Paolo Bonzini 4c66375252 kvm: add support for memory transaction attributes
Let kvm_arch_post_run convert fields in the kvm_run struct to MemTxAttrs.
These are then passed to address_space_rw.

Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2015-04-30 16:55:32 +02:00

699 lines
19 KiB
C

/*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*
* KVM/MIPS: MIPS specific KVM APIs
*
* Copyright (C) 2012-2014 Imagination Technologies Ltd.
* Authors: Sanjay Lal <sanjayl@kymasys.com>
*/
#include <sys/types.h>
#include <sys/ioctl.h>
#include <sys/mman.h>
#include <linux/kvm.h>
#include "qemu-common.h"
#include "qemu/error-report.h"
#include "qemu/timer.h"
#include "sysemu/sysemu.h"
#include "sysemu/kvm.h"
#include "cpu.h"
#include "sysemu/cpus.h"
#include "kvm_mips.h"
#include "exec/memattrs.h"
#define DEBUG_KVM 0
#define DPRINTF(fmt, ...) \
do { if (DEBUG_KVM) { fprintf(stderr, fmt, ## __VA_ARGS__); } } while (0)
const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
KVM_CAP_LAST_INFO
};
static void kvm_mips_update_state(void *opaque, int running, RunState state);
unsigned long kvm_arch_vcpu_id(CPUState *cs)
{
return cs->cpu_index;
}
int kvm_arch_init(MachineState *ms, KVMState *s)
{
/* MIPS has 128 signals */
kvm_set_sigmask_len(s, 16);
DPRINTF("%s\n", __func__);
return 0;
}
int kvm_arch_init_vcpu(CPUState *cs)
{
int ret = 0;
qemu_add_vm_change_state_handler(kvm_mips_update_state, cs);
DPRINTF("%s\n", __func__);
return ret;
}
void kvm_mips_reset_vcpu(MIPSCPU *cpu)
{
CPUMIPSState *env = &cpu->env;
if (env->CP0_Config1 & (1 << CP0C1_FP)) {
fprintf(stderr, "Warning: FPU not supported with KVM, disabling\n");
env->CP0_Config1 &= ~(1 << CP0C1_FP);
}
DPRINTF("%s\n", __func__);
}
int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
{
DPRINTF("%s\n", __func__);
return 0;
}
int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
{
DPRINTF("%s\n", __func__);
return 0;
}
static inline int cpu_mips_io_interrupts_pending(MIPSCPU *cpu)
{
CPUMIPSState *env = &cpu->env;
DPRINTF("%s: %#x\n", __func__, env->CP0_Cause & (1 << (2 + CP0Ca_IP)));
return env->CP0_Cause & (0x1 << (2 + CP0Ca_IP));
}
void kvm_arch_pre_run(CPUState *cs, struct kvm_run *run)
{
MIPSCPU *cpu = MIPS_CPU(cs);
int r;
struct kvm_mips_interrupt intr;
if ((cs->interrupt_request & CPU_INTERRUPT_HARD) &&
cpu_mips_io_interrupts_pending(cpu)) {
intr.cpu = -1;
intr.irq = 2;
r = kvm_vcpu_ioctl(cs, KVM_INTERRUPT, &intr);
if (r < 0) {
error_report("%s: cpu %d: failed to inject IRQ %x",
__func__, cs->cpu_index, intr.irq);
}
}
}
MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run)
{
DPRINTF("%s\n", __func__);
return MEMTXATTRS_UNSPECIFIED;
}
int kvm_arch_process_async_events(CPUState *cs)
{
return cs->halted;
