3 - i));
|
||
/* finally update the destination */
|
||
tcg_gen_or_i32(mxu_gpr[XRa - 1], mxu_gpr[XRa - 1], t0);
|
||
}
|
||
|
||
tcg_temp_free(t1);
|
||
tcg_temp_free(t0);
|
||
} else if (unlikely(XRb == XRc)) {
|
||
/* both operands same -> just set destination to one of them */
|
||
tcg_gen_mov_i32(mxu_gpr[XRa - 1], mxu_gpr[XRb - 1]);
|
||
} else {
|
||
/* the most general case */
|
||
TCGv_i32 t0 = tcg_temp_new();
|
||
TCGv_i32 t1 = tcg_temp_new();
|
||
int32_t i;
|
||
|
||
/* the leftmost bytes (bytes 3) first */
|
||
tcg_gen_andi_i32(t0, mxu_gpr[XRb - 1], 0xFF000000);
|
||
tcg_gen_andi_i32(t1, mxu_gpr[XRc - 1], 0xFF000000);
|
||
if (opc == OPC_MXU_Q8MAX) {
|
||
tcg_gen_smax_i32(mxu_gpr[XRa - 1], t0, t1);
|
||
} else {
|
||
tcg_gen_smin_i32(mxu_gpr[XRa - 1], t0, t1);
|
||
}
|
||
|
||
/* bytes 2, 1, 0 */
|
||
for (i = 2; i >= 0; i--) {
|
||
/* extract corresponding bytes */
|
||
tcg_gen_andi_i32(t0, mxu_gpr[XRb - 1], 0xFF << (8 * i));
|
||
tcg_gen_andi_i32(t1, mxu_gpr[XRc - 1], 0xFF << (8 * i));
|
||
/* move the bytes to the leftmost position */
|
||
tcg_gen_shli_i32(t0, t0, 8 * (3 - i));
|
||
tcg_gen_shli_i32(t1, t1, 8 * (3 - i));
|
||
/* t0 will be max/min of t0 and t1 */
|
||
if (opc == OPC_MXU_Q8MAX) {
|
||
tcg_gen_smax_i32(t0, t0, t1);
|
||
} else {
|
||
tcg_gen_smin_i32(t0, t0, t1);
|
||
}
|
||
/* return resulting byte to its original position */
|
||
tcg_gen_shri_i32(t0, t0, 8 * (3 - i));
|
||
/* finally update the destination */
|
||
tcg_gen_or_i32(mxu_gpr[XRa - 1], mxu_gpr[XRa - 1], t0);
|
||
}
|
||
|
||
tcg_temp_free(t1);
|
||
tcg_temp_free(t0);
|
||
}
|
||
}
|
||
|
||
|
||
/*
|
||
* MXU instruction category: align
|
||
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||
*
|
||
* S32ALN S32ALNI
|
||
*/
|
||
|
||
/*
|
||
* S32ALNI XRc, XRb, XRa, optn3
|
||
* Arrange bytes from XRb and XRc according to one of five sets of
|
||
* rules determined by optn3, and place the result in XRa.
