qemu-e2k/hw/nvram/fw_cfg.c
Philippe Mathieu-Daudé 2280c27afc dma: Let st*_dma() take MemTxAttrs argument
Let devices specify transaction attributes when calling st*_dma().

Keep the default MEMTXATTRS_UNSPECIFIED in the few callers.

Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: Philippe Mathieu-Daudé <philmd@redhat.com>
Message-Id: <20211223115554.3155328-16-philmd@redhat.com>
2021-12-31 01:05:27 +01:00

1400 lines
41 KiB
C

/*
* QEMU Firmware configuration device emulation
*
* Copyright (c) 2008 Gleb Natapov
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "qemu/osdep.h"
#include "qemu-common.h"
#include "qemu/datadir.h"
#include "sysemu/sysemu.h"
#include "sysemu/dma.h"
#include "sysemu/reset.h"
#include "hw/boards.h"
#include "hw/nvram/fw_cfg.h"
#include "hw/qdev-properties.h"
#include "hw/sysbus.h"
#include "migration/qemu-file-types.h"
#include "migration/vmstate.h"
#include "trace.h"
#include "qemu/error-report.h"
#include "qemu/option.h"
#include "qemu/config-file.h"
#include "qemu/cutils.h"
#include "qapi/error.h"
#include "hw/acpi/aml-build.h"
#include "hw/pci/pci_bus.h"
#define FW_CFG_FILE_SLOTS_DFLT 0x20
/* FW_CFG_VERSION bits */
#define FW_CFG_VERSION 0x01
#define FW_CFG_VERSION_DMA 0x02
/* FW_CFG_DMA_CONTROL bits */
#define FW_CFG_DMA_CTL_ERROR 0x01
#define FW_CFG_DMA_CTL_READ 0x02
#define FW_CFG_DMA_CTL_SKIP 0x04
#define FW_CFG_DMA_CTL_SELECT 0x08
#define FW_CFG_DMA_CTL_WRITE 0x10
#define FW_CFG_DMA_SIGNATURE 0x51454d5520434647ULL /* "QEMU CFG" */
struct FWCfgEntry {
uint32_t len;
bool allow_write;
uint8_t *data;
void *callback_opaque;
FWCfgCallback select_cb;
FWCfgWriteCallback write_cb;
};
/**
* key_name:
*
* @key: The uint16 selector key.
*
* Returns: The stringified name if the selector refers to a well-known
* numerically defined item, or NULL on key lookup failure.
*/
static const char *key_name(uint16_t key)
{
static const char *fw_cfg_wellknown_keys[FW_CFG_FILE_FIRST] = {
[FW_CFG_SIGNATURE] = "signature",
[FW_CFG_ID] = "id",
[FW_CFG_UUID] = "uuid",
[FW_CFG_RAM_SIZE] = "ram_size",
[FW_CFG_NOGRAPHIC] = "nographic",
[FW_CFG_NB_CPUS] = "nb_cpus",
[FW_CFG_MACHINE_ID] = "machine_id",
[FW_CFG_KERNEL_ADDR] = "kernel_addr",
[FW_CFG_KERNEL_SIZE] = "kernel_size",
[FW_CFG_KERNEL_CMDLINE] = "kernel_cmdline",
[FW_CFG_INITRD_ADDR] = "initrd_addr",
[FW_CFG_INITRD_SIZE] = "initdr_size",
[FW_CFG_BOOT_DEVICE] = "boot_device",
[FW_CFG_NUMA] = "numa",
[FW_CFG_BOOT_MENU] = "boot_menu",
[FW_CFG_MAX_CPUS] = "max_cpus",
[FW_CFG_KERNEL_ENTRY] = "kernel_entry",
[FW_CFG_KERNEL_DATA] = "kernel_data",
[FW_CFG_INITRD_DATA] = "initrd_data",
[FW_CFG_CMDLINE_ADDR] = "cmdline_addr",
[FW_CFG_CMDLINE_SIZE] = "cmdline_size",
[FW_CFG_CMDLINE_DATA] = "cmdline_data",
[FW_CFG_SETUP_ADDR] = "setup_addr",
[FW_CFG_SETUP_SIZE] = "setup_size",
[FW_CFG_SETUP_DATA] = "setup_data",
[FW_CFG_FILE_DIR] = "file_dir",
};
if (key & FW_CFG_ARCH_LOCAL) {
return fw_cfg_arch_key_name(key);
}
if (key < FW_CFG_FILE_FIRST) {
