qemu-e2k/hw/usb/hcd-ehci.c
Markus Armbruster b69c3c21a5 qdev: Unrealize must not fail
Devices may have component devices and buses.

Device realization may fail.  Realization is recursive: a device's
realize() method realizes its components, and device_set_realized()
realizes its buses (which should in turn realize the devices on that
bus, except bus_set_realized() doesn't implement that, yet).

When realization of a component or bus fails, we need to roll back:
unrealize everything we realized so far.  If any of these unrealizes
failed, the device would be left in an inconsistent state.  Must not
happen.

device_set_realized() lets it happen: it ignores errors in the roll
back code starting at label child_realize_fail.

Since realization is recursive, unrealization must be recursive, too.
But how could a partly failed unrealize be rolled back?  We'd have to
re-realize, which can fail.  This design is fundamentally broken.

device_set_realized() does not roll back at all.  Instead, it keeps
unrealizing, ignoring further errors.

It can screw up even for a device with no buses: if the lone
dc->unrealize() fails, it still unregisters vmstate, and calls
listeners' unrealize() callback.

bus_set_realized() does not roll back either.  Instead, it stops
unrealizing.

Fortunately, no unrealize method can fail, as we'll see below.

To fix the design error, drop parameter @errp from all the unrealize
methods.

Any unrealize method that uses @errp now needs an update.  This leads
us to unrealize() methods that can fail.  Merely passing it to another
unrealize method cannot cause failure, though.  Here are the ones that
do other things with @errp:

* virtio_serial_device_unrealize()

  Fails when qbus_set_hotplug_handler() fails, but still does all the
  other work.  On failure, the device would stay realized with its
  resources completely gone.  Oops.  Can't happen, because
  qbus_set_hotplug_handler() can't actually fail here.  Pass
  &error_abort to qbus_set_hotplug_handler() instead.

* hw/ppc/spapr_drc.c's unrealize()

  Fails when object_property_del() fails, but all the other work is
  already done.  On failure, the device would stay realized with its
  vmstate registration gone.  Oops.  Can't happen, because
  object_property_del() can't actually fail here.  Pass &error_abort
  to object_property_del() instead.

* spapr_phb_unrealize()

  Fails and bails out when remove_drcs() fails, but other work is
  already done.  On failure, the device would stay realized with some
  of its resources gone.  Oops.  remove_drcs() fails only when
  chassis_from_bus()'s object_property_get_uint() fails, and it can't
  here.  Pass &error_abort to remove_drcs() instead.

Therefore, no unrealize method can fail before this patch.

device_set_realized()'s recursive unrealization via bus uses
object_property_set_bool().  Can't drop @errp there, so pass
&error_abort.

We similarly unrealize with object_property_set_bool() elsewhere,
always ignoring errors.  Pass &error_abort instead.

Several unrealize methods no longer handle errors from other unrealize
methods: virtio_9p_device_unrealize(),
virtio_input_device_unrealize(), scsi_qdev_unrealize(), ...
Much of the deleted error handling looks wrong anyway.

One unrealize methods no longer ignore such errors:
usb_ehci_pci_exit().

Several realize methods no longer ignore errors when rolling back:
v9fs_device_realize_common(), pci_qdev_unrealize(),
spapr_phb_realize(), usb_qdev_realize(), vfio_ccw_realize(),
virtio_device_realize().

Signed-off-by: Markus Armbruster <armbru@redhat.com>
Reviewed-by: Philippe Mathieu-Daudé <philmd@redhat.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20200505152926.18877-17-armbru@redhat.com>
2020-05-15 07:08:14 +02:00