|
||
*/
|
||
static void gen_mxu_S32ALNI(DisasContext *ctx)
|
||
{
|
||
uint32_t optn3, pad, XRc, XRb, XRa;
|
||
|
||
optn3 = extract32(ctx->opcode, 23, 3);
|
||
pad = extract32(ctx->opcode, 21, 2);
|
||
XRc = extract32(ctx->opcode, 14, 4);
|
||
XRb = extract32(ctx->opcode, 10, 4);
|
||
XRa = extract32(ctx->opcode, 6, 4);
|
||
|
||
if (unlikely(pad != 0)) {
|
||
/* opcode padding incorrect -> do nothing */
|
||
} else if (unlikely(XRa == 0)) {
|
||
/* destination is zero register -> do nothing */
|
||
} else if (unlikely((XRb == 0) && (XRc == 0))) {
|
||
/* both operands zero registers -> just set destination to all 0s */
|
||
tcg_gen_movi_i32(mxu_gpr[XRa - 1], 0);
|
||
} else if (unlikely(XRb == 0)) {
|
||
/* XRb zero register -> just appropriatelly shift XRc into XRa */
|
||
switch (optn3) {
|
||
case MXU_OPTN3_PTN0:
|
||
tcg_gen_movi_i32(mxu_gpr[XRa - 1], 0);
|
||
break;
|
||
case MXU_OPTN3_PTN1:
|
||
case MXU_OPTN3_PTN2:
|
||
case MXU_OPTN3_PTN3:
|
||
tcg_gen_shri_i32(mxu_gpr[XRa - 1], mxu_gpr[XRc - 1],
|
||
8 * (4 - optn3));
|
||
break;
|
||
case MXU_OPTN3_PTN4:
|
||
tcg_gen_mov_i32(mxu_gpr[XRa - 1], mxu_gpr[XRc - 1]);
|
||
break;
|
||
}
|
||
} else if (unlikely(XRc == 0)) {
|
||
/* XRc zero register -> just appropriatelly shift XRb into XRa */
|
||
switch (optn3) {
|
||
case MXU_OPTN3_PTN0:
|
||
tcg_gen_mov_i32(mxu_gpr[XRa - 1], mxu_gpr[XRb - 1]);
|
||
break;
|
||
case MXU_OPTN3_PTN1:
|
||
case MXU_OPTN3_PTN2:
|
||
case MXU_OPTN3_PTN3:
|
||
tcg_gen_shri_i32(mxu_gpr[XRa - 1], mxu_gpr[XRb - 1], 8 * optn3);
|
||
break;
|
||
case MXU_OPTN3_PTN4:
|
||
tcg_gen_movi_i32(mxu_gpr[XRa - 1], 0);
|
||
break;
|
||
}
|
||
} else if (unlikely(XRb == XRc)) {
|
||
/* both operands same -> just rotation or moving from any of them */
|
||
switch (optn3) {
|
||
case MXU_OPTN3_PTN0:
|
||
case MXU_OPTN3_PTN4:
|
||
tcg_gen_mov_i32(mxu_gpr[XRa - 1], mxu_gpr[XRb - 1]);
|
||
break;
|
||
case MXU_OPTN3_PTN1:
|
||
case MXU_OPTN3_PTN2:
|
||
case MXU_OPTN3_PTN3:
|
||
tcg_gen_rotli_i32(mxu_gpr[XRa - 1], mxu_gpr[XRb - 1], 8 * optn3);
|
||
break;
|
||
}
|
||
} else {
|
||
/* the most general case */
|
||
switch (optn3) {
|
||
case MXU_OPTN3_PTN0:
|
||
{
|
||
/* */
|
||
/* XRb XRc */
|
||
/* +---------------+ */
|
||
/* | A B C D | E F G H */
|
||
/* +-------+-------+ */
|
||
/* | */
|
||
/* XRa */
|
||
/* */
|
||
|
||
tcg_gen_mov_i32(mxu_gpr[XRa - 1], mxu_gpr[XRb - 1]);
|
||
}
|
||
break;
|
||
case MXU_OPTN3_PTN1:
|
||
{
|
||
/* */
|
||
/* XRb XRc */
|
||
/* +-------------------+ */
|
||
/* A | B C D E | F G H */
|
||
/* +---------+---------+ */
