qemu-e2k/include/qemu/host-utils.h
Nicholas Piggin 47de6c4c28 host-utils: Add muldiv64_round_up
This will be used for converting time intervals in different base units
to host units, for the purpose of scheduling timers to emulate target
timers. Timers typically must not fire before their requested expiry
time but may fire some time afterward, so rounding up is the right way
to implement these.

Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
[ clg: renamed __muldiv64() to muldiv64_rounding() ]
Signed-off-by: Cédric Le Goater <clg@kaod.org>
2023-09-06 11:19:33 +02:00

862 lines
21 KiB
C

/*
* Utility compute operations used by translated code.
*
* Copyright (c) 2007 Thiemo Seufer
* Copyright (c) 2007 Jocelyn Mayer
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
/* Portions of this work are licensed under the terms of the GNU GPL,
* version 2 or later. See the COPYING file in the top-level directory.
*/
#ifndef HOST_UTILS_H
#define HOST_UTILS_H
#include "qemu/bswap.h"
#include "qemu/int128.h"
#ifdef CONFIG_INT128
static inline void mulu64(uint64_t *plow, uint64_t *phigh,
uint64_t a, uint64_t b)
{
__uint128_t r = (__uint128_t)a * b;
*plow = r;
*phigh = r >> 64;
}
static inline void muls64(uint64_t *plow, uint64_t *phigh,
int64_t a, int64_t b)
{
__int128_t r = (__int128_t)a * b;
*plow = r;
*phigh = r >> 64;
}
/* compute with 96 bit intermediate result: (a*b)/c */
static inline uint64_t muldiv64(uint64_t a, uint32_t b, uint32_t c)
{
return (__int128_t)a * b / c;
}
static inline uint64_t muldiv64_round_up(uint64_t a, uint32_t b, uint32_t c)
{
return ((__int128_t)a * b + c - 1) / c;
}
static inline uint64_t divu128(uint64_t *plow, uint64_t *phigh,
uint64_t divisor)
{
__uint128_t dividend = ((__uint128_t)*phigh << 64) | *plow;
__uint128_t result = dividend / divisor;
*plow = result;
*phigh = result >> 64;
return dividend % divisor;
}
static inline int64_t divs128(uint64_t *plow, int64_t *phigh,
int64_t divisor)
{
__int128_t dividend = ((__int128_t)*phigh << 64) | *plow;
__int128_t result = dividend / divisor;
*plow = result;
*phigh = result >> 64;
return dividend % divisor;
}
#else
void muls64(uint64_t *plow, uint64_t *phigh, int64_t a, int64_t b);
void mulu64(uint64_t *plow, uint64_t *phigh, uint64_t a, uint64_t b);
uint64_t divu128(uint64_t *plow, uint64_t *phigh, uint64_t divisor);
int64_t divs128(uint64_t *plow, int64_t *phigh, int64_t divisor);
static inline uint64_t muldiv64_rounding(uint64_t a, uint32_t b, uint32_t c,
bool round_up)
{
union {
uint64_t ll;
struct {
#if HOST_BIG_ENDIAN
uint32_t high, low;
#else
uint32_t low, high;
#endif
} l;
} u, res;
uint64_t rl, rh;
u.ll = a;
rl = (uint64_t)u.l.low * (uint64_t)b;
if (round_up) {
rl += c - 1;
}
rh = (uint64_t)u.l.high * (uint64_t)b;
rh += (rl >> 32);
res.l.high = rh / c;
res.l.low = (((rh % c) << 32) + (rl & 0xffffffff)) / c;
return res.ll;
}
static inline uint64_t muldiv64(uint64_t a, uint32_t b, uint32_t c)
{
return muldiv64_rounding(a, b, c, false);
}
static inline uint64_t muldiv64_round_up(uint64_t a, uint32_t b, uint32_t c)
{
return muldiv64_rounding(a, b, c, true);
}
#endif
/**
* clz8 - count leading zeros in a 8-bit value.
* @val: The value to search
*
* Returns 8 if the value is zero. Note that the GCC builtin is
* undefined if the value is zero.