2593 lines
73 KiB
C

/*
* QEMU USB EHCI Emulation
*
* Copyright(c) 2008 Emutex Ltd. (address@hidden)
* Copyright(c) 2011-2012 Red Hat, Inc.
*
* Red Hat Authors:
* Gerd Hoffmann <kraxel@redhat.com>
* Hans de Goede <hdegoede@redhat.com>
*
* EHCI project was started by Mark Burkley, with contributions by
* Niels de Vos. David S. Ahern continued working on it. Kevin Wolf,
* Jan Kiszka and Vincent Palatin contributed bugfixes.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "qapi/error.h"
#include "hw/irq.h"
#include "hw/usb/ehci-regs.h"
#include "hw/usb/hcd-ehci.h"
#include "migration/vmstate.h"
#include "trace.h"
#include "qemu/error-report.h"
#include "qemu/main-loop.h"
#include "sysemu/runstate.h"
#define FRAME_TIMER_FREQ 1000
#define FRAME_TIMER_NS (NANOSECONDS_PER_SECOND / FRAME_TIMER_FREQ)
#define UFRAME_TIMER_NS (FRAME_TIMER_NS / 8)
#define NB_MAXINTRATE 8 // Max rate at which controller issues ints
#define BUFF_SIZE 5*4096 // Max bytes to transfer per transaction
#define MAX_QH 100 // Max allowable queue heads in a chain
#define MIN_UFR_PER_TICK 24 /* Min frames to process when catching up */
#define PERIODIC_ACTIVE 512 /* Micro-frames */
/* Internal periodic / asynchronous schedule state machine states
*/
typedef enum {
EST_INACTIVE = 1000,
EST_ACTIVE,
EST_EXECUTING,
EST_SLEEPING,
/* The following states are internal to the state machine function
*/
EST_WAITLISTHEAD,
EST_FETCHENTRY,
EST_FETCHQH,
EST_FETCHITD,
EST_FETCHSITD,
EST_ADVANCEQUEUE,
EST_FETCHQTD,
EST_EXECUTE,
EST_WRITEBACK,
EST_HORIZONTALQH
} EHCI_STATES;
/* macros for accessing fields within next link pointer entry */
#define NLPTR_GET(x) ((x) & 0xffffffe0)
#define NLPTR_TYPE_GET(x) (((x) >> 1) & 3)
#define NLPTR_TBIT(x) ((x) & 1) // 1=invalid, 0=valid
/* link pointer types */
#define NLPTR_TYPE_ITD 0 // isoc xfer descriptor
#define NLPTR_TYPE_QH 1 // queue head
#define NLPTR_TYPE_STITD 2 // split xaction, isoc xfer descriptor
#define NLPTR_TYPE_FSTN 3 // frame span traversal node
#define SET_LAST_RUN_CLOCK(s) \
(s)->last_run_ns = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
/* nifty macros from Arnon's EHCI version */
#define get_field(data, field) \
(((data) & field##_MASK) >> field##_SH)
#define set_field(data, newval, field) do { \
uint32_t val = *data; \
val &= ~ field##_MASK; \
val |= ((newval) << field##_SH) & field##_MASK; \
*data = val; \
} while(0)
static const char *ehci_state_names[] = {
[EST_INACTIVE] = "INACTIVE",
[EST_ACTIVE] = "ACTIVE",
[EST_EXECUTING] = "EXECUTING",
[EST_SLEEPING] = "SLEEPING",
[EST_WAITLISTHEAD] = "WAITLISTHEAD",
[EST_FETCHENTRY] = "FETCH ENTRY",
[EST_FETCHQH] = "FETCH QH",
[EST_FETCHITD] = "FETCH ITD",
[EST_ADVANCEQUEUE] = "ADVANCEQUEUE",
[EST_FETCHQTD] = "FETCH QTD",
[EST_EXECUTE] = "EXECUTE",
[EST_WRITEBACK] = "WRITEBACK",
[EST_HORIZONTALQH] = "HORIZONTALQH",
};
static const char *ehci_mmio_names[] = {
[USBCMD] = "USBCMD",
[USBSTS] = "USBSTS",
[USBINTR] = "USBINTR",
[FRINDEX] = "FRINDEX",
[PERIODICLISTBASE] = "P-LIST BASE",
[ASYNCLISTADDR] = "A-LIST ADDR",
[CONFIGFLAG] = "CONFIGFLAG",
};
static int ehci_state_executing(EHCIQueue *q);
static int ehci_state_writeback(EHCIQueue *q);
static int ehci_state_advqueue(EHCIQueue *q);
static int ehci_fill_queue(EHCIPacket *p);
static void ehci_free_packet(EHCIPacket *p);
static const char *nr2str(const char **n, size_t len, uint32_t nr)
{
if (nr < len && n[nr] != NULL) {
return n[nr];
} else {
return "unknown";
}
}
static const char *state2str(uint32_t state)
{
return nr2str(ehci_state_names, ARRAY_SIZE(ehci_state_names), state);
}
static const char *addr2str(hwaddr addr)
{
return nr2str(ehci_mmio_names, ARRAY_SIZE(ehci_mmio_names), addr);
}
static void ehci_trace_usbsts(uint32_t mask, int state)
{
/* interrupts */
if (mask & USBSTS_INT) {
trace_usb_ehci_usbsts("INT", state);
}
if (mask & USBSTS_ERRINT) {
trace_usb_ehci_usbsts("ERRINT", state);
}
if (mask & USBSTS_PCD) {
trace_usb_ehci_usbsts("PCD", state);
}
if (mask & USBSTS_FLR) {
trace_usb_ehci_usbsts("FLR", state);
}
if (mask & USBSTS_HSE) {
trace_usb_ehci_usbsts("HSE", state);
}
if (mask & USBSTS_IAA) {
trace_usb_ehci_usbsts("IAA", state);
}
/* status */
if (mask & USBSTS_HALT) {
trace_usb_ehci_usbsts("HALT", state);
}
if (mask & USBSTS_REC) {
trace_usb_ehci_usbsts("REC", state);
}
if (mask & USBSTS_PSS) {
trace_usb_ehci_usbsts("PSS", state);
}
if (mask & USBSTS_ASS) {
trace_usb_ehci_usbsts("ASS", state);
}
}
static inline void ehci_set_usbsts(EHCIState *s, int mask)
{
if ((s->usbsts & mask) == mask) {
return;
}
ehci_trace_usbsts(mask, 1);
s->usbsts |= mask;
}
static inline void ehci_clear_usbsts(EHCIState *s, int mask)
{
if ((s->usbsts & mask) == 0) {
return;
}
ehci_trace_usbsts(mask, 0);
s->usbsts &= ~mask;
}
/* update irq line */
static inline void ehci_update_irq(EHCIState *s)
{
int level = 0;
if ((s->usbsts & USBINTR_MASK) & s->usbintr) {
level = 1;
}
trace_usb_ehci_irq(level, s->frindex, s->usbsts, s->usbintr);
qemu_set_irq(s->irq, level);
}
/* flag interrupt condition */
static inline void ehci_raise_irq(EHCIState *s, int intr)
{
if (intr & (USBSTS_PCD | USBSTS_FLR | USBSTS_HSE)) {
s->usbsts |= intr;
ehci_update_irq(s);
} else {
s->usbsts_pending |= intr;
}
}
/*
* Commit pending interrupts (added via ehci_raise_irq),
* at the rate allowed by "Interrupt Threshold Control".
*/
static inline void ehci_commit_irq(EHCIState *s)
{
uint32_t itc;
if (!s->usbsts_pending) {
return;
}
if (s->usbsts_frindex > s->frindex) {
return;
}
itc = (s->usbcmd >> 16) & 0xff;
s->usbsts |= s->usbsts_pending;
s->usbsts_pending = 0;
s->usbsts_frindex = s->frindex + itc;
ehci_update_irq(s);
}
static void ehci_update_halt(EHCIState *s)
{
if (s->usbcmd & USBCMD_RUNSTOP) {
ehci_clear_usbsts(s, USBSTS_HALT);
} else {
if (s->astate == EST_INACTIVE && s->pstate == EST_INACTIVE) {
ehci_set_usbsts(s, USBSTS_HALT);
}
}
}
static void ehci_set_state(EHCIState *s, int async, int state)
{
if (async) {
trace_usb_ehci_state("async", state2str(state));
s->astate = state;
if (s->astate == EST_INACTIVE) {
ehci_clear_usbsts(s, USBSTS_ASS);
ehci_update_halt(s);
} else {
ehci_set_usbsts(s, USBSTS_ASS);
}
} else {
trace_usb_ehci_state("periodic", state2str(state));
s->pstate = state;
if (s->pstate == EST_INACTIVE) {
ehci_clear_usbsts(s, USBSTS_PSS);
ehci_update_halt(s);
} else {
ehci_set_usbsts(s, USBSTS_PSS);
}
}
}
static int ehci_get_state(EHCIState *s, int async)
{
return async ? s->astate : s->pstate;
}
static void ehci_set_fetch_addr(EHCIState *s, int async, uint32_t addr)
{
if (async) {
s->a_fetch_addr = addr;
} else {
s->p_fetch_addr = addr;
}
}
static int ehci_get_fetch_addr(EHCIState *s, int async)
{
return async ? s->a_fetch_addr : s->p_fetch_addr;
}
static void ehci_trace_qh(EHCIQueue *q, hwaddr addr, EHCIqh *qh)
{
/* need three here due to argument count limits */
trace_usb_ehci_qh_ptrs(q, addr, qh->next,
qh->current_qtd, qh->next_qtd, qh->altnext_qtd);
trace_usb_ehci_qh_fields(addr,
get_field(qh->epchar, QH_EPCHAR_RL),
get_field(qh->epchar, QH_EPCHAR_MPLEN),
get_field(qh->epchar, QH_EPCHAR_EPS),
get_field(qh->epchar, QH_EPCHAR_EP),
get_field(qh->epchar, QH_EPCHAR_DEVADDR));
trace_usb_ehci_qh_bits(addr,
(bool)(qh->epchar & QH_EPCHAR_C),
(bool)(qh->epchar & QH_EPCHAR_H),
(bool)(qh->epchar & QH_EPCHAR_DTC),
(bool)(qh->epchar & QH_EPCHAR_I));
}
static void ehci_trace_qtd(EHCIQueue *q, hwaddr addr, EHCIqtd *qtd)
{
/* need three here due to argument count limits */
trace_usb_ehci_qtd_ptrs(q, addr, qtd->next, qtd->altnext);
trace_usb_ehci_qtd_fields(addr,
get_field(qtd->token, QTD_TOKEN_TBYTES),
get_field(qtd->token, QTD_TOKEN_CPAGE),
get_field(qtd->token, QTD_TOKEN_CERR),
get_field(qtd->token, QTD_TOKEN_PID));
trace_usb_ehci_qtd_bits(addr,
(bool)(qtd->token & QTD_TOKEN_IOC),
(bool)(qtd->token & QTD_TOKEN_ACTIVE),
(bool)(qtd->token & QTD_TOKEN_HALT),
(bool)(qtd->token & QTD_TOKEN_BABBLE),
(bool)(qtd->token & QTD_TOKEN_XACTERR));
}
static void ehci_trace_itd(EHCIState *s, hwaddr addr, EHCIitd *itd)
{
trace_usb_ehci_itd(addr, itd->next,
get_field(itd->bufptr[1], ITD_BUFPTR_MAXPKT),
get_field(itd->bufptr[2], ITD_BUFPTR_MULT),
get_field(itd->bufptr[0], ITD_BUFPTR_EP),
get_field(itd->bufptr[0], ITD_BUFPTR_DEVADDR));
}
static void ehci_trace_sitd(EHCIState *s, hwaddr addr,
EHCIsitd *sitd)
{
trace_usb_ehci_sitd(addr, sitd->next,
(bool)(sitd->results & SITD_RESULTS_ACTIVE));
}
static void ehci_trace_guest_bug(EHCIState *s, const char *message)
{
trace_usb_ehci_guest_bug(message);
warn_report("%s", message);
}
static inline bool ehci_enabled(EHCIState *s)
{
return s->usbcmd & USBCMD_RUNSTOP;