}
int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
{
int ret;
DPRINTF("%s\n", __func__);
switch (run->exit_reason) {
default:
error_report("%s: unknown exit reason %d",
__func__, run->exit_reason);
ret = -1;
break;
}
return ret;
}
bool kvm_arch_stop_on_emulation_error(CPUState *cs)
{
DPRINTF("%s\n", __func__);
return true;
}
int kvm_arch_on_sigbus_vcpu(CPUState *cs, int code, void *addr)
{
DPRINTF("%s\n", __func__);
return 1;
}
int kvm_arch_on_sigbus(int code, void *addr)
{
DPRINTF("%s\n", __func__);
return 1;
}
void kvm_arch_init_irq_routing(KVMState *s)
{
}
int kvm_mips_set_interrupt(MIPSCPU *cpu, int irq, int level)
{
CPUState *cs = CPU(cpu);
struct kvm_mips_interrupt intr;
if (!kvm_enabled()) {
return 0;
}
intr.cpu = -1;
if (level) {
intr.irq = irq;
} else {
intr.irq = -irq;
}
kvm_vcpu_ioctl(cs, KVM_INTERRUPT, &intr);
return 0;
}
int kvm_mips_set_ipi_interrupt(MIPSCPU *cpu, int irq, int level)
{
CPUState *cs = current_cpu;
CPUState *dest_cs = CPU(cpu);
struct kvm_mips_interrupt intr;
if (!kvm_enabled()) {
return 0;
}
intr.cpu = dest_cs->cpu_index;
if (level) {
intr.irq = irq;
} else {
intr.irq = -irq;
}
DPRINTF("%s: CPU %d, IRQ: %d\n", __func__, intr.cpu, intr.irq);
kvm_vcpu_ioctl(cs, KVM_INTERRUPT, &intr);
return 0;
}
#define MIPS_CP0_32(_R, _S) \
(KVM_REG_MIPS | KVM_REG_SIZE_U32 | 0x10000 | (8 * (_R) + (_S)))
#define MIPS_CP0_64(_R, _S) \
(KVM_REG_MIPS | KVM_REG_SIZE_U64 | 0x10000 | (8 * (_R) + (_S)))
#define KVM_REG_MIPS_CP0_INDEX MIPS_CP0_32(0, 0)
#define KVM_REG_MIPS_CP0_CONTEXT MIPS_CP0_64(4, 0)
#define KVM_REG_MIPS_CP0_USERLOCAL MIPS_CP0_64(4, 2)
#define KVM_REG_MIPS_CP0_PAGEMASK MIPS_CP0_32(5, 0)
#define KVM_REG_MIPS_CP0_WIRED MIPS_CP0_32(6, 0)
#define KVM_REG_MIPS_CP0_HWRENA MIPS_CP0_32(7, 0)
#define KVM_REG_MIPS_CP0_BADVADDR MIPS_CP0_64(8, 0)
#define KVM_REG_MIPS_CP0_COUNT MIPS_CP0_32(9, 0)
#define KVM_REG_MIPS_CP0_ENTRYHI MIPS_CP0_64(10, 0)
#define KVM_REG_MIPS_CP0_COMPARE MIPS_CP0_32(11, 0)
#define KVM_REG_MIPS_CP0_STATUS MIPS_CP0_32(12, 0)
#define KVM_REG_MIPS_CP0_CAUSE MIPS_CP0_32(13, 0)
#define KVM_REG_MIPS_CP0_EPC MIPS_CP0_64(14, 0)
#define KVM_REG_MIPS_CP0_ERROREPC MIPS_CP0_64(30, 0)
/* CP0_Count control */
#define KVM_REG_MIPS_COUNT_CTL (KVM_REG_MIPS | KVM_REG_SIZE_U64 | \
0x20000 | 0)
#define KVM_REG_MIPS_COUNT_CTL_DC 0x00000001 /* master disable */
/* CP0_Count resume monotonic nanoseconds */
#define KVM_REG_MIPS_COUNT_RESUME (KVM_REG_MIPS | KVM_REG_SIZE_U64 | \
0x20000 | 1)
/* CP0_Count rate in Hz */
#define KVM_REG_MIPS_COUNT_HZ (KVM_REG_MIPS | KVM_REG_SIZE_U64 | \
0x20000 | 2)
static inline int kvm_mips_put_one_reg(CPUState *cs, uint64_t reg_id,
int32_t *addr)
{
uint64_t val64 = *addr;
struct kvm_one_reg cp0reg = {
.id = reg_id,