*
* Note that the GCC builtin will upcast its argument to an `unsigned int`
* so this function subtracts off the number of prepended zeroes.
*/
static inline int clz8(uint8_t val)
{
return val ? __builtin_clz(val) - 24 : 8;
}
/**
* clz16 - count leading zeros in a 16-bit value.
* @val: The value to search
*
* Returns 16 if the value is zero. Note that the GCC builtin is
* undefined if the value is zero.
*
* Note that the GCC builtin will upcast its argument to an `unsigned int`
* so this function subtracts off the number of prepended zeroes.
*/
static inline int clz16(uint16_t val)
{
return val ? __builtin_clz(val) - 16 : 16;
}
/**
* clz32 - count leading zeros in a 32-bit value.
* @val: The value to search
*
* Returns 32 if the value is zero. Note that the GCC builtin is
* undefined if the value is zero.
*/
static inline int clz32(uint32_t val)
{
return val ? __builtin_clz(val) : 32;
}
/**
* clo32 - count leading ones in a 32-bit value.
* @val: The value to search
*
* Returns 32 if the value is -1.
*/
static inline int clo32(uint32_t val)
{
return clz32(~val);
}
/**
* clz64 - count leading zeros in a 64-bit value.
* @val: The value to search
*
* Returns 64 if the value is zero. Note that the GCC builtin is
* undefined if the value is zero.
*/
static inline int clz64(uint64_t val)
{
return val ? __builtin_clzll(val) : 64;
}
/**
* clo64 - count leading ones in a 64-bit value.
* @val: The value to search
*
* Returns 64 if the value is -1.
*/
static inline int clo64(uint64_t val)
{
return clz64(~val);
}
/**
* ctz8 - count trailing zeros in a 8-bit value.
* @val: The value to search
*
* Returns 8 if the value is zero. Note that the GCC builtin is
* undefined if the value is zero.
*/
static inline int ctz8(uint8_t val)
{
return val ? __builtin_ctz(val) : 8;
}
/**
* ctz16 - count trailing zeros in a 16-bit value.
* @val: The value to search
*
* Returns 16 if the value is zero. Note that the GCC builtin is
* undefined if the value is zero.
*/
static inline int ctz16(uint16_t val)
{
return val ? __builtin_ctz(val) : 16;
}
/**
* ctz32 - count trailing zeros in a 32-bit value.
* @val: The value to search
*
* Returns 32 if the value is zero. Note that the GCC builtin is
* undefined if the value is zero.
*/
static inline int ctz32(uint32_t val)
{
return val ? __builtin_ctz(val) : 32;
}
/**
* cto32 - count trailing ones in a 32-bit value.
* @val: The value to search
*
* Returns 32 if the value is -1.
*/
static inline int cto32(uint32_t val)
{
return ctz32(~val);
}
/**
* ctz64 - count trailing zeros in a 64-bit value.
* @val: The value to search
*
* Returns 64 if the value is zero. Note that the GCC builtin is
* undefined if the value is zero.
*/
static inline int ctz64(uint64_t val)
{
return val ? __builtin_ctzll(val) : 64;
}
/**
* cto64 - count trailing ones in a 64-bit value.
* @val: The value to search
*
* Returns 64 if the value is -1.
*/
static inline int cto64(uint64_t val)
{
return ctz64(~val);
}
/**
* clrsb32 - count leading redundant sign bits in a 32-bit value.
* @val: The value to search
*
* Returns the number of bits following the sign bit that are equal to it.
* No special cases; output range is [0-31].
*/
static inline int clrsb32(uint32_t val)
{
#if __has_builtin(__builtin_clrsb) || !defined(__clang__)
return __builtin_clrsb(val);
#else
return clz32(val ^ ((int32_t)val >> 1)) - 1;
#endif
}
/**
* clrsb64 - count leading redundant sign bits in a 64-bit value.
* @val: The value to search
*
* Returns the number of bits following the sign bit that are equal to it.
* No special cases; output range is [0-63].