}
static inline bool ehci_async_enabled(EHCIState *s)
{
return ehci_enabled(s) && (s->usbcmd & USBCMD_ASE);
}
static inline bool ehci_periodic_enabled(EHCIState *s)
{
return ehci_enabled(s) && (s->usbcmd & USBCMD_PSE);
}
/* Get an array of dwords from main memory */
static inline int get_dwords(EHCIState *ehci, uint32_t addr,
uint32_t *buf, int num)
{
int i;
if (!ehci->as) {
ehci_raise_irq(ehci, USBSTS_HSE);
ehci->usbcmd &= ~USBCMD_RUNSTOP;
trace_usb_ehci_dma_error();
return -1;
}
for (i = 0; i < num; i++, buf++, addr += sizeof(*buf)) {
dma_memory_read(ehci->as, addr, buf, sizeof(*buf));
*buf = le32_to_cpu(*buf);
}
return num;
}
/* Put an array of dwords in to main memory */
static inline int put_dwords(EHCIState *ehci, uint32_t addr,
uint32_t *buf, int num)
{
int i;
if (!ehci->as) {
ehci_raise_irq(ehci, USBSTS_HSE);
ehci->usbcmd &= ~USBCMD_RUNSTOP;
trace_usb_ehci_dma_error();
return -1;
}
for (i = 0; i < num; i++, buf++, addr += sizeof(*buf)) {
uint32_t tmp = cpu_to_le32(*buf);
dma_memory_write(ehci->as, addr, &tmp, sizeof(tmp));
}
return num;
}
static int ehci_get_pid(EHCIqtd *qtd)
{
switch (get_field(qtd->token, QTD_TOKEN_PID)) {
case 0:
return USB_TOKEN_OUT;
case 1:
return USB_TOKEN_IN;
case 2:
return USB_TOKEN_SETUP;
default:
fprintf(stderr, "bad token\n");
return 0;
}
}
static bool ehci_verify_qh(EHCIQueue *q, EHCIqh *qh)
{
uint32_t devaddr = get_field(qh->epchar, QH_EPCHAR_DEVADDR);
uint32_t endp = get_field(qh->epchar, QH_EPCHAR_EP);
if ((devaddr != get_field(q->qh.epchar, QH_EPCHAR_DEVADDR)) ||
(endp != get_field(q->qh.epchar, QH_EPCHAR_EP)) ||
(qh->current_qtd != q->qh.current_qtd) ||
(q->async && qh->next_qtd != q->qh.next_qtd) ||
(memcmp(&qh->altnext_qtd, &q->qh.altnext_qtd,
7 * sizeof(uint32_t)) != 0) ||
(q->dev != NULL && q->dev->addr != devaddr)) {
return false;
} else {
return true;
}
}
static bool ehci_verify_qtd(EHCIPacket *p, EHCIqtd *qtd)
{
if (p->qtdaddr != p->queue->qtdaddr ||
(p->queue->async && !NLPTR_TBIT(p->qtd.next) &&
(p->qtd.next != qtd->next)) ||
(!NLPTR_TBIT(p->qtd.altnext) && (p->qtd.altnext != qtd->altnext)) ||
p->qtd.token != qtd->token ||
p->qtd.bufptr[0] != qtd->bufptr[0]) {
return false;
} else {
return true;
}
}
static bool ehci_verify_pid(EHCIQueue *q, EHCIqtd *qtd)
{
int ep = get_field(q->qh.epchar, QH_EPCHAR_EP);
int pid = ehci_get_pid(qtd);
/* Note the pid changing is normal for ep 0 (the control ep) */
if (q->last_pid && ep != 0 && pid != q->last_pid) {
return false;
} else {
return true;
}
}
/* Finish executing and writeback a packet outside of the regular
fetchqh -> fetchqtd -> execute -> writeback cycle */
static void ehci_writeback_async_complete_packet(EHCIPacket *p)
{
EHCIQueue *q = p->queue;
EHCIqtd qtd;
EHCIqh qh;
int state;
/* Verify the qh + qtd, like we do when going through fetchqh & fetchqtd */
get_dwords(q->ehci, NLPTR_GET(q->qhaddr),
(uint32_t *) &qh, sizeof(EHCIqh) >> 2);
get_dwords(q->ehci, NLPTR_GET(q->qtdaddr),
(uint32_t *) &qtd, sizeof(EHCIqtd) >> 2);
if (!ehci_verify_qh(q, &qh) || !ehci_verify_qtd(p, &qtd)) {
p->async = EHCI_ASYNC_INITIALIZED;
ehci_free_packet(p);
return;
}
state = ehci_get_state(q->ehci, q->async);
ehci_state_executing(q);
ehci_state_writeback(q); /* Frees the packet! */
if (!(q->qh.token & QTD_TOKEN_HALT)) {
ehci_state_advqueue(q);
}
ehci_set_state(q->ehci, q->async, state);
}
/* packet management */
static EHCIPacket *ehci_alloc_packet(EHCIQueue *q)
{
EHCIPacket *p;
p = g_new0(EHCIPacket, 1);
p->queue = q;
usb_packet_init(&p->packet);
QTAILQ_INSERT_TAIL(&q->packets, p, next);
trace_usb_ehci_packet_action(p->queue, p, "alloc");
return p;
}
static void ehci_free_packet(EHCIPacket *p)
{
if (p->async == EHCI_ASYNC_FINISHED &&
!(p->queue->qh.token & QTD_TOKEN_HALT)) {
ehci_writeback_async_complete_packet(p);
return;
}
trace_usb_ehci_packet_action(p->queue, p, "free");
if (p->async == EHCI_ASYNC_INFLIGHT) {
usb_cancel_packet(&p->packet);
}
if (p->async == EHCI_ASYNC_FINISHED &&
p->packet.status == USB_RET_SUCCESS) {
fprintf(stderr,
"EHCI: Dropping completed packet from halted %s ep %02X\n",
(p->pid == USB_TOKEN_IN) ? "in" : "out",
get_field(p->queue->qh.epchar, QH_EPCHAR_EP));
}
if (p->async != EHCI_ASYNC_NONE) {
usb_packet_unmap(&p->packet, &p->sgl);
qemu_sglist_destroy(&p->sgl);
}
QTAILQ_REMOVE(&p->queue->packets, p, next);
usb_packet_cleanup(&p->packet);
g_free(p);
}
/* queue management */
static EHCIQueue *ehci_alloc_queue(EHCIState *ehci, uint32_t addr, int async)
{
EHCIQueueHead *head = async ? &ehci->aqueues : &ehci->pqueues;
EHCIQueue *q;
q = g_malloc0(sizeof(*q));
q->ehci = ehci;
q->qhaddr = addr;
q->async = async;
QTAILQ_INIT(&q->packets);
QTAILQ_INSERT_HEAD(head, q, next);
trace_usb_ehci_queue_action(q, "alloc");
return q;
}
static void ehci_queue_stopped(EHCIQueue *q)
{
int endp = get_field(q->qh.epchar, QH_EPCHAR_EP);
if (!q->last_pid || !q->dev) {
return;
}
usb_device_ep_stopped(q->dev, usb_ep_get(q->dev, q->last_pid, endp));
}
static int ehci_cancel_queue(EHCIQueue *q)
{
EHCIPacket *p;
int packets = 0;
p = QTAILQ_FIRST(&q->packets);
if (p == NULL) {
goto leave;
}
trace_usb_ehci_queue_action(q, "cancel");
do {
ehci_free_packet(p);
packets++;
} while ((p = QTAILQ_FIRST(&q->packets)) != NULL);
leave:
ehci_queue_stopped(q);
return packets;
}
static int ehci_reset_queue(EHCIQueue *q)
{
int packets;
trace_usb_ehci_queue_action(q, "reset");
packets = ehci_cancel_queue(q);
q->dev = NULL;
q->qtdaddr = 0;
q->last_pid = 0;
return packets;
}
static void ehci_free_queue(EHCIQueue *q, const char *warn)
{
EHCIQueueHead *head = q->async ? &q->ehci->aqueues : &q->ehci->pqueues;
int cancelled;
trace_usb_ehci_queue_action(q, "free");
cancelled = ehci_cancel_queue(q);
if (warn && cancelled > 0) {
ehci_trace_guest_bug(q->ehci, warn);
}
QTAILQ_REMOVE(head, q, next);
g_free(q);
}
static EHCIQueue *ehci_find_queue_by_qh(EHCIState *ehci, uint32_t addr,
int async)
{
EHCIQueueHead *head = async ? &ehci->aqueues : &ehci->pqueues;
EHCIQueue *q;
QTAILQ_FOREACH(q, head, next) {
if (addr == q->qhaddr) {
return q;
}
}
return NULL;
}
static void ehci_queues_rip_unused(EHCIState *ehci, int async)
{
EHCIQueueHead *head = async ? &ehci->aqueues : &ehci->pqueues;
const char *warn = async ? "guest unlinked busy QH" : NULL;
uint64_t maxage = FRAME_TIMER_NS * ehci->maxframes * 4;
EHCIQueue *q, *tmp;
QTAILQ_FOREACH_SAFE(q, head, next, tmp) {
if (q->seen) {
q->seen = 0;
q->ts = ehci->last_run_ns;
continue;
}
if (ehci->last_run_ns < q->ts + maxage) {
continue;
}
ehci_free_queue(q, warn);
}
}
static void ehci_queues_rip_unseen(EHCIState *ehci, int async)
{
EHCIQueueHead *head = async ? &ehci->aqueues : &ehci->pqueues;
EHCIQueue *q, *tmp;
QTAILQ_FOREACH_SAFE(q, head, next, tmp) {
if (!q->seen) {
ehci_free_queue(q, NULL);
}
}
}
static void ehci_queues_rip_device(EHCIState *ehci, USBDevice *dev, int async)
{
EHCIQueueHead *head = async ? &ehci->aqueues : &ehci->pqueues;
EHCIQueue *q, *tmp;
QTAILQ_FOREACH_SAFE(q, head, next, tmp) {
if (q->dev != dev) {
continue;
}
ehci_free_queue(q, NULL);
}
}
static void ehci_queues_rip_all(EHCIState *ehci, int async)
{
EHCIQueueHead *head = async ? &ehci->aqueues : &ehci->pqueues;
const char *warn = async ? "guest stopped busy async schedule" : NULL;
EHCIQueue *q, *tmp;
QTAILQ_FOREACH_SAFE(q, head, next, tmp) {
ehci_free_queue(q, warn);
}
}
/* Attach or detach a device on root hub */
static void ehci_attach(USBPort *port)
{
EHCIState *s = port->opaque;
uint32_t *portsc = &s->portsc[port->index];
const char *owner = (*portsc & PORTSC_POWNER) ? "comp" : "ehci";
trace_usb_ehci_port_attach(port->index, owner, port->dev->product_desc);
if (*portsc & PORTSC_POWNER) {
USBPort *companion = s->companion_ports[port->index];
companion->dev = port->dev;
companion->ops->attach(companion);
return;
}
*portsc |= PORTSC_CONNECT;
*portsc |= PORTSC_CSC;
ehci_raise_irq(s, USBSTS_PCD);
}
static void ehci_detach(USBPort *port)
{
EHCIState *s = port->opaque;
uint32_t *portsc = &s->portsc[port->index];
const char *owner = (*portsc & PORTSC_POWNER) ? "comp" : "ehci";
trace_usb_ehci_port_detach(port->index, owner);
if (*portsc & PORTSC_POWNER) {
USBPort *companion = s->companion_ports[port->index];
companion->ops->detach(companion);
companion->dev = NULL;
/*
* EHCI spec 4.2.2: "When a disconnect occurs... On the event,
* the port ownership is returned immediately to the EHCI controller."
*/
*portsc &= ~PORTSC_POWNER;
return;
}
ehci_queues_rip_device(s, port->dev, 0);
ehci_queues_rip_device(s, port->dev, 1);
*portsc &= ~(PORTSC_CONNECT|PORTSC_PED|PORTSC_SUSPEND);
*portsc |= PORTSC_CSC;