|
||
/* | */
|
||
/* XRa */
|
||
/* */
|
||
|
||
TCGv_i32 t0 = tcg_temp_new();
|
||
TCGv_i32 t1 = tcg_temp_new();
|
||
|
||
tcg_gen_andi_i32(t0, mxu_gpr[XRb - 1], 0x00FFFFFF);
|
||
tcg_gen_shli_i32(t0, t0, 8);
|
||
|
||
tcg_gen_andi_i32(t1, mxu_gpr[XRc - 1], 0xFF000000);
|
||
tcg_gen_shri_i32(t1, t1, 24);
|
||
|
||
tcg_gen_or_i32(mxu_gpr[XRa - 1], t0, t1);
|
||
|
||
tcg_temp_free(t1);
|
||
tcg_temp_free(t0);
|
||
}
|
||
break;
|
||
case MXU_OPTN3_PTN2:
|
||
{
|
||
/* */
|
||
/* XRb XRc */
|
||
/* +-------------------+ */
|
||
/* A B | C D E F | G H */
|
||
/* +---------+---------+ */
|
||
/* | */
|
||
/* XRa */
|
||
/* */
|
||
|
||
TCGv_i32 t0 = tcg_temp_new();
|
||
TCGv_i32 t1 = tcg_temp_new();
|
||
|
||
tcg_gen_andi_i32(t0, mxu_gpr[XRb - 1], 0x0000FFFF);
|
||
tcg_gen_shli_i32(t0, t0, 16);
|
||
|
||
tcg_gen_andi_i32(t1, mxu_gpr[XRc - 1], 0xFFFF0000);
|
||
tcg_gen_shri_i32(t1, t1, 16);
|
||
|
||
tcg_gen_or_i32(mxu_gpr[XRa - 1], t0, t1);
|
||
|
||
tcg_temp_free(t1);
|
||
tcg_temp_free(t0);
|
||
}
|
||
break;
|
||
case MXU_OPTN3_PTN3:
|
||
{
|
||
/* */
|
||
/* XRb XRc */
|
||
/* +-------------------+ */
|
||
/* A B C | D E F G | H */
|
||
/* +---------+---------+ */
|
||
/* | */
|
||
/* XRa */
|
||
/* */
|
||
|
||
TCGv_i32 t0 = tcg_temp_new();
|
||
TCGv_i32 t1 = tcg_temp_new();
|
||
|
||
tcg_gen_andi_i32(t0, mxu_gpr[XRb - 1], 0x000000FF);
|
||
tcg_gen_shli_i32(t0, t0, 24);
|
||
|
||
tcg_gen_andi_i32(t1, mxu_gpr[XRc - 1], 0xFFFFFF00);
|
||
tcg_gen_shri_i32(t1, t1, 8);
|
||
|
||
tcg_gen_or_i32(mxu_gpr[XRa - 1], t0, t1);
|
||
|
||
tcg_temp_free(t1);
|
||
tcg_temp_free(t0);
|
||
}
|
||
break;
|
||
case MXU_OPTN3_PTN4:
|
||
{
|
||
/* */
|
||
/* XRb XRc */
|
||
/* +---------------+ */
|
||
/* A B C D | E F G H | */
|
||
/* +-------+-------+ */
|
||
/* | */
|
||
/* XRa */
|
||
/* */
|
||
|
||
tcg_gen_mov_i32(mxu_gpr[XRa - 1], mxu_gpr[XRc - 1]);
|
||
}
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
/*
|
||
* Decoding engine for MXU
|
||
* =======================
|
||
*/
|
||
|
||
static void decode_opc_mxu__pool00(DisasContext *ctx)
|
||
{
|
||
uint32_t opcode = extract32(ctx->opcode, 18, 3);
|
||
|
||
switch (opcode) {
|
||
case OPC_MXU_S32MAX:
|
||
case OPC_MXU_S32MIN:
|
||
gen_mxu_S32MAX_S32MIN(ctx);
|
||
break;
|
||
case OPC_MXU_D16MAX:
|
||
case OPC_MXU_D16MIN:
|
||
gen_mxu_D16MAX_D16MIN(ctx);
|
||
break;
|
||
case OPC_MXU_Q8MAX:
|
||
case OPC_MXU_Q8MIN:
|
||
gen_mxu_Q8MAX_Q8MIN(ctx);
|
||
break;
|
||
default:
|
||
MIPS_INVAL("decode_opc_mxu");
|
||
gen_reserved_instruction(ctx);
|
||
break;
|
||
}
|
||
}
|
||
|