*/
static inline int clrsb64(uint64_t val)
{
#if __has_builtin(__builtin_clrsbll) || !defined(__clang__)
return __builtin_clrsbll(val);
#else
return clz64(val ^ ((int64_t)val >> 1)) - 1;
#endif
}
/**
* ctpop8 - count the population of one bits in an 8-bit value.
* @val: The value to search
*/
static inline int ctpop8(uint8_t val)
{
return __builtin_popcount(val);
}
/**
* ctpop16 - count the population of one bits in a 16-bit value.
* @val: The value to search
*/
static inline int ctpop16(uint16_t val)
{
return __builtin_popcount(val);
}
/**
* ctpop32 - count the population of one bits in a 32-bit value.
* @val: The value to search
*/
static inline int ctpop32(uint32_t val)
{
return __builtin_popcount(val);
}
/**
* ctpop64 - count the population of one bits in a 64-bit value.
* @val: The value to search
*/
static inline int ctpop64(uint64_t val)
{
return __builtin_popcountll(val);
}
/**
* revbit8 - reverse the bits in an 8-bit value.
* @x: The value to modify.
*/
static inline uint8_t revbit8(uint8_t x)
{
#if __has_builtin(__builtin_bitreverse8)
return __builtin_bitreverse8(x);
#else
/* Assign the correct nibble position. */
x = ((x & 0xf0) >> 4)
| ((x & 0x0f) << 4);
/* Assign the correct bit position. */
x = ((x & 0x88) >> 3)
| ((x & 0x44) >> 1)
| ((x & 0x22) << 1)
| ((x & 0x11) << 3);
return x;
#endif
}
/**
* revbit16 - reverse the bits in a 16-bit value.
* @x: The value to modify.
*/
static inline uint16_t revbit16(uint16_t x)
{
#if __has_builtin(__builtin_bitreverse16)
return __builtin_bitreverse16(x);
#else
/* Assign the correct byte position. */
x = bswap16(x);
/* Assign the correct nibble position. */
x = ((x & 0xf0f0) >> 4)
| ((x & 0x0f0f) << 4);
/* Assign the correct bit position. */
x = ((x & 0x8888) >> 3)
| ((x & 0x4444) >> 1)
| ((x & 0x2222) << 1)
| ((x & 0x1111) << 3);
return x;
#endif
}
/**
* revbit32 - reverse the bits in a 32-bit value.
* @x: The value to modify.
*/
static inline uint32_t revbit32(uint32_t x)
{
#if __has_builtin(__builtin_bitreverse32)
return __builtin_bitreverse32(x);
#else
/* Assign the correct byte position. */
x = bswap32(x);
/* Assign the correct nibble position. */
x = ((x & 0xf0f0f0f0u) >> 4)
| ((x & 0x0f0f0f0fu) << 4);
/* Assign the correct bit position. */
x = ((x & 0x88888888u) >> 3)
| ((x & 0x44444444u) >> 1)
| ((x & 0x22222222u) << 1)
| ((x & 0x11111111u) << 3);
return x;
#endif
}
/**
* revbit64 - reverse the bits in a 64-bit value.
* @x: The value to modify.
*/
static inline uint64_t revbit64(uint64_t x)
{
#if __has_builtin(__builtin_bitreverse64)
return __builtin_bitreverse64(x);
#else
/* Assign the correct byte position. */
x = bswap64(x);
/* Assign the correct nibble position. */
x = ((x & 0xf0f0f0f0f0f0f0f0ull) >> 4)
| ((x & 0x0f0f0f0f0f0f0f0full) << 4);
/* Assign the correct bit position. */
x = ((x & 0x8888888888888888ull) >> 3)
| ((x & 0x4444444444444444ull) >> 1)
| ((x & 0x2222222222222222ull) << 1)
| ((x & 0x1111111111111111ull) << 3);
return x;
#endif
}
/**
* Return the absolute value of a 64-bit integer as an unsigned 64-bit value
*/
static inline uint64_t uabs64(int64_t v)
{
return v < 0 ? -v : v;
}
/**
* sadd32_overflow - addition with overflow indication
* @x, @y: addends
* @ret: Output for sum
*
* Computes *@ret = @x + @y, and returns true if and only if that
* value has been truncated.