.addr = (uintptr_t)&val64
};
return kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &cp0reg);
}
static inline int kvm_mips_put_one_ulreg(CPUState *cs, uint64_t reg_id,
target_ulong *addr)
{
uint64_t val64 = *addr;
struct kvm_one_reg cp0reg = {
.id = reg_id,
.addr = (uintptr_t)&val64
};
return kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &cp0reg);
}
static inline int kvm_mips_put_one_reg64(CPUState *cs, uint64_t reg_id,
uint64_t *addr)
{
struct kvm_one_reg cp0reg = {
.id = reg_id,
.addr = (uintptr_t)addr
};
return kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &cp0reg);
}
static inline int kvm_mips_get_one_reg(CPUState *cs, uint64_t reg_id,
int32_t *addr)
{
int ret;
uint64_t val64 = 0;
struct kvm_one_reg cp0reg = {
.id = reg_id,
.addr = (uintptr_t)&val64
};
ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &cp0reg);
if (ret >= 0) {
*addr = val64;
}
return ret;
}
static inline int kvm_mips_get_one_ulreg(CPUState *cs, uint64 reg_id,
target_ulong *addr)
{
int ret;
uint64_t val64 = 0;
struct kvm_one_reg cp0reg = {
.id = reg_id,
.addr = (uintptr_t)&val64
};
ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &cp0reg);
if (ret >= 0) {
*addr = val64;
}
return ret;
}
static inline int kvm_mips_get_one_reg64(CPUState *cs, uint64 reg_id,
uint64_t *addr)
{
struct kvm_one_reg cp0reg = {
.id = reg_id,
.addr = (uintptr_t)addr
};
return kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &cp0reg);
}
/*
* We freeze the KVM timer when either the VM clock is stopped or the state is
* saved (the state is dirty).
*/
/*
* Save the state of the KVM timer when VM clock is stopped or state is synced
* to QEMU.
*/
static int kvm_mips_save_count(CPUState *cs)
{
MIPSCPU *cpu = MIPS_CPU(cs);
CPUMIPSState *env = &cpu->env;
uint64_t count_ctl;
int err, ret = 0;
/* freeze KVM timer */
err = kvm_mips_get_one_reg64(cs, KVM_REG_MIPS_COUNT_CTL, &count_ctl);
if (err < 0) {
DPRINTF("%s: Failed to get COUNT_CTL (%d)\n", __func__, err);
ret = err;
} else if (!(count_ctl & KVM_REG_MIPS_COUNT_CTL_DC)) {
count_ctl |= KVM_REG_MIPS_COUNT_CTL_DC;
err = kvm_mips_put_one_reg64(cs, KVM_REG_MIPS_COUNT_CTL, &count_ctl);
if (err < 0) {
DPRINTF("%s: Failed to set COUNT_CTL.DC=1 (%d)\n", __func__, err);
ret = err;
}
}
/* read CP0_Cause */
err = kvm_mips_get_one_reg(cs, KVM_REG_MIPS_CP0_CAUSE, &env->CP0_Cause);
if (err < 0) {
DPRINTF("%s: Failed to get CP0_CAUSE (%d)\n", __func__, err);
ret = err;
}
/* read CP0_Count */
err = kvm_mips_get_one_reg(cs, KVM_REG_MIPS_CP0_COUNT, &env->CP0_Count);
if (err < 0) {
DPRINTF("%s: Failed to get CP0_COUNT (%d)\n", __func__, err);
ret = err;
}
return ret;
}
/*
* Restore the state of the KVM timer when VM clock is restarted or state is
* synced to KVM.