ehci_raise_irq(s, USBSTS_PCD);
}
static void ehci_child_detach(USBPort *port, USBDevice *child)
{
EHCIState *s = port->opaque;
uint32_t portsc = s->portsc[port->index];
if (portsc & PORTSC_POWNER) {
USBPort *companion = s->companion_ports[port->index];
companion->ops->child_detach(companion, child);
return;
}
ehci_queues_rip_device(s, child, 0);
ehci_queues_rip_device(s, child, 1);
}
static void ehci_wakeup(USBPort *port)
{
EHCIState *s = port->opaque;
uint32_t *portsc = &s->portsc[port->index];
if (*portsc & PORTSC_POWNER) {
USBPort *companion = s->companion_ports[port->index];
if (companion->ops->wakeup) {
companion->ops->wakeup(companion);
}
return;
}
if (*portsc & PORTSC_SUSPEND) {
trace_usb_ehci_port_wakeup(port->index);
*portsc |= PORTSC_FPRES;
ehci_raise_irq(s, USBSTS_PCD);
}
qemu_bh_schedule(s->async_bh);
}
static void ehci_register_companion(USBBus *bus, USBPort *ports[],
uint32_t portcount, uint32_t firstport,
Error **errp)
{
EHCIState *s = container_of(bus, EHCIState, bus);
uint32_t i;
if (firstport + portcount > NB_PORTS) {
error_setg(errp, "firstport must be between 0 and %u",
NB_PORTS - portcount);
return;
}
for (i = 0; i < portcount; i++) {
if (s->companion_ports[firstport + i]) {
error_setg(errp, "firstport %u asks for ports %u-%u,"
" but port %u has a companion assigned already",
firstport, firstport, firstport + portcount - 1,
firstport + i);
return;
}
}
for (i = 0; i < portcount; i++) {
s->companion_ports[firstport + i] = ports[i];
s->ports[firstport + i].speedmask |=
USB_SPEED_MASK_LOW | USB_SPEED_MASK_FULL;
/* Ensure devs attached before the initial reset go to the companion */
s->portsc[firstport + i] = PORTSC_POWNER;
}
s->companion_count++;
s->caps[0x05] = (s->companion_count << 4) | portcount;
}
static void ehci_wakeup_endpoint(USBBus *bus, USBEndpoint *ep,
unsigned int stream)
{
EHCIState *s = container_of(bus, EHCIState, bus);
uint32_t portsc = s->portsc[ep->dev->port->index];
if (portsc & PORTSC_POWNER) {
return;
}
s->periodic_sched_active = PERIODIC_ACTIVE;
qemu_bh_schedule(s->async_bh);
}
static USBDevice *ehci_find_device(EHCIState *ehci, uint8_t addr)
{
USBDevice *dev;
USBPort *port;
int i;
for (i = 0; i < NB_PORTS; i++) {
port = &ehci->ports[i];
if (!(ehci->portsc[i] & PORTSC_PED)) {
DPRINTF("Port %d not enabled\n", i);
continue;
}
dev = usb_find_device(port, addr);
if (dev != NULL) {
return dev;
}
}
return NULL;
}
/* 4.1 host controller initialization */
void ehci_reset(void *opaque)
{
EHCIState *s = opaque;
int i;
USBDevice *devs[NB_PORTS];
trace_usb_ehci_reset();
/*
* Do the detach before touching portsc, so that it correctly gets send to
* us or to our companion based on PORTSC_POWNER before the reset.
*/
for(i = 0; i < NB_PORTS; i++) {
devs[i] = s->ports[i].dev;
if (devs[i] && devs[i]->attached) {
usb_detach(&s->ports[i]);
}
}
memset(&s->opreg, 0x00, sizeof(s->opreg));
memset(&s->portsc, 0x00, sizeof(s->portsc));
s->usbcmd = NB_MAXINTRATE << USBCMD_ITC_SH;
s->usbsts = USBSTS_HALT;
s->usbsts_pending = 0;
s->usbsts_frindex = 0;
ehci_update_irq(s);
s->astate = EST_INACTIVE;
s->pstate = EST_INACTIVE;
for(i = 0; i < NB_PORTS; i++) {
if (s->companion_ports[i]) {
s->portsc[i] = PORTSC_POWNER | PORTSC_PPOWER;
} else {
s->portsc[i] = PORTSC_PPOWER;
}
if (devs[i] && devs[i]->attached) {
usb_attach(&s->ports[i]);
usb_device_reset(devs[i]);
}
}
ehci_queues_rip_all(s, 0);
ehci_queues_rip_all(s, 1);
timer_del(s->frame_timer);
qemu_bh_cancel(s->async_bh);
}
static uint64_t ehci_caps_read(void *ptr, hwaddr addr,
unsigned size)
{
EHCIState *s = ptr;
return s->caps[addr];
}
static void ehci_caps_write(void *ptr, hwaddr addr,
uint64_t val, unsigned size)
{
}
static uint64_t ehci_opreg_read(void *ptr, hwaddr addr,
unsigned size)
{
EHCIState *s = ptr;
uint32_t val;
switch (addr) {
case FRINDEX:
/* Round down to mult of 8, else it can go backwards on migration */
val = s->frindex & ~7;
break;
default:
val = s->opreg[addr >> 2];
}
trace_usb_ehci_opreg_read(addr + s->opregbase, addr2str(addr), val);
return val;
}
static uint64_t ehci_port_read(void *ptr, hwaddr addr,
unsigned size)
{
EHCIState *s = ptr;
uint32_t val;
val = s->portsc[addr >> 2];
trace_usb_ehci_portsc_read(addr + s->portscbase, addr >> 2, val);
return val;
}
static void handle_port_owner_write(EHCIState *s, int port, uint32_t owner)
{
USBDevice *dev = s->ports[port].dev;
uint32_t *portsc = &s->portsc[port];
uint32_t orig;
if (s->companion_ports[port] == NULL)
return;
owner = owner & PORTSC_POWNER;
orig = *portsc & PORTSC_POWNER;
if (!(owner ^ orig)) {
return;
}
if (dev && dev->attached) {
usb_detach(&s->ports[port]);
}
*portsc &= ~PORTSC_POWNER;
*portsc |= owner;
if (dev && dev->attached) {
usb_attach(&s->ports[port]);
}
}
static void ehci_port_write(void *ptr, hwaddr addr,
uint64_t val, unsigned size)
{
EHCIState *s = ptr;
int port = addr >> 2;
uint32_t *portsc = &s->portsc[port];
uint32_t old = *portsc;
USBDevice *dev = s->ports[port].dev;
trace_usb_ehci_portsc_write(addr + s->portscbase, addr >> 2, val);
/* Clear rwc bits */
*portsc &= ~(val & PORTSC_RWC_MASK);
/* The guest may clear, but not set the PED bit */
*portsc &= val | ~PORTSC_PED;
/* POWNER is masked out by RO_MASK as it is RO when we've no companion */
handle_port_owner_write(s, port, val);
/* And finally apply RO_MASK */
val &= PORTSC_RO_MASK;
if ((val & PORTSC_PRESET) && !(*portsc & PORTSC_PRESET)) {
trace_usb_ehci_port_reset(port, 1);
}
if (!(val & PORTSC_PRESET) &&(*portsc & PORTSC_PRESET)) {
trace_usb_ehci_port_reset(port, 0);
if (dev && dev->attached) {
usb_port_reset(&s->ports[port]);
*portsc &= ~PORTSC_CSC;
}
/*
* Table 2.16 Set the enable bit(and enable bit change) to indicate
* to SW that this port has a high speed device attached
*/
if (dev && dev->attached && (dev->speedmask & USB_SPEED_MASK_HIGH)) {
val |= PORTSC_PED;
}
}
if ((val & PORTSC_SUSPEND) && !(*portsc & PORTSC_SUSPEND)) {
trace_usb_ehci_port_suspend(port);
}
if (!(val & PORTSC_FPRES) && (*portsc & PORTSC_FPRES)) {
trace_usb_ehci_port_resume(port);
val &= ~PORTSC_SUSPEND;
}
*portsc &= ~PORTSC_RO_MASK;
*portsc |= val;
trace_usb_ehci_portsc_change(addr + s->portscbase, addr >> 2, *portsc, old);
}
static void ehci_opreg_write(void *ptr, hwaddr addr,
uint64_t val, unsigned size)
{
EHCIState *s = ptr;
uint32_t *mmio = s->opreg + (addr >> 2);
uint32_t old = *mmio;
int i;
trace_usb_ehci_opreg_write(addr + s->opregbase, addr2str(addr), val);
switch (addr) {
case USBCMD:
if (val & USBCMD_HCRESET) {
ehci_reset(s);
val = s->usbcmd;
break;
}
/* not supporting dynamic frame list size at the moment */
if ((val & USBCMD_FLS) && !(s->usbcmd & USBCMD_FLS)) {
fprintf(stderr, "attempt to set frame list size -- value %d\n",
(int)val & USBCMD_FLS);
val &= ~USBCMD_FLS;
}
if (val & USBCMD_IAAD) {
/*
* Process IAAD immediately, otherwise the Linux IAAD watchdog may
* trigger and re-use a qh without us seeing the unlink.
*/
s->async_stepdown = 0;
qemu_bh_schedule(s->async_bh);
trace_usb_ehci_doorbell_ring();
}
if (((USBCMD_RUNSTOP | USBCMD_PSE | USBCMD_ASE) & val) !=
((USBCMD_RUNSTOP | USBCMD_PSE | USBCMD_ASE) & s->usbcmd)) {
if (s->pstate == EST_INACTIVE) {
SET_LAST_RUN_CLOCK(s);
}
s->usbcmd = val; /* Set usbcmd for ehci_update_halt() */
ehci_update_halt(s);
s->async_stepdown = 0;
qemu_bh_schedule(s->async_bh);
}
break;
case USBSTS:
val &= USBSTS_RO_MASK; // bits 6 through 31 are RO
ehci_clear_usbsts(s, val); // bits 0 through 5 are R/WC
val = s->usbsts;
ehci_update_irq(s);
break;
case USBINTR:
val &= USBINTR_MASK;
if (ehci_enabled(s) && (USBSTS_FLR & val)) {
qemu_bh_schedule(s->async_bh);
}
break;
case FRINDEX:
val &= 0x00003fff; /* frindex is 14bits */
s->usbsts_frindex = val;
break;
case CONFIGFLAG:
val &= 0x1;
if (val) {
for(i = 0; i < NB_PORTS; i++)
handle_port_owner_write(s, i, 0);
}
break;
case PERIODICLISTBASE:
if (ehci_periodic_enabled(s)) {
fprintf(stderr,
"ehci: PERIODIC list base register set while periodic schedule\n"
" is enabled and HC is enabled\n");
}
break;
case ASYNCLISTADDR:
if (ehci_async_enabled(s)) {
fprintf(stderr,
"ehci: ASYNC list address register set while async schedule\n"
" is enabled and HC is enabled\n");
}
break;
}
*mmio = val;
trace_usb_ehci_opreg_change(addr + s->opregbase, addr2str(addr),
*mmio, old);
}
/*
* Write the qh back to guest physical memory. This step isn't
* in the EHCI spec but we need to do it since we don't share
* physical memory with our guest VM.
*
* The first three dwords are read-only for the EHCI, so skip them
* when writing back the qh.
*/
static void ehci_flush_qh(EHCIQueue *q)
{