||
static void decode_opc_mxu__pool04(DisasContext *ctx)
|
||
{
|
||
uint32_t opcode = extract32(ctx->opcode, 20, 1);
|
||
|
||
switch (opcode) {
|
||
case OPC_MXU_S32LDD:
|
||
case OPC_MXU_S32LDDR:
|
||
gen_mxu_s32ldd_s32lddr(ctx);
|
||
break;
|
||
default:
|
||
MIPS_INVAL("decode_opc_mxu");
|
||
gen_reserved_instruction(ctx);
|
||
break;
|
||
}
|
||
}
|
||
|
||
static void decode_opc_mxu__pool16(DisasContext *ctx)
|
||
{
|
||
uint32_t opcode = extract32(ctx->opcode, 18, 3);
|
||
|
||
switch (opcode) {
|
||
case OPC_MXU_S32ALNI:
|
||
gen_mxu_S32ALNI(ctx);
|
||
break;
|
||
case OPC_MXU_S32NOR:
|
||
gen_mxu_S32NOR(ctx);
|
||
break;
|
||
case OPC_MXU_S32AND:
|
||
gen_mxu_S32AND(ctx);
|
||
break;
|
||
case OPC_MXU_S32OR:
|
||
gen_mxu_S32OR(ctx);
|
||
break;
|
||
case OPC_MXU_S32XOR:
|
||
gen_mxu_S32XOR(ctx);
|
||
break;
|
||
default:
|
||
MIPS_INVAL("decode_opc_mxu");
|
||
gen_reserved_instruction(ctx);
|
||
break;
|
||
}
|
||
}
|
||
|
||
static void decode_opc_mxu__pool19(DisasContext *ctx)
|
||
{
|
||
uint32_t opcode = extract32(ctx->opcode, 22, 2);
|
||
|
||
switch (opcode) {
|
||
case OPC_MXU_Q8MUL:
|
||
case OPC_MXU_Q8MULSU:
|
||
gen_mxu_q8mul_q8mulsu(ctx);
|
||
break;
|
||
default:
|
||
MIPS_INVAL("decode_opc_mxu");
|
||
gen_reserved_instruction(ctx);
|
||
break;
|
||
}
|
||
}
|
||
|
||
bool decode_ase_mxu(DisasContext *ctx, uint32_t insn)
|
||
{
|
||
uint32_t opcode = extract32(insn, 0, 6);
|
||
|
||
if (opcode == OPC_MXU_S32M2I) {
|
||
gen_mxu_s32m2i(ctx);
|
||
return true;
|
||
}
|
||
|
||
if (opcode == OPC_MXU_S32I2M) {
|
||
gen_mxu_s32i2m(ctx);
|
||
return true;
|
||
}
|
||
|
||
{
|
||
TCGv t_mxu_cr = tcg_temp_new();
|
||
TCGLabel *l_exit = gen_new_label();
|
||
|
||
gen_load_mxu_cr(t_mxu_cr);
|
||
tcg_gen_andi_tl(t_mxu_cr, t_mxu_cr, MXU_CR_MXU_EN);
|
||
tcg_gen_brcondi_tl(TCG_COND_NE, t_mxu_cr, MXU_CR_MXU_EN, l_exit);
|
||
|
||
switch (opcode) {
|
||
case OPC_MXU__POOL00:
|
||
decode_opc_mxu__pool00(ctx);
|
||
break;
|
||
case OPC_MXU_D16MUL:
|
||
gen_mxu_d16mul(ctx);
|
||
break;
|
||
case OPC_MXU_D16MAC:
|
||
gen_mxu_d16mac(ctx);
|
||
break;
|
||
case OPC_MXU__POOL04:
|
||
decode_opc_mxu__pool04(ctx);
|
||
break;
|
||
case OPC_MXU_S8LDD:
|
||
gen_mxu_s8ldd(ctx);
|
||
break;
|
||
case OPC_MXU__POOL16:
|
||
decode_opc_mxu__pool16(ctx);
|
||
break;
|
||
case OPC_MXU__POOL19:
|
||
decode_opc_mxu__pool19(ctx);
|
||
break;
|
||
default:
|
||
MIPS_INVAL("decode_opc_mxu");
|
||
gen_reserved_instruction(ctx);
|
||
}
|
||
|
||
gen_set_label(l_exit);
|
||
tcg_temp_free(t_mxu_cr);
|
||
}
|
||
|
||
return true;
|
||
}
|