*/
static int kvm_mips_restore_count(CPUState *cs)
{
MIPSCPU *cpu = MIPS_CPU(cs);
CPUMIPSState *env = &cpu->env;
uint64_t count_ctl;
int err_dc, err, ret = 0;
/* check the timer is frozen */
err_dc = kvm_mips_get_one_reg64(cs, KVM_REG_MIPS_COUNT_CTL, &count_ctl);
if (err_dc < 0) {
DPRINTF("%s: Failed to get COUNT_CTL (%d)\n", __func__, err_dc);
ret = err_dc;
} else if (!(count_ctl & KVM_REG_MIPS_COUNT_CTL_DC)) {
/* freeze timer (sets COUNT_RESUME for us) */
count_ctl |= KVM_REG_MIPS_COUNT_CTL_DC;
err = kvm_mips_put_one_reg64(cs, KVM_REG_MIPS_COUNT_CTL, &count_ctl);
if (err < 0) {
DPRINTF("%s: Failed to set COUNT_CTL.DC=1 (%d)\n", __func__, err);
ret = err;
}
}
/* load CP0_Cause */
err = kvm_mips_put_one_reg(cs, KVM_REG_MIPS_CP0_CAUSE, &env->CP0_Cause);
if (err < 0) {
DPRINTF("%s: Failed to put CP0_CAUSE (%d)\n", __func__, err);
ret = err;
}
/* load CP0_Count */
err = kvm_mips_put_one_reg(cs, KVM_REG_MIPS_CP0_COUNT, &env->CP0_Count);
if (err < 0) {
DPRINTF("%s: Failed to put CP0_COUNT (%d)\n", __func__, err);
ret = err;
}
/* resume KVM timer */
if (err_dc >= 0) {
count_ctl &= ~KVM_REG_MIPS_COUNT_CTL_DC;
err = kvm_mips_put_one_reg64(cs, KVM_REG_MIPS_COUNT_CTL, &count_ctl);
if (err < 0) {
DPRINTF("%s: Failed to set COUNT_CTL.DC=0 (%d)\n", __func__, err);
ret = err;
}
}
return ret;
}
/*
* Handle the VM clock being started or stopped
*/
static void kvm_mips_update_state(void *opaque, int running, RunState state)
{
CPUState *cs = opaque;
int ret;
uint64_t count_resume;
/*
* If state is already dirty (synced to QEMU) then the KVM timer state is
* already saved and can be restored when it is synced back to KVM.
*/
if (!running) {
if (!cs->kvm_vcpu_dirty) {
ret = kvm_mips_save_count(cs);
if (ret < 0) {
fprintf(stderr, "Failed saving count\n");
}
}
} else {
/* Set clock restore time to now */
count_resume = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
ret = kvm_mips_put_one_reg64(cs, KVM_REG_MIPS_COUNT_RESUME,
&count_resume);
if (ret < 0) {
fprintf(stderr, "Failed setting COUNT_RESUME\n");
return;
}
if (!cs->kvm_vcpu_dirty) {
ret = kvm_mips_restore_count(cs);
if (ret < 0) {
fprintf(stderr, "Failed restoring count\n");
}
}
}
}
static int kvm_mips_put_cp0_registers(CPUState *cs, int level)
{
MIPSCPU *cpu = MIPS_CPU(cs);
CPUMIPSState *env = &cpu->env;
int err, ret = 0;
(void)level;
err = kvm_mips_put_one_reg(cs, KVM_REG_MIPS_CP0_INDEX, &env->CP0_Index);
if (err < 0) {
DPRINTF("%s: Failed to put CP0_INDEX (%d)\n", __func__, err);
ret = err;
}
err = kvm_mips_put_one_ulreg(cs, KVM_REG_MIPS_CP0_CONTEXT,
&env->CP0_Context);
if (err < 0) {
DPRINTF("%s: Failed to put CP0_CONTEXT (%d)\n", __func__, err);
ret = err;
}