uint32_t *qh = (uint32_t *) &q->qh;
uint32_t dwords = sizeof(EHCIqh) >> 2;
uint32_t addr = NLPTR_GET(q->qhaddr);
put_dwords(q->ehci, addr + 3 * sizeof(uint32_t), qh + 3, dwords - 3);
}
// 4.10.2
static int ehci_qh_do_overlay(EHCIQueue *q)
{
EHCIPacket *p = QTAILQ_FIRST(&q->packets);
int i;
int dtoggle;
int ping;
int eps;
int reload;
assert(p != NULL);
assert(p->qtdaddr == q->qtdaddr);
// remember values in fields to preserve in qh after overlay
dtoggle = q->qh.token & QTD_TOKEN_DTOGGLE;
ping = q->qh.token & QTD_TOKEN_PING;
q->qh.current_qtd = p->qtdaddr;
q->qh.next_qtd = p->qtd.next;
q->qh.altnext_qtd = p->qtd.altnext;
q->qh.token = p->qtd.token;
eps = get_field(q->qh.epchar, QH_EPCHAR_EPS);
if (eps == EHCI_QH_EPS_HIGH) {
q->qh.token &= ~QTD_TOKEN_PING;
q->qh.token |= ping;
}
reload = get_field(q->qh.epchar, QH_EPCHAR_RL);
set_field(&q->qh.altnext_qtd, reload, QH_ALTNEXT_NAKCNT);
for (i = 0; i < 5; i++) {
q->qh.bufptr[i] = p->qtd.bufptr[i];
}
if (!(q->qh.epchar & QH_EPCHAR_DTC)) {
// preserve QH DT bit
q->qh.token &= ~QTD_TOKEN_DTOGGLE;
q->qh.token |= dtoggle;
}
q->qh.bufptr[1] &= ~BUFPTR_CPROGMASK_MASK;
q->qh.bufptr[2] &= ~BUFPTR_FRAMETAG_MASK;
ehci_flush_qh(q);
return 0;
}
static int ehci_init_transfer(EHCIPacket *p)
{
uint32_t cpage, offset, bytes, plen;
dma_addr_t page;
cpage = get_field(p->qtd.token, QTD_TOKEN_CPAGE);
bytes = get_field(p->qtd.token, QTD_TOKEN_TBYTES);
offset = p->qtd.bufptr[0] & ~QTD_BUFPTR_MASK;
qemu_sglist_init(&p->sgl, p->queue->ehci->device, 5, p->queue->ehci->as);
while (bytes > 0) {
if (cpage > 4) {
fprintf(stderr, "cpage out of range (%d)\n", cpage);
qemu_sglist_destroy(&p->sgl);
return -1;
}
page = p->qtd.bufptr[cpage] & QTD_BUFPTR_MASK;
page += offset;
plen = bytes;
if (plen > 4096 - offset) {
plen = 4096 - offset;
offset = 0;
cpage++;
}
qemu_sglist_add(&p->sgl, page, plen);
bytes -= plen;
}
return 0;
}
static void ehci_finish_transfer(EHCIQueue *q, int len)
{
uint32_t cpage, offset;
if (len > 0) {
/* update cpage & offset */
cpage = get_field(q->qh.token, QTD_TOKEN_CPAGE);
offset = q->qh.bufptr[0] & ~QTD_BUFPTR_MASK;
offset += len;
cpage += offset >> QTD_BUFPTR_SH;
offset &= ~QTD_BUFPTR_MASK;
set_field(&q->qh.token, cpage, QTD_TOKEN_CPAGE);
q->qh.bufptr[0] &= QTD_BUFPTR_MASK;
q->qh.bufptr[0] |= offset;
}
}
static void ehci_async_complete_packet(USBPort *port, USBPacket *packet)
{
EHCIPacket *p;
EHCIState *s = port->opaque;
uint32_t portsc = s->portsc[port->index];
if (portsc & PORTSC_POWNER) {
USBPort *companion = s->companion_ports[port->index];
companion->ops->complete(companion, packet);
return;
}
p = container_of(packet, EHCIPacket, packet);
assert(p->async == EHCI_ASYNC_INFLIGHT);
if (packet->status == USB_RET_REMOVE_FROM_QUEUE) {
trace_usb_ehci_packet_action(p->queue, p, "remove");
ehci_free_packet(p);
return;
}
trace_usb_ehci_packet_action(p->queue, p, "wakeup");
p->async = EHCI_ASYNC_FINISHED;
if (!p->queue->async) {
s->periodic_sched_active = PERIODIC_ACTIVE;
}
qemu_bh_schedule(s->async_bh);
}
static void ehci_execute_complete(EHCIQueue *q)
{
EHCIPacket *p = QTAILQ_FIRST(&q->packets);
uint32_t tbytes;
assert(p != NULL);
assert(p->qtdaddr == q->qtdaddr);
assert(p->async == EHCI_ASYNC_INITIALIZED ||
p->async == EHCI_ASYNC_FINISHED);
DPRINTF("execute_complete: qhaddr 0x%x, next 0x%x, qtdaddr 0x%x, "
"status %d, actual_length %d\n",
q->qhaddr, q->qh.next, q->qtdaddr,
p->packet.status, p->packet.actual_length);
switch (p->packet.status) {
case USB_RET_SUCCESS:
break;
case USB_RET_IOERROR:
case USB_RET_NODEV:
q->qh.token |= (QTD_TOKEN_HALT | QTD_TOKEN_XACTERR);
set_field(&q->qh.token, 0, QTD_TOKEN_CERR);
ehci_raise_irq(q->ehci, USBSTS_ERRINT);
break;
case USB_RET_STALL:
q->qh.token |= QTD_TOKEN_HALT;
ehci_raise_irq(q->ehci, USBSTS_ERRINT);
break;
case USB_RET_NAK:
set_field(&q->qh.altnext_qtd, 0, QH_ALTNEXT_NAKCNT);
return; /* We're not done yet with this transaction */
case USB_RET_BABBLE:
q->qh.token |= (QTD_TOKEN_HALT | QTD_TOKEN_BABBLE);
ehci_raise_irq(q->ehci, USBSTS_ERRINT);
break;
default:
/* should not be triggerable */
fprintf(stderr, "USB invalid response %d\n", p->packet.status);
g_assert_not_reached();
}
/* TODO check 4.12 for splits */
tbytes = get_field(q->qh.token, QTD_TOKEN_TBYTES);
if (tbytes && p->pid == USB_TOKEN_IN) {
tbytes -= p->packet.actual_length;
if (tbytes) {
/* 4.15.1.2 must raise int on a short input packet */
ehci_raise_irq(q->ehci, USBSTS_INT);
if (q->async) {
q->ehci->int_req_by_async = true;
}
}
} else {
tbytes = 0;
}
DPRINTF("updating tbytes to %d\n", tbytes);
set_field(&q->qh.token, tbytes, QTD_TOKEN_TBYTES);
ehci_finish_transfer(q, p->packet.actual_length);
usb_packet_unmap(&p->packet, &p->sgl);
qemu_sglist_destroy(&p->sgl);
p->async = EHCI_ASYNC_NONE;
q->qh.token ^= QTD_TOKEN_DTOGGLE;
q->qh.token &= ~QTD_TOKEN_ACTIVE;
if (q->qh.token & QTD_TOKEN_IOC) {
ehci_raise_irq(q->ehci, USBSTS_INT);
if (q->async) {
q->ehci->int_req_by_async = true;
}
}
}
/* 4.10.3 returns "again" */
static int ehci_execute(EHCIPacket *p, const char *action)
{
USBEndpoint *ep;
int endp;
bool spd;
assert(p->async == EHCI_ASYNC_NONE ||
p->async == EHCI_ASYNC_INITIALIZED);
if (!(p->qtd.token & QTD_TOKEN_ACTIVE)) {
fprintf(stderr, "Attempting to execute inactive qtd\n");
return -1;
}
if (get_field(p->qtd.token, QTD_TOKEN_TBYTES) > BUFF_SIZE) {
ehci_trace_guest_bug(p->queue->ehci,
"guest requested more bytes than allowed");
return -1;
}
if (!ehci_verify_pid(p->queue, &p->qtd)) {
ehci_queue_stopped(p->queue); /* Mark the ep in the prev dir stopped */
}
p->pid = ehci_get_pid(&p->qtd);
p->queue->last_pid = p->pid;
endp = get_field(p->queue->qh.epchar, QH_EPCHAR_EP);
ep = usb_ep_get(p->queue->dev, p->pid, endp);
if (p->async == EHCI_ASYNC_NONE) {
if (ehci_init_transfer(p) != 0) {
return -1;
}
spd = (p->pid == USB_TOKEN_IN && NLPTR_TBIT(p->qtd.altnext) == 0);
usb_packet_setup(&p->packet, p->pid, ep, 0, p->qtdaddr, spd,
(p->qtd.token & QTD_TOKEN_IOC) != 0);
usb_packet_map(&p->packet, &p->sgl);
p->async = EHCI_ASYNC_INITIALIZED;
}
trace_usb_ehci_packet_action(p->queue, p, action);
usb_handle_packet(p->queue->dev, &p->packet);
DPRINTF("submit: qh 0x%x next 0x%x qtd 0x%x pid 0x%x len %zd endp 0x%x "
"status %d actual_length %d\n", p->queue->qhaddr, p->qtd.next,
p->qtdaddr, p->pid, p->packet.iov.size, endp, p->packet.status,
p->packet.actual_length);
if (p->packet.actual_length > BUFF_SIZE) {
fprintf(stderr, "ret from usb_handle_packet > BUFF_SIZE\n");
return -1;
}
return 1;
}
/* 4.7.2
*/
static int ehci_process_itd(EHCIState *ehci,
EHCIitd *itd,
uint32_t addr)
{
USBDevice *dev;
USBEndpoint *ep;
uint32_t i, len, pid, dir, devaddr, endp;
uint32_t pg, off, ptr1, ptr2, max, mult;
ehci->periodic_sched_active = PERIODIC_ACTIVE;
dir =(itd->bufptr[1] & ITD_BUFPTR_DIRECTION);
devaddr = get_field(itd->bufptr[0], ITD_BUFPTR_DEVADDR);
endp = get_field(itd->bufptr[0], ITD_BUFPTR_EP);
max = get_field(itd->bufptr[1], ITD_BUFPTR_MAXPKT);
mult = get_field(itd->bufptr[2], ITD_BUFPTR_MULT);
for(i = 0; i < 8; i++) {
if (itd->transact[i] & ITD_XACT_ACTIVE) {
pg = get_field(itd->transact[i], ITD_XACT_PGSEL);
off = itd->transact[i] & ITD_XACT_OFFSET_MASK;
len = get_field(itd->transact[i], ITD_XACT_LENGTH);
if (len > max * mult) {
len = max * mult;
}
if (len > BUFF_SIZE || pg > 6) {
return -1;
}
ptr1 = (itd->bufptr[pg] & ITD_BUFPTR_MASK);
qemu_sglist_init(&ehci->isgl, ehci->device, 2, ehci->as);
if (off + len > 4096) {
/* transfer crosses page border */
if (pg == 6) {
qemu_sglist_destroy(&ehci->isgl);
return -1; /* avoid page pg + 1 */
}
ptr2 = (itd->bufptr[pg + 1] & ITD_BUFPTR_MASK);
uint32_t len2 = off + len - 4096;
uint32_t len1 = len - len2;
qemu_sglist_add(&ehci->isgl, ptr1 + off, len1);
qemu_sglist_add(&ehci->isgl, ptr2, len2);
} else {
qemu_sglist_add(&ehci->isgl, ptr1 + off, len);
}
dev = ehci_find_device(ehci, devaddr);
if (dev == NULL) {
ehci_trace_guest_bug(ehci, "no device found");
return -1;
}
pid = dir ? USB_TOKEN_IN : USB_TOKEN_OUT;
ep = usb_ep_get(dev, pid, endp);
if (ep && ep->type == USB_ENDPOINT_XFER_ISOC) {
usb_packet_setup(&ehci->ipacket, pid, ep, 0, addr, false,
(itd->transact[i] & ITD_XACT_IOC) != 0);
usb_packet_map(&ehci->ipacket, &ehci->isgl);
usb_handle_packet(dev, &ehci->ipacket);
usb_packet_unmap(&ehci->ipacket, &ehci->isgl);
} else {
DPRINTF("ISOCH: attempt to addess non-iso endpoint\n");
ehci->ipacket.status = USB_RET_NAK;
ehci->ipacket.actual_length = 0;
}
qemu_sglist_destroy(&ehci->isgl);
switch (ehci->ipacket.status) {
case USB_RET_SUCCESS:
break;
default:
fprintf(stderr, "Unexpected iso usb result: %d\n",