*/
static inline bool sadd32_overflow(int32_t x, int32_t y, int32_t *ret)
{
return __builtin_add_overflow(x, y, ret);
}
/**
* sadd64_overflow - addition with overflow indication
* @x, @y: addends
* @ret: Output for sum
*
* Computes *@ret = @x + @y, and returns true if and only if that
* value has been truncated.
*/
static inline bool sadd64_overflow(int64_t x, int64_t y, int64_t *ret)
{
return __builtin_add_overflow(x, y, ret);
}
/**
* uadd32_overflow - addition with overflow indication
* @x, @y: addends
* @ret: Output for sum
*
* Computes *@ret = @x + @y, and returns true if and only if that
* value has been truncated.
*/
static inline bool uadd32_overflow(uint32_t x, uint32_t y, uint32_t *ret)
{
return __builtin_add_overflow(x, y, ret);
}
/**
* uadd64_overflow - addition with overflow indication
* @x, @y: addends
* @ret: Output for sum
*
* Computes *@ret = @x + @y, and returns true if and only if that
* value has been truncated.
*/
static inline bool uadd64_overflow(uint64_t x, uint64_t y, uint64_t *ret)
{
return __builtin_add_overflow(x, y, ret);
}
/**
* ssub32_overflow - subtraction with overflow indication
* @x: Minuend
* @y: Subtrahend
* @ret: Output for difference
*
* Computes *@ret = @x - @y, and returns true if and only if that
* value has been truncated.
*/
static inline bool ssub32_overflow(int32_t x, int32_t y, int32_t *ret)
{
return __builtin_sub_overflow(x, y, ret);
}
/**
* ssub64_overflow - subtraction with overflow indication
* @x: Minuend
* @y: Subtrahend
* @ret: Output for sum
*
* Computes *@ret = @x - @y, and returns true if and only if that
* value has been truncated.
*/
static inline bool ssub64_overflow(int64_t x, int64_t y, int64_t *ret)
{
return __builtin_sub_overflow(x, y, ret);
}
/**
* usub32_overflow - subtraction with overflow indication
* @x: Minuend
* @y: Subtrahend
* @ret: Output for sum
*
* Computes *@ret = @x - @y, and returns true if and only if that
* value has been truncated.
*/
static inline bool usub32_overflow(uint32_t x, uint32_t y, uint32_t *ret)
{
return __builtin_sub_overflow(x, y, ret);
}
/**
* usub64_overflow - subtraction with overflow indication
* @x: Minuend
* @y: Subtrahend
* @ret: Output for sum
*
* Computes *@ret = @x - @y, and returns true if and only if that
* value has been truncated.
*/
static inline bool usub64_overflow(uint64_t x, uint64_t y, uint64_t *ret)
{
return __builtin_sub_overflow(x, y, ret);
}
/**
* smul32_overflow - multiplication with overflow indication
* @x, @y: Input multipliers
* @ret: Output for product
*
* Computes *@ret = @x * @y, and returns true if and only if that
* value has been truncated.
*/
static inline bool smul32_overflow(int32_t x, int32_t y, int32_t *ret)
{
return __builtin_mul_overflow(x, y, ret);
}
/**
* smul64_overflow - multiplication with overflow indication
* @x, @y: Input multipliers
* @ret: Output for product
*
* Computes *@ret = @x * @y, and returns true if and only if that
* value has been truncated.
*/
static inline bool smul64_overflow(int64_t x, int64_t y, int64_t *ret)
{
return __builtin_mul_overflow(x, y, ret);
}
/**
* umul32_overflow - multiplication with overflow indication
* @x, @y: Input multipliers
* @ret: Output for product
*
* Computes *@ret = @x * @y, and returns true if and only if that
* value has been truncated.
*/
static inline bool umul32_overflow(uint32_t x, uint32_t y, uint32_t *ret)
{
return __builtin_mul_overflow(x, y, ret);
}
/**
* umul64_overflow - multiplication with overflow indication
* @x, @y: Input multipliers
* @ret: Output for product
*
* Computes *@ret = @x * @y, and returns true if and only if that
* value has been truncated.