err = kvm_mips_put_one_ulreg(cs, KVM_REG_MIPS_CP0_USERLOCAL,
&env->active_tc.CP0_UserLocal);
if (err < 0) {
DPRINTF("%s: Failed to put CP0_USERLOCAL (%d)\n", __func__, err);
ret = err;
}
err = kvm_mips_put_one_reg(cs, KVM_REG_MIPS_CP0_PAGEMASK,
&env->CP0_PageMask);
if (err < 0) {
DPRINTF("%s: Failed to put CP0_PAGEMASK (%d)\n", __func__, err);
ret = err;
}
err = kvm_mips_put_one_reg(cs, KVM_REG_MIPS_CP0_WIRED, &env->CP0_Wired);
if (err < 0) {
DPRINTF("%s: Failed to put CP0_WIRED (%d)\n", __func__, err);
ret = err;
}
err = kvm_mips_put_one_reg(cs, KVM_REG_MIPS_CP0_HWRENA, &env->CP0_HWREna);
if (err < 0) {
DPRINTF("%s: Failed to put CP0_HWRENA (%d)\n", __func__, err);
ret = err;
}
err = kvm_mips_put_one_ulreg(cs, KVM_REG_MIPS_CP0_BADVADDR,
&env->CP0_BadVAddr);
if (err < 0) {
DPRINTF("%s: Failed to put CP0_BADVADDR (%d)\n", __func__, err);
ret = err;
}
/* If VM clock stopped then state will be restored when it is restarted */
if (runstate_is_running()) {
err = kvm_mips_restore_count(cs);
if (err < 0) {
ret = err;
}
}
err = kvm_mips_put_one_ulreg(cs, KVM_REG_MIPS_CP0_ENTRYHI,
&env->CP0_EntryHi);
if (err < 0) {
DPRINTF("%s: Failed to put CP0_ENTRYHI (%d)\n", __func__, err);
ret = err;
}
err = kvm_mips_put_one_reg(cs, KVM_REG_MIPS_CP0_COMPARE,
&env->CP0_Compare);
if (err < 0) {
DPRINTF("%s: Failed to put CP0_COMPARE (%d)\n", __func__, err);
ret = err;
}
err = kvm_mips_put_one_reg(cs, KVM_REG_MIPS_CP0_STATUS, &env->CP0_Status);
if (err < 0) {
DPRINTF("%s: Failed to put CP0_STATUS (%d)\n", __func__, err);
ret = err;
}
err = kvm_mips_put_one_ulreg(cs, KVM_REG_MIPS_CP0_EPC, &env->CP0_EPC);
if (err < 0) {
DPRINTF("%s: Failed to put CP0_EPC (%d)\n", __func__, err);
ret = err;
}
err = kvm_mips_put_one_ulreg(cs, KVM_REG_MIPS_CP0_ERROREPC,
&env->CP0_ErrorEPC);
if (err < 0) {
DPRINTF("%s: Failed to put CP0_ERROREPC (%d)\n", __func__, err);
ret = err;
}
return ret;
}
static int kvm_mips_get_cp0_registers(CPUState *cs)
{
MIPSCPU *cpu = MIPS_CPU(cs);
CPUMIPSState *env = &cpu->env;
int err, ret = 0;
err = kvm_mips_get_one_reg(cs, KVM_REG_MIPS_CP0_INDEX, &env->CP0_Index);
if (err < 0) {
DPRINTF("%s: Failed to get CP0_INDEX (%d)\n", __func__, err);
ret = err;
}
err = kvm_mips_get_one_ulreg(cs, KVM_REG_MIPS_CP0_CONTEXT,
&env->CP0_Context);
if (err < 0) {
DPRINTF("%s: Failed to get CP0_CONTEXT (%d)\n", __func__, err);
ret = err;
}
err = kvm_mips_get_one_ulreg(cs, KVM_REG_MIPS_CP0_USERLOCAL,
&env->active_tc.CP0_UserLocal);
if (err < 0) {
DPRINTF("%s: Failed to get CP0_USERLOCAL (%d)\n", __func__, err);
ret = err;
}
err = kvm_mips_get_one_reg(cs, KVM_REG_MIPS_CP0_PAGEMASK,
&env->CP0_PageMask);
if (err < 0) {
DPRINTF("%s: Failed to get CP0_PAGEMASK (%d)\n", __func__, err);