ehci->ipacket.status);
/* Fall through */
case USB_RET_IOERROR:
case USB_RET_NODEV:
/* 3.3.2: XACTERR is only allowed on IN transactions */
if (dir) {
itd->transact[i] |= ITD_XACT_XACTERR;
ehci_raise_irq(ehci, USBSTS_ERRINT);
}
break;
case USB_RET_BABBLE:
itd->transact[i] |= ITD_XACT_BABBLE;
ehci_raise_irq(ehci, USBSTS_ERRINT);
break;
case USB_RET_NAK:
/* no data for us, so do a zero-length transfer */
ehci->ipacket.actual_length = 0;
break;
}
if (!dir) {
set_field(&itd->transact[i], len - ehci->ipacket.actual_length,
ITD_XACT_LENGTH); /* OUT */
} else {
set_field(&itd->transact[i], ehci->ipacket.actual_length,
ITD_XACT_LENGTH); /* IN */
}
if (itd->transact[i] & ITD_XACT_IOC) {
ehci_raise_irq(ehci, USBSTS_INT);
}
itd->transact[i] &= ~ITD_XACT_ACTIVE;
}
}
return 0;
}
/* This state is the entry point for asynchronous schedule
* processing. Entry here consitutes a EHCI start event state (4.8.5)
*/
static int ehci_state_waitlisthead(EHCIState *ehci, int async)
{
EHCIqh qh;
int i = 0;
int again = 0;
uint32_t entry = ehci->asynclistaddr;
/* set reclamation flag at start event (4.8.6) */
if (async) {
ehci_set_usbsts(ehci, USBSTS_REC);
}
ehci_queues_rip_unused(ehci, async);
/* Find the head of the list (4.9.1.1) */
for(i = 0; i < MAX_QH; i++) {
if (get_dwords(ehci, NLPTR_GET(entry), (uint32_t *) &qh,
sizeof(EHCIqh) >> 2) < 0) {
return 0;
}
ehci_trace_qh(NULL, NLPTR_GET(entry), &qh);
if (qh.epchar & QH_EPCHAR_H) {
if (async) {
entry |= (NLPTR_TYPE_QH << 1);
}
ehci_set_fetch_addr(ehci, async, entry);
ehci_set_state(ehci, async, EST_FETCHENTRY);
again = 1;
goto out;
}
entry = qh.next;
if (entry == ehci->asynclistaddr) {
break;
}
}
/* no head found for list. */
ehci_set_state(ehci, async, EST_ACTIVE);
out:
return again;
}
/* This state is the entry point for periodic schedule processing as
* well as being a continuation state for async processing.
*/
static int ehci_state_fetchentry(EHCIState *ehci, int async)
{
int again = 0;
uint32_t entry = ehci_get_fetch_addr(ehci, async);
if (NLPTR_TBIT(entry)) {
ehci_set_state(ehci, async, EST_ACTIVE);
goto out;
}
/* section 4.8, only QH in async schedule */
if (async && (NLPTR_TYPE_GET(entry) != NLPTR_TYPE_QH)) {
fprintf(stderr, "non queue head request in async schedule\n");
return -1;
}
switch (NLPTR_TYPE_GET(entry)) {
case NLPTR_TYPE_QH:
ehci_set_state(ehci, async, EST_FETCHQH);
again = 1;
break;
case NLPTR_TYPE_ITD:
ehci_set_state(ehci, async, EST_FETCHITD);
again = 1;
break;
case NLPTR_TYPE_STITD:
ehci_set_state(ehci, async, EST_FETCHSITD);
again = 1;
break;
default:
/* TODO: handle FSTN type */
fprintf(stderr, "FETCHENTRY: entry at %X is of type %d "
"which is not supported yet\n", entry, NLPTR_TYPE_GET(entry));
return -1;
}
out:
return again;
}
static EHCIQueue *ehci_state_fetchqh(EHCIState *ehci, int async)
{
uint32_t entry;
EHCIQueue *q;
EHCIqh qh;
entry = ehci_get_fetch_addr(ehci, async);
q = ehci_find_queue_by_qh(ehci, entry, async);
if (q == NULL) {
q = ehci_alloc_queue(ehci, entry, async);
}
q->seen++;
if (q->seen > 1) {
/* we are going in circles -- stop processing */
ehci_set_state(ehci, async, EST_ACTIVE);
q = NULL;
goto out;
}
if (get_dwords(ehci, NLPTR_GET(q->qhaddr),
(uint32_t *) &qh, sizeof(EHCIqh) >> 2) < 0) {
q = NULL;
goto out;
}
ehci_trace_qh(q, NLPTR_GET(q->qhaddr), &qh);
/*
* The overlay area of the qh should never be changed by the guest,
* except when idle, in which case the reset is a nop.
*/
if (!ehci_verify_qh(q, &qh)) {
if (ehci_reset_queue(q) > 0) {
ehci_trace_guest_bug(ehci, "guest updated active QH");
}
}
q->qh = qh;
q->transact_ctr = get_field(q->qh.epcap, QH_EPCAP_MULT);
if (q->transact_ctr == 0) { /* Guest bug in some versions of windows */
q->transact_ctr = 4;
}
if (q->dev == NULL) {
q->dev = ehci_find_device(q->ehci,
get_field(q->qh.epchar, QH_EPCHAR_DEVADDR));
}
if (async && (q->qh.epchar & QH_EPCHAR_H)) {
/* EHCI spec version 1.0 Section 4.8.3 & 4.10.1 */
if (ehci->usbsts & USBSTS_REC) {
ehci_clear_usbsts(ehci, USBSTS_REC);
} else {
DPRINTF("FETCHQH: QH 0x%08x. H-bit set, reclamation status reset"
" - done processing\n", q->qhaddr);
ehci_set_state(ehci, async, EST_ACTIVE);
q = NULL;
goto out;
}
}
#if EHCI_DEBUG
if (q->qhaddr != q->qh.next) {
DPRINTF("FETCHQH: QH 0x%08x (h %x halt %x active %x) next 0x%08x\n",
q->qhaddr,
q->qh.epchar & QH_EPCHAR_H,
q->qh.token & QTD_TOKEN_HALT,
q->qh.token & QTD_TOKEN_ACTIVE,
q->qh.next);
}
#endif
if (q->qh.token & QTD_TOKEN_HALT) {
ehci_set_state(ehci, async, EST_HORIZONTALQH);
} else if ((q->qh.token & QTD_TOKEN_ACTIVE) &&
(NLPTR_TBIT(q->qh.current_qtd) == 0) &&
(q->qh.current_qtd != 0)) {
q->qtdaddr = q->qh.current_qtd;
ehci_set_state(ehci, async, EST_FETCHQTD);
} else {
/* EHCI spec version 1.0 Section 4.10.2 */
ehci_set_state(ehci, async, EST_ADVANCEQUEUE);
}
out:
return q;
}
static int ehci_state_fetchitd(EHCIState *ehci, int async)
{
uint32_t entry;
EHCIitd itd;
assert(!async);
entry = ehci_get_fetch_addr(ehci, async);
if (get_dwords(ehci, NLPTR_GET(entry), (uint32_t *) &itd,
sizeof(EHCIitd) >> 2) < 0) {
return -1;
}
ehci_trace_itd(ehci, entry, &itd);
if (ehci_process_itd(ehci, &itd, entry) != 0) {
return -1;
}
put_dwords(ehci, NLPTR_GET(entry), (uint32_t *) &itd,
sizeof(EHCIitd) >> 2);
ehci_set_fetch_addr(ehci, async, itd.next);
ehci_set_state(ehci, async, EST_FETCHENTRY);
return 1;
}
static int ehci_state_fetchsitd(EHCIState *ehci, int async)
{
uint32_t entry;
EHCIsitd sitd;
assert(!async);
entry = ehci_get_fetch_addr(ehci, async);
if (get_dwords(ehci, NLPTR_GET(entry), (uint32_t *)&sitd,
sizeof(EHCIsitd) >> 2) < 0) {
return 0;
}
ehci_trace_sitd(ehci, entry, &sitd);
if (!(sitd.results & SITD_RESULTS_ACTIVE)) {
/* siTD is not active, nothing to do */;
} else {
/* TODO: split transfers are not implemented */
warn_report("Skipping active siTD");
}
ehci_set_fetch_addr(ehci, async, sitd.next);
ehci_set_state(ehci, async, EST_FETCHENTRY);
return 1;
}
/* Section 4.10.2 - paragraph 3 */
static int ehci_state_advqueue(EHCIQueue *q)
{
#if 0
/* TO-DO: 4.10.2 - paragraph 2
* if I-bit is set to 1 and QH is not active
* go to horizontal QH
*/
if (I-bit set) {
ehci_set_state(ehci, async, EST_HORIZONTALQH);
goto out;
}
#endif
/*
* want data and alt-next qTD is valid
*/
if (((q->qh.token & QTD_TOKEN_TBYTES_MASK) != 0) &&
(NLPTR_TBIT(q->qh.altnext_qtd) == 0)) {
q->qtdaddr = q->qh.altnext_qtd;
ehci_set_state(q->ehci, q->async, EST_FETCHQTD);
/*
* next qTD is valid
*/
} else if (NLPTR_TBIT(q->qh.next_qtd) == 0) {
q->qtdaddr = q->qh.next_qtd;
ehci_set_state(q->ehci, q->async, EST_FETCHQTD);
/*
* no valid qTD, try next QH
*/
} else {
ehci_set_state(q->ehci, q->async, EST_HORIZONTALQH);
}
return 1;
}
/* Section 4.10.2 - paragraph 4 */
static int ehci_state_fetchqtd(EHCIQueue *q)
{
EHCIqtd qtd;
EHCIPacket *p;
int again = 1;
uint32_t addr;
addr = NLPTR_GET(q->qtdaddr);
if (get_dwords(q->ehci, addr + 8, &qtd.token, 1) < 0) {
return 0;
}
barrier();
if (get_dwords(q->ehci, addr + 0, &qtd.next, 1) < 0 ||
get_dwords(q->ehci, addr + 4, &qtd.altnext, 1) < 0 ||
get_dwords(q->ehci, addr + 12, qtd.bufptr,
ARRAY_SIZE(qtd.bufptr)) < 0) {
return 0;
}
ehci_trace_qtd(q, NLPTR_GET(q->qtdaddr), &qtd);
p = QTAILQ_FIRST(&q->packets);
if (p != NULL) {
if (!ehci_verify_qtd(p, &qtd)) {
ehci_cancel_queue(q);
if (qtd.token & QTD_TOKEN_ACTIVE) {
ehci_trace_guest_bug(q->ehci, "guest updated active qTD");
}
p = NULL;
} else {
p->qtd = qtd;
ehci_qh_do_overlay(q);
}
}
if (!(qtd.token & QTD_TOKEN_ACTIVE)) {
ehci_set_state(q->ehci, q->async, EST_HORIZONTALQH);
} else if (p != NULL) {
switch (p->async) {
case EHCI_ASYNC_NONE:
case EHCI_ASYNC_INITIALIZED:
/* Not yet executed (MULT), or previously nacked (int) packet */
ehci_set_state(q->ehci, q->async, EST_EXECUTE);
break;
case EHCI_ASYNC_INFLIGHT:
/* Check if the guest has added new tds to the queue */
again = ehci_fill_queue(QTAILQ_LAST(&q->packets));
/* Unfinished async handled packet, go horizontal */
ehci_set_state(q->ehci, q->async, EST_HORIZONTALQH);
break;
case EHCI_ASYNC_FINISHED:
/* Complete executing of the packet */
ehci_set_state(q->ehci, q->async, EST_EXECUTING);
break;
}
} else if (q->dev == NULL) {
ehci_trace_guest_bug(q->ehci, "no device attached to queue");
ehci_set_state(q->ehci, q->async, EST_HORIZONTALQH);
} else {
p = ehci_alloc_packet(q);
p->qtdaddr = q->qtdaddr;
p->qtd = qtd;
ehci_set_state(q->ehci, q->async, EST_EXECUTE);
}
return again;
}
static int ehci_state_horizqh(EHCIQueue *q)
{
int again = 0;
if (ehci_get_fetch_addr(q->ehci, q->async) != q->qh.next) {
ehci_set_fetch_addr(q->ehci, q->async, q->qh.next);
