qemu-e2k/include/exec/ramblock.h
Alexander Graf 4b870dc4d0 hostmem-file: add offset option
Add an option for hostmem-file to start the memory object at an offset
into the target file. This is useful if multiple memory objects reside
inside the same target file, such as a device node.

In particular, it's useful to map guest memory directly into /dev/mem
for experimentation.

To make this work consistently, also fix up all places in QEMU that
expect fd offsets to be 0.

Signed-off-by: Alexander Graf <graf@amazon.com>
Message-Id: <20230403221421.60877-1-graf@amazon.com>
Acked-by: Markus Armbruster <armbru@redhat.com>
Acked-by: Peter Xu <peterx@redhat.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Signed-off-by: David Hildenbrand <david@redhat.com>
2023-05-23 16:47:03 +02:00

81 lines
2.6 KiB
C

/*
* Declarations for cpu physical memory functions
*
* Copyright 2011 Red Hat, Inc. and/or its affiliates
*
* Authors:
* Avi Kivity <avi@redhat.com>
*
* This work is licensed under the terms of the GNU GPL, version 2 or
* later. See the COPYING file in the top-level directory.
*
*/
/*
* This header is for use by exec.c and memory.c ONLY. Do not include it.
* The functions declared here will be removed soon.
*/
#ifndef QEMU_EXEC_RAMBLOCK_H
#define QEMU_EXEC_RAMBLOCK_H
#ifndef CONFIG_USER_ONLY
#include "cpu-common.h"
#include "qemu/rcu.h"
#include "exec/ramlist.h"
struct RAMBlock {
struct rcu_head rcu;
struct MemoryRegion *mr;
uint8_t *host;
uint8_t *colo_cache; /* For colo, VM's ram cache */
ram_addr_t offset;
ram_addr_t used_length;
ram_addr_t max_length;
void (*resized)(const char*, uint64_t length, void *host);
uint32_t flags;
/* Protected by iothread lock. */
char idstr[256];
/* RCU-enabled, writes protected by the ramlist lock */
QLIST_ENTRY(RAMBlock) next;
QLIST_HEAD(, RAMBlockNotifier) ramblock_notifiers;
int fd;
uint64_t fd_offset;
size_t page_size;
/* dirty bitmap used during migration */
unsigned long *bmap;
/* bitmap of already received pages in postcopy */
unsigned long *receivedmap;
/*
* bitmap to track already cleared dirty bitmap. When the bit is
* set, it means the corresponding memory chunk needs a log-clear.
* Set this up to non-NULL to enable the capability to postpone
* and split clearing of dirty bitmap on the remote node (e.g.,
* KVM). The bitmap will be set only when doing global sync.
*
* It is only used during src side of ram migration, and it is
* protected by the global ram_state.bitmap_mutex.
*
* NOTE: this bitmap is different comparing to the other bitmaps
* in that one bit can represent multiple guest pages (which is
* decided by the `clear_bmap_shift' variable below). On
* destination side, this should always be NULL, and the variable
* `clear_bmap_shift' is meaningless.
*/
unsigned long *clear_bmap;
uint8_t clear_bmap_shift;
/*
* RAM block length that corresponds to the used_length on the migration
* source (after RAM block sizes were synchronized). Especially, after
* starting to run the guest, used_length and postcopy_length can differ.
* Used to register/unregister uffd handlers and as the size of the received
* bitmap. Receiving any page beyond this length will bail out, as it
* could not have been valid on the source.
*/
ram_addr_t postcopy_length;
};
#endif
#endif