*/
static inline bool umul64_overflow(uint64_t x, uint64_t y, uint64_t *ret)
{
return __builtin_mul_overflow(x, y, ret);
}
/*
* Unsigned 128x64 multiplication.
* Returns true if the result got truncated to 128 bits.
* Otherwise, returns false and the multiplication result via plow and phigh.
*/
static inline bool mulu128(uint64_t *plow, uint64_t *phigh, uint64_t factor)
{
#if defined(CONFIG_INT128)
bool res;
__uint128_t r;
__uint128_t f = ((__uint128_t)*phigh << 64) | *plow;
res = __builtin_mul_overflow(f, factor, &r);
*plow = r;
*phigh = r >> 64;
return res;
#else
uint64_t dhi = *phigh;
uint64_t dlo = *plow;
uint64_t ahi;
uint64_t blo, bhi;
if (dhi == 0) {
mulu64(plow, phigh, dlo, factor);
return false;
}
mulu64(plow, &ahi, dlo, factor);
mulu64(&blo, &bhi, dhi, factor);
return uadd64_overflow(ahi, blo, phigh) || bhi != 0;
#endif
}
/**
* uadd64_carry - addition with carry-in and carry-out
* @x, @y: addends
* @pcarry: in-out carry value
*
* Computes @x + @y + *@pcarry, placing the carry-out back
* into *@pcarry and returning the 64-bit sum.
*/
static inline uint64_t uadd64_carry(uint64_t x, uint64_t y, bool *pcarry)
{
#if __has_builtin(__builtin_addcll)
unsigned long long c = *pcarry;
x = __builtin_addcll(x, y, c, &c);
*pcarry = c & 1;
return x;
#else
bool c = *pcarry;
/* This is clang's internal expansion of __builtin_addc. */
c = uadd64_overflow(x, c, &x);
c |= uadd64_overflow(x, y, &x);
*pcarry = c;
return x;
#endif
}
/**
* usub64_borrow - subtraction with borrow-in and borrow-out
* @x, @y: addends
* @pborrow: in-out borrow value
*
* Computes @x - @y - *@pborrow, placing the borrow-out back
* into *@pborrow and returning the 64-bit sum.
*/
static inline uint64_t usub64_borrow(uint64_t x, uint64_t y, bool *pborrow)
{
#if __has_builtin(__builtin_subcll) && !defined(BUILTIN_SUBCLL_BROKEN)
unsigned long long b = *pborrow;
x = __builtin_subcll(x, y, b, &b);
*pborrow = b & 1;
return x;
#else
bool b = *pborrow;
b = usub64_overflow(x, b, &x);
b |= usub64_overflow(x, y, &x);
*pborrow = b;
return x;
#endif
}
/* Host type specific sizes of these routines. */
#if ULONG_MAX == UINT32_MAX
# define clzl clz32
# define ctzl ctz32
# define clol clo32
# define ctol cto32
# define ctpopl ctpop32
# define revbitl revbit32
#elif ULONG_MAX == UINT64_MAX
# define clzl clz64
# define ctzl ctz64
# define clol clo64
# define ctol cto64
# define ctpopl ctpop64
# define revbitl revbit64
#else
# error Unknown sizeof long
#endif
static inline bool is_power_of_2(uint64_t value)
{
if (!value) {
return false;
}
return !(value & (value - 1));
}
/**
* Return @value rounded down to the nearest power of two or zero.
*/
static inline uint64_t pow2floor(uint64_t value)
{
if (!value) {
/* Avoid undefined shift by 64 */
return 0;
}
return 0x8000000000000000ull >> clz64(value);
}
/*
* Return @value rounded up to the nearest power of two modulo 2^64.
* This is *zero* for @value > 2^63, so be careful.
*/
static inline uint64_t pow2ceil(uint64_t value)
{
int n = clz64(value - 1);
if (!n) {
/*
* @value - 1 has no leading zeroes, thus @value - 1 >= 2^63
* Therefore, either @value == 0 or @value > 2^63.