ehci_set_state(q->ehci, q->async, EST_FETCHENTRY);
again = 1;
} else {
ehci_set_state(q->ehci, q->async, EST_ACTIVE);
}
return again;
}
/* Returns "again" */
static int ehci_fill_queue(EHCIPacket *p)
{
USBEndpoint *ep = p->packet.ep;
EHCIQueue *q = p->queue;
EHCIqtd qtd = p->qtd;
uint32_t qtdaddr;
for (;;) {
if (NLPTR_TBIT(qtd.next) != 0) {
break;
}
qtdaddr = qtd.next;
/*
* Detect circular td lists, Windows creates these, counting on the
* active bit going low after execution to make the queue stop.
*/
QTAILQ_FOREACH(p, &q->packets, next) {
if (p->qtdaddr == qtdaddr) {
goto leave;
}
}
if (get_dwords(q->ehci, NLPTR_GET(qtdaddr),
(uint32_t *) &qtd, sizeof(EHCIqtd) >> 2) < 0) {
return -1;
}
ehci_trace_qtd(q, NLPTR_GET(qtdaddr), &qtd);
if (!(qtd.token & QTD_TOKEN_ACTIVE)) {
break;
}
if (!ehci_verify_pid(q, &qtd)) {
ehci_trace_guest_bug(q->ehci, "guest queued token with wrong pid");
break;
}
p = ehci_alloc_packet(q);
p->qtdaddr = qtdaddr;
p->qtd = qtd;
if (ehci_execute(p, "queue") == -1) {
return -1;
}
assert(p->packet.status == USB_RET_ASYNC);
p->async = EHCI_ASYNC_INFLIGHT;
}
leave:
usb_device_flush_ep_queue(ep->dev, ep);
return 1;
}
static int ehci_state_execute(EHCIQueue *q)
{
EHCIPacket *p = QTAILQ_FIRST(&q->packets);
int again = 0;
assert(p != NULL);
assert(p->qtdaddr == q->qtdaddr);
if (ehci_qh_do_overlay(q) != 0) {
return -1;
}
// TODO verify enough time remains in the uframe as in 4.4.1.1
// TODO write back ptr to async list when done or out of time
/* 4.10.3, bottom of page 82, go horizontal on transaction counter == 0 */
if (!q->async && q->transact_ctr == 0) {
ehci_set_state(q->ehci, q->async, EST_HORIZONTALQH);
again = 1;
goto out;
}
if (q->async) {
ehci_set_usbsts(q->ehci, USBSTS_REC);
}
again = ehci_execute(p, "process");
if (again == -1) {
goto out;
}
if (p->packet.status == USB_RET_ASYNC) {
ehci_flush_qh(q);
trace_usb_ehci_packet_action(p->queue, p, "async");
p->async = EHCI_ASYNC_INFLIGHT;
ehci_set_state(q->ehci, q->async, EST_HORIZONTALQH);
if (q->async) {
again = ehci_fill_queue(p);
} else {
again = 1;
}
goto out;
}
ehci_set_state(q->ehci, q->async, EST_EXECUTING);
again = 1;
out:
return again;
}
static int ehci_state_executing(EHCIQueue *q)
{
EHCIPacket *p = QTAILQ_FIRST(&q->packets);
assert(p != NULL);
assert(p->qtdaddr == q->qtdaddr);
ehci_execute_complete(q);
/* 4.10.3 */
if (!q->async && q->transact_ctr > 0) {
q->transact_ctr--;
}
/* 4.10.5 */
if (p->packet.status == USB_RET_NAK) {
ehci_set_state(q->ehci, q->async, EST_HORIZONTALQH);
} else {
ehci_set_state(q->ehci, q->async, EST_WRITEBACK);
}
ehci_flush_qh(q);
return 1;
}
static int ehci_state_writeback(EHCIQueue *q)
{
EHCIPacket *p = QTAILQ_FIRST(&q->packets);
uint32_t *qtd, addr;
int again = 0;
/* Write back the QTD from the QH area */
assert(p != NULL);
assert(p->qtdaddr == q->qtdaddr);
ehci_trace_qtd(q, NLPTR_GET(p->qtdaddr), (EHCIqtd *) &q->qh.next_qtd);
qtd = (uint32_t *) &q->qh.next_qtd;
addr = NLPTR_GET(p->qtdaddr);
put_dwords(q->ehci, addr + 2 * sizeof(uint32_t), qtd + 2, 2);
ehci_free_packet(p);
/*
* EHCI specs say go horizontal here.
*
* We can also advance the queue here for performance reasons. We
* need to take care to only take that shortcut in case we've
* processed the qtd just written back without errors, i.e. halt
* bit is clear.
*/
if (q->qh.token & QTD_TOKEN_HALT) {
ehci_set_state(q->ehci, q->async, EST_HORIZONTALQH);
again = 1;
} else {
ehci_set_state(q->ehci, q->async, EST_ADVANCEQUEUE);
again = 1;
}
return again;
}
/*
* This is the state machine that is common to both async and periodic
*/
static void ehci_advance_state(EHCIState *ehci, int async)
{
EHCIQueue *q = NULL;
int itd_count = 0;
int again;
do {
switch(ehci_get_state(ehci, async)) {
case EST_WAITLISTHEAD:
again = ehci_state_waitlisthead(ehci, async);
break;
case EST_FETCHENTRY:
again = ehci_state_fetchentry(ehci, async);
break;
case EST_FETCHQH:
q = ehci_state_fetchqh(ehci, async);
if (q != NULL) {
assert(q->async == async);
again = 1;
} else {
again = 0;
}
break;
case EST_FETCHITD:
again = ehci_state_fetchitd(ehci, async);
itd_count++;
break;
case EST_FETCHSITD:
again = ehci_state_fetchsitd(ehci, async);
itd_count++;
break;
case EST_ADVANCEQUEUE:
assert(q != NULL);
again = ehci_state_advqueue(q);
break;
case EST_FETCHQTD:
assert(q != NULL);
again = ehci_state_fetchqtd(q);
break;
case EST_HORIZONTALQH:
assert(q != NULL);
again = ehci_state_horizqh(q);
break;
case EST_EXECUTE:
assert(q != NULL);
again = ehci_state_execute(q);
if (async) {
ehci->async_stepdown = 0;
}
break;
case EST_EXECUTING:
assert(q != NULL);
if (async) {
ehci->async_stepdown = 0;
}
again = ehci_state_executing(q);
break;
case EST_WRITEBACK:
assert(q != NULL);
again = ehci_state_writeback(q);
if (!async) {
ehci->periodic_sched_active = PERIODIC_ACTIVE;
}
break;
default:
fprintf(stderr, "Bad state!\n");
g_assert_not_reached();
}
if (again < 0 || itd_count > 16) {
/* TODO: notify guest (raise HSE irq?) */
fprintf(stderr, "processing error - resetting ehci HC\n");
ehci_reset(ehci);
again = 0;
}
}
while (again);
}
static void ehci_advance_async_state(EHCIState *ehci)
{
const int async = 1;
switch(ehci_get_state(ehci, async)) {
case EST_INACTIVE:
if (!ehci_async_enabled(ehci)) {
break;
}
ehci_set_state(ehci, async, EST_ACTIVE);
// No break, fall through to ACTIVE
case EST_ACTIVE:
if (!ehci_async_enabled(ehci)) {
ehci_queues_rip_all(ehci, async);
ehci_set_state(ehci, async, EST_INACTIVE);
break;
}
/* make sure guest has acknowledged the doorbell interrupt */
/* TO-DO: is this really needed? */
if (ehci->usbsts & USBSTS_IAA) {
DPRINTF("IAA status bit still set.\n");
break;
}
/* check that address register has been set */
if (ehci->asynclistaddr == 0) {
break;
}
ehci_set_state(ehci, async, EST_WAITLISTHEAD);
ehci_advance_state(ehci, async);
/* If the doorbell is set, the guest wants to make a change to the
* schedule. The host controller needs to release cached data.
* (section 4.8.2)
*/
if (ehci->usbcmd & USBCMD_IAAD) {
/* Remove all unseen qhs from the async qhs queue */
ehci_queues_rip_unseen(ehci, async);
trace_usb_ehci_doorbell_ack();
ehci->usbcmd &= ~USBCMD_IAAD;
ehci_raise_irq(ehci, USBSTS_IAA);
}
break;
default:
/* this should only be due to a developer mistake */
fprintf(stderr, "ehci: Bad asynchronous state %d. "
"Resetting to active\n", ehci->astate);
g_assert_not_reached();
}
}
static void ehci_advance_periodic_state(EHCIState *ehci)
{
uint32_t entry;
uint32_t list;
const int async = 0;
// 4.6
switch(ehci_get_state(ehci, async)) {
case EST_INACTIVE:
if (!(ehci->frindex & 7) && ehci_periodic_enabled(ehci)) {
ehci_set_state(ehci, async, EST_ACTIVE);
// No break, fall through to ACTIVE
} else
break;
case EST_ACTIVE:
if (!(ehci->frindex & 7) && !ehci_periodic_enabled(ehci)) {
ehci_queues_rip_all(ehci, async);
ehci_set_state(ehci, async, EST_INACTIVE);
break;
}
list = ehci->periodiclistbase & 0xfffff000;
/* check that register has been set */
if (list == 0) {
break;
}
list |= ((ehci->frindex & 0x1ff8) >> 1);
if (get_dwords(ehci, list, &entry, 1) < 0) {
break;
}
DPRINTF("PERIODIC state adv fr=%d. [%08X] -> %08X\n",
ehci->frindex / 8, list, entry);
ehci_set_fetch_addr(ehci, async,entry);
ehci_set_state(ehci, async, EST_FETCHENTRY);
ehci_advance_state(ehci, async);
ehci_queues_rip_unused(ehci, async);
break;
default:
/* this should only be due to a developer mistake */
fprintf(stderr, "ehci: Bad periodic state %d. "
"Resetting to active\n", ehci->pstate);
g_assert_not_reached();
}
}
static void ehci_update_frindex(EHCIState *ehci, int uframes)
{
if (!ehci_enabled(ehci) && ehci->pstate == EST_INACTIVE) {
return;
}
/* Generate FLR interrupt if frame index rolls over 0x2000 */
if ((ehci->frindex % 0x2000) + uframes >= 0x2000) {
ehci_raise_irq(ehci, USBSTS_FLR);
}
/* How many times will frindex roll over 0x4000 with this frame count?
* usbsts_frindex is decremented by 0x4000 on rollover until it reaches 0
*/
int rollovers = (ehci->frindex + uframes) / 0x4000;
if (rollovers > 0) {
if (ehci->usbsts_frindex >= (rollovers * 0x4000)) {
ehci->usbsts_frindex -= 0x4000 * rollovers;
} else {
ehci->usbsts_frindex = 0;
}
}
ehci->frindex = (ehci->frindex + uframes) % 0x4000;
}
static void ehci_work_bh(void *opaque)
{
EHCIState *ehci = opaque;
int need_timer = 0;
int64_t expire_time, t_now;
uint64_t ns_elapsed;
uint64_t uframes, skipped_uframes;
int i;
if (ehci->working) {
return;
}
ehci->working = true;
t_now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
ns_elapsed = t_now - ehci->last_run_ns;
uframes = ns_elapsed / UFRAME_TIMER_NS;