ret = err;
}
err = kvm_mips_get_one_reg(cs, KVM_REG_MIPS_CP0_WIRED, &env->CP0_Wired);
if (err < 0) {
DPRINTF("%s: Failed to get CP0_WIRED (%d)\n", __func__, err);
ret = err;
}
err = kvm_mips_get_one_reg(cs, KVM_REG_MIPS_CP0_HWRENA, &env->CP0_HWREna);
if (err < 0) {
DPRINTF("%s: Failed to get CP0_HWRENA (%d)\n", __func__, err);
ret = err;
}
err = kvm_mips_get_one_ulreg(cs, KVM_REG_MIPS_CP0_BADVADDR,
&env->CP0_BadVAddr);
if (err < 0) {
DPRINTF("%s: Failed to get CP0_BADVADDR (%d)\n", __func__, err);
ret = err;
}
err = kvm_mips_get_one_ulreg(cs, KVM_REG_MIPS_CP0_ENTRYHI,
&env->CP0_EntryHi);
if (err < 0) {
DPRINTF("%s: Failed to get CP0_ENTRYHI (%d)\n", __func__, err);
ret = err;
}
err = kvm_mips_get_one_reg(cs, KVM_REG_MIPS_CP0_COMPARE,
&env->CP0_Compare);
if (err < 0) {
DPRINTF("%s: Failed to get CP0_COMPARE (%d)\n", __func__, err);
ret = err;
}
err = kvm_mips_get_one_reg(cs, KVM_REG_MIPS_CP0_STATUS, &env->CP0_Status);
if (err < 0) {
DPRINTF("%s: Failed to get CP0_STATUS (%d)\n", __func__, err);
ret = err;
}
/* If VM clock stopped then state was already saved when it was stopped */
if (runstate_is_running()) {
err = kvm_mips_save_count(cs);
if (err < 0) {
ret = err;
}
}
err = kvm_mips_get_one_ulreg(cs, KVM_REG_MIPS_CP0_EPC, &env->CP0_EPC);
if (err < 0) {
DPRINTF("%s: Failed to get CP0_EPC (%d)\n", __func__, err);
ret = err;
}
err = kvm_mips_get_one_ulreg(cs, KVM_REG_MIPS_CP0_ERROREPC,
&env->CP0_ErrorEPC);
if (err < 0) {
DPRINTF("%s: Failed to get CP0_ERROREPC (%d)\n", __func__, err);
ret = err;
}
return ret;
}
int kvm_arch_put_registers(CPUState *cs, int level)
{
MIPSCPU *cpu = MIPS_CPU(cs);
CPUMIPSState *env = &cpu->env;
struct kvm_regs regs;
int ret;
int i;
/* Set the registers based on QEMU's view of things */
for (i = 0; i < 32; i++) {
regs.gpr[i] = env->active_tc.gpr[i];
}
regs.hi = env->active_tc.HI[0];
regs.lo = env->active_tc.LO[0];
regs.pc = env->active_tc.PC;
ret = kvm_vcpu_ioctl(cs, KVM_SET_REGS, &regs);
if (ret < 0) {
return ret;
}
ret = kvm_mips_put_cp0_registers(cs, level);
if (ret < 0) {
return ret;
}
return ret;
}
int kvm_arch_get_registers(CPUState *cs)
{
MIPSCPU *cpu = MIPS_CPU(cs);
CPUMIPSState *env = &cpu->env;
int ret = 0;
struct kvm_regs regs;
int i;
/* Get the current register set as KVM seems it */
ret = kvm_vcpu_ioctl(cs, KVM_GET_REGS, &regs);
if (ret < 0) {
return ret;
}
for (i = 0; i < 32; i++) {
env->active_tc.gpr[i] = regs.gpr[i];
}
env->active_tc.HI[0] = regs.hi;
env->active_tc.LO[0] = regs.lo;
env->active_tc.PC = regs.pc;
kvm_mips_get_cp0_registers(cs);
return ret;
}
int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
uint64_t address, uint32_t data)
{
return 0;
}