* If it's 0, return 1, else return 0.
*/
return !value;
}
return 0x8000000000000000ull >> (n - 1);
}
static inline uint32_t pow2roundup32(uint32_t x)
{
x |= (x >> 1);
x |= (x >> 2);
x |= (x >> 4);
x |= (x >> 8);
x |= (x >> 16);
return x + 1;
}
/**
* urshift - 128-bit Unsigned Right Shift.
* @plow: in/out - lower 64-bit integer.
* @phigh: in/out - higher 64-bit integer.
* @shift: in - bytes to shift, between 0 and 127.
*
* Result is zero-extended and stored in plow/phigh, which are
* input/output variables. Shift values outside the range will
* be mod to 128. In other words, the caller is responsible to
* verify/assert both the shift range and plow/phigh pointers.
*/
void urshift(uint64_t *plow, uint64_t *phigh, int32_t shift);
/**
* ulshift - 128-bit Unsigned Left Shift.
* @plow: in/out - lower 64-bit integer.
* @phigh: in/out - higher 64-bit integer.
* @shift: in - bytes to shift, between 0 and 127.
* @overflow: out - true if any 1-bit is shifted out.
*
* Result is zero-extended and stored in plow/phigh, which are
* input/output variables. Shift values outside the range will
* be mod to 128. In other words, the caller is responsible to
* verify/assert both the shift range and plow/phigh pointers.
*/
void ulshift(uint64_t *plow, uint64_t *phigh, int32_t shift, bool *overflow);
/* From the GNU Multi Precision Library - longlong.h __udiv_qrnnd
* (https://gmplib.org/repo/gmp/file/tip/longlong.h)
*
* Licensed under the GPLv2/LGPLv3
*/
static inline uint64_t udiv_qrnnd(uint64_t *r, uint64_t n1,
uint64_t n0, uint64_t d)
{
#if defined(__x86_64__)
uint64_t q;
asm("divq %4" : "=a"(q), "=d"(*r) : "0"(n0), "1"(n1), "rm"(d));
return q;
#elif defined(__s390x__) && !defined(__clang__)
/* Need to use a TImode type to get an even register pair for DLGR. */
unsigned __int128 n = (unsigned __int128)n1 << 64 | n0;
asm("dlgr %0, %1" : "+r"(n) : "r"(d));
*r = n >> 64;
return n;
#elif defined(_ARCH_PPC64) && defined(_ARCH_PWR7)
/* From Power ISA 2.06, programming note for divdeu. */
uint64_t q1, q2, Q, r1, r2, R;
asm("divdeu %0,%2,%4; divdu %1,%3,%4"
: "=&r"(q1), "=r"(q2)
: "r"(n1), "r"(n0), "r"(d));
r1 = -(q1 * d); /* low part of (n1<<64) - (q1 * d) */
r2 = n0 - (q2 * d);
Q = q1 + q2;
R = r1 + r2;
if (R >= d || R < r2) { /* overflow implies R > d */
Q += 1;
R -= d;
}
*r = R;
return Q;
#else
uint64_t d0, d1, q0, q1, r1, r0, m;
d0 = (uint32_t)d;
d1 = d >> 32;
r1 = n1 % d1;
q1 = n1 / d1;
m = q1 * d0;
r1 = (r1 << 32) | (n0 >> 32);
if (r1 < m) {
q1 -= 1;
r1 += d;
if (r1 >= d) {
if (r1 < m) {
q1 -= 1;
r1 += d;
}
}
}
r1 -= m;
r0 = r1 % d1;
q0 = r1 / d1;
m = q0 * d0;
r0 = (r0 << 32) | (uint32_t)n0;
if (r0 < m) {
q0 -= 1;
r0 += d;
if (r0 >= d) {
if (r0 < m) {
q0 -= 1;
r0 += d;
}
}
}
r0 -= m;
*r = r0;
return (q1 << 32) | q0;
#endif
}
Int128 divu256(Int128 *plow, Int128 *phigh, Int128 divisor);
Int128 divs256(Int128 *plow, Int128 *phigh, Int128 divisor);
#endif