if (ehci_periodic_enabled(ehci) || ehci->pstate != EST_INACTIVE) {
need_timer++;
if (uframes > (ehci->maxframes * 8)) {
skipped_uframes = uframes - (ehci->maxframes * 8);
ehci_update_frindex(ehci, skipped_uframes);
ehci->last_run_ns += UFRAME_TIMER_NS * skipped_uframes;
uframes -= skipped_uframes;
DPRINTF("WARNING - EHCI skipped %d uframes\n", skipped_uframes);
}
for (i = 0; i < uframes; i++) {
/*
* If we're running behind schedule, we should not catch up
* too fast, as that will make some guests unhappy:
* 1) We must process a minimum of MIN_UFR_PER_TICK frames,
* otherwise we will never catch up
* 2) Process frames until the guest has requested an irq (IOC)
*/
if (i >= MIN_UFR_PER_TICK) {
ehci_commit_irq(ehci);
if ((ehci->usbsts & USBINTR_MASK) & ehci->usbintr) {
break;
}
}
if (ehci->periodic_sched_active) {
ehci->periodic_sched_active--;
}
ehci_update_frindex(ehci, 1);
if ((ehci->frindex & 7) == 0) {
ehci_advance_periodic_state(ehci);
}
ehci->last_run_ns += UFRAME_TIMER_NS;
}
} else {
ehci->periodic_sched_active = 0;
ehci_update_frindex(ehci, uframes);
ehci->last_run_ns += UFRAME_TIMER_NS * uframes;
}
if (ehci->periodic_sched_active) {
ehci->async_stepdown = 0;
} else if (ehci->async_stepdown < ehci->maxframes / 2) {
ehci->async_stepdown++;
}
/* Async is not inside loop since it executes everything it can once
* called
*/
if (ehci_async_enabled(ehci) || ehci->astate != EST_INACTIVE) {
need_timer++;
ehci_advance_async_state(ehci);
}
ehci_commit_irq(ehci);
if (ehci->usbsts_pending) {
need_timer++;
ehci->async_stepdown = 0;
}
if (ehci_enabled(ehci) && (ehci->usbintr & USBSTS_FLR)) {
need_timer++;
}
if (need_timer) {
/* If we've raised int, we speed up the timer, so that we quickly
* notice any new packets queued up in response */
if (ehci->int_req_by_async && (ehci->usbsts & USBSTS_INT)) {
expire_time = t_now +
NANOSECONDS_PER_SECOND / (FRAME_TIMER_FREQ * 4);
ehci->int_req_by_async = false;
} else {
expire_time = t_now + (NANOSECONDS_PER_SECOND
* (ehci->async_stepdown+1) / FRAME_TIMER_FREQ);
}
timer_mod(ehci->frame_timer, expire_time);
}
ehci->working = false;
}
static void ehci_work_timer(void *opaque)
{
EHCIState *ehci = opaque;
qemu_bh_schedule(ehci->async_bh);
}
static const MemoryRegionOps ehci_mmio_caps_ops = {
.read = ehci_caps_read,
.write = ehci_caps_write,
.valid.min_access_size = 1,
.valid.max_access_size = 4,
.impl.min_access_size = 1,
.impl.max_access_size = 1,
.endianness = DEVICE_LITTLE_ENDIAN,
};
static const MemoryRegionOps ehci_mmio_opreg_ops = {
.read = ehci_opreg_read,
.write = ehci_opreg_write,
.valid.min_access_size = 4,
.valid.max_access_size = 4,
.endianness = DEVICE_LITTLE_ENDIAN,
};
static const MemoryRegionOps ehci_mmio_port_ops = {
.read = ehci_port_read,
.write = ehci_port_write,
.valid.min_access_size = 4,
.valid.max_access_size = 4,
.endianness = DEVICE_LITTLE_ENDIAN,
};
static USBPortOps ehci_port_ops = {
.attach = ehci_attach,
.detach = ehci_detach,
.child_detach = ehci_child_detach,
.wakeup = ehci_wakeup,
.complete = ehci_async_complete_packet,
};
static USBBusOps ehci_bus_ops_companion = {
.register_companion = ehci_register_companion,
.wakeup_endpoint = ehci_wakeup_endpoint,
};
static USBBusOps ehci_bus_ops_standalone = {
.wakeup_endpoint = ehci_wakeup_endpoint,
};
static int usb_ehci_pre_save(void *opaque)
{
EHCIState *ehci = opaque;
uint32_t new_frindex;
/* Round down frindex to a multiple of 8 for migration compatibility */
new_frindex = ehci->frindex & ~7;
ehci->last_run_ns -= (ehci->frindex - new_frindex) * UFRAME_TIMER_NS;
ehci->frindex = new_frindex;
return 0;
}
static int usb_ehci_post_load(void *opaque, int version_id)
{
EHCIState *s = opaque;
int i;
for (i = 0; i < NB_PORTS; i++) {
USBPort *companion = s->companion_ports[i];
if (companion == NULL) {
continue;
}
if (s->portsc[i] & PORTSC_POWNER) {
companion->dev = s->ports[i].dev;
} else {
companion->dev = NULL;
}
}
return 0;
}
static void usb_ehci_vm_state_change(void *opaque, int running, RunState state)
{
EHCIState *ehci = opaque;
/*
* We don't migrate the EHCIQueue-s, instead we rebuild them for the
* schedule in guest memory. We must do the rebuilt ASAP, so that
* USB-devices which have async handled packages have a packet in the
* ep queue to match the completion with.
*/
if (state == RUN_STATE_RUNNING) {
ehci_advance_async_state(ehci);
}
/*
* The schedule rebuilt from guest memory could cause the migration dest
* to miss a QH unlink, and fail to cancel packets, since the unlinked QH
* will never have existed on the destination. Therefor we must flush the
* async schedule on savevm to catch any not yet noticed unlinks.
*/
if (state == RUN_STATE_SAVE_VM) {
ehci_advance_async_state(ehci);
ehci_queues_rip_unseen(ehci, 1);
}
}
const VMStateDescription vmstate_ehci = {
.name = "ehci-core",
.version_id = 2,
.minimum_version_id = 1,
.pre_save = usb_ehci_pre_save,
.post_load = usb_ehci_post_load,
.fields = (VMStateField[]) {
/* mmio registers */
VMSTATE_UINT32(usbcmd, EHCIState),
VMSTATE_UINT32(usbsts, EHCIState),
VMSTATE_UINT32_V(usbsts_pending, EHCIState, 2),
VMSTATE_UINT32_V(usbsts_frindex, EHCIState, 2),
VMSTATE_UINT32(usbintr, EHCIState),
VMSTATE_UINT32(frindex, EHCIState),
VMSTATE_UINT32(ctrldssegment, EHCIState),
VMSTATE_UINT32(periodiclistbase, EHCIState),
VMSTATE_UINT32(asynclistaddr, EHCIState),
VMSTATE_UINT32(configflag, EHCIState),
VMSTATE_UINT32(portsc[0], EHCIState),
VMSTATE_UINT32(portsc[1], EHCIState),
VMSTATE_UINT32(portsc[2], EHCIState),
VMSTATE_UINT32(portsc[3], EHCIState),
VMSTATE_UINT32(portsc[4], EHCIState),
VMSTATE_UINT32(portsc[5], EHCIState),
/* frame timer */
VMSTATE_TIMER_PTR(frame_timer, EHCIState),
VMSTATE_UINT64(last_run_ns, EHCIState),
VMSTATE_UINT32(async_stepdown, EHCIState),
/* schedule state */
VMSTATE_UINT32(astate, EHCIState),
VMSTATE_UINT32(pstate, EHCIState),
VMSTATE_UINT32(a_fetch_addr, EHCIState),
VMSTATE_UINT32(p_fetch_addr, EHCIState),
VMSTATE_END_OF_LIST()
}
};
void usb_ehci_realize(EHCIState *s, DeviceState *dev, Error **errp)
{
int i;
if (s->portnr > NB_PORTS) {
error_setg(errp, "Too many ports! Max. port number is %d.",
NB_PORTS);
return;
}
if (s->maxframes < 8 || s->maxframes > 512) {
error_setg(errp, "maxframes %d out if range (8 .. 512)",
s->maxframes);
return;
}
usb_bus_new(&s->bus, sizeof(s->bus), s->companion_enable ?
&ehci_bus_ops_companion : &ehci_bus_ops_standalone, dev);
for (i = 0; i < s->portnr; i++) {
usb_register_port(&s->bus, &s->ports[i], s, i, &ehci_port_ops,
USB_SPEED_MASK_HIGH);
s->ports[i].dev = 0;
}
s->frame_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, ehci_work_timer, s);
s->async_bh = qemu_bh_new(ehci_work_bh, s);
s->device = dev;
s->vmstate = qemu_add_vm_change_state_handler(usb_ehci_vm_state_change, s);
}
void usb_ehci_unrealize(EHCIState *s, DeviceState *dev)
{
trace_usb_ehci_unrealize();
if (s->frame_timer) {
timer_del(s->frame_timer);
timer_free(s->frame_timer);
s->frame_timer = NULL;
}
if (s->async_bh) {
qemu_bh_delete(s->async_bh);
}
ehci_queues_rip_all(s, 0);
ehci_queues_rip_all(s, 1);
memory_region_del_subregion(&s->mem, &s->mem_caps);
memory_region_del_subregion(&s->mem, &s->mem_opreg);
memory_region_del_subregion(&s->mem, &s->mem_ports);
usb_bus_release(&s->bus);
if (s->vmstate) {
qemu_del_vm_change_state_handler(s->vmstate);
}
}
void usb_ehci_init(EHCIState *s, DeviceState *dev)
{
/* 2.2 host controller interface version */
s->caps[0x00] = (uint8_t)(s->opregbase - s->capsbase);
s->caps[0x01] = 0x00;
s->caps[0x02] = 0x00;
s->caps[0x03] = 0x01; /* HC version */
s->caps[0x04] = s->portnr; /* Number of downstream ports */
s->caps[0x05] = 0x00; /* No companion ports at present */
s->caps[0x06] = 0x00;
s->caps[0x07] = 0x00;
s->caps[0x08] = 0x80; /* We can cache whole frame, no 64-bit */
s->caps[0x0a] = 0x00;
s->caps[0x0b] = 0x00;
QTAILQ_INIT(&s->aqueues);
QTAILQ_INIT(&s->pqueues);
usb_packet_init(&s->ipacket);
memory_region_init(&s->mem, OBJECT(dev), "ehci", MMIO_SIZE);
memory_region_init_io(&s->mem_caps, OBJECT(dev), &ehci_mmio_caps_ops, s,
"capabilities", CAPA_SIZE);
memory_region_init_io(&s->mem_opreg, OBJECT(dev), &ehci_mmio_opreg_ops, s,
"operational", s->portscbase);
memory_region_init_io(&s->mem_ports, OBJECT(dev), &ehci_mmio_port_ops, s,
"ports", 4 * s->portnr);
memory_region_add_subregion(&s->mem, s->capsbase, &s->mem_caps);
memory_region_add_subregion(&s->mem, s->opregbase, &s->mem_opreg);
memory_region_add_subregion(&s->mem, s->opregbase + s->portscbase,
&s->mem_ports);
}
void usb_ehci_finalize(EHCIState *s)
{
usb_packet_cleanup(&s->ipacket);
}
/*
* vim: expandtab ts=4
*/