return fw_cfg_wellknown_keys[key];
}
return NULL;
}
static inline const char *trace_key_name(uint16_t key)
{
const char *name = key_name(key);
return name ? name : "unknown";
}
#define JPG_FILE 0
#define BMP_FILE 1
static char *read_splashfile(char *filename, gsize *file_sizep,
int *file_typep)
{
GError *err = NULL;
gchar *content;
int file_type;
unsigned int filehead;
int bmp_bpp;
if (!g_file_get_contents(filename, &content, file_sizep, &err)) {
error_report("failed to read splash file '%s': %s",
filename, err->message);
g_error_free(err);
return NULL;
}
/* check file size */
if (*file_sizep < 30) {
goto error;
}
/* check magic ID */
filehead = lduw_le_p(content);
if (filehead == 0xd8ff) {
file_type = JPG_FILE;
} else if (filehead == 0x4d42) {
file_type = BMP_FILE;
} else {
goto error;
}
/* check BMP bpp */
if (file_type == BMP_FILE) {
bmp_bpp = lduw_le_p(&content[28]);
if (bmp_bpp != 24) {
goto error;
}
}
/* return values */
*file_typep = file_type;
return content;
error:
error_report("splash file '%s' format not recognized; must be JPEG "
"or 24 bit BMP", filename);
g_free(content);
return NULL;
}
static void fw_cfg_bootsplash(FWCfgState *s)
{
const char *boot_splash_filename = NULL;
const char *boot_splash_time = NULL;
char *filename, *file_data;
gsize file_size;
int file_type;
/* get user configuration */
QemuOptsList *plist = qemu_find_opts("boot-opts");
QemuOpts *opts = QTAILQ_FIRST(&plist->head);
boot_splash_filename = qemu_opt_get(opts, "splash");
boot_splash_time = qemu_opt_get(opts, "splash-time");
/* insert splash time if user configurated */
if (boot_splash_time) {
int64_t bst_val = qemu_opt_get_number(opts, "splash-time", -1);
uint16_t bst_le16;
/* validate the input */
if (bst_val < 0 || bst_val > 0xffff) {
error_report("splash-time is invalid,"
"it should be a value between 0 and 65535");
exit(1);
}
/* use little endian format */
bst_le16 = cpu_to_le16(bst_val);
fw_cfg_add_file(s, "etc/boot-menu-wait",
g_memdup(&bst_le16, sizeof bst_le16), sizeof bst_le16);
}
/* insert splash file if user configurated */
if (boot_splash_filename) {
filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, boot_splash_filename);
if (filename == NULL) {
error_report("failed to find file '%s'", boot_splash_filename);
return;
}
/* loading file data */
file_data = read_splashfile(filename, &file_size, &file_type);
if (file_data == NULL) {
g_free(filename);
return;
}
g_free(boot_splash_filedata);
boot_splash_filedata = (uint8_t *)file_data;
/* insert data */
if (file_type == JPG_FILE) {
fw_cfg_add_file(s, "bootsplash.jpg",
boot_splash_filedata, file_size);
} else {
fw_cfg_add_file(s, "bootsplash.bmp",
boot_splash_filedata, file_size);
}
g_free(filename);
}
}
static void fw_cfg_reboot(FWCfgState *s)
{
const char *reboot_timeout = NULL;
uint64_t rt_val = -1;
uint32_t rt_le32;
/* get user configuration */
QemuOptsList *plist = qemu_find_opts("boot-opts");
QemuOpts *opts = QTAILQ_FIRST(&plist->head);
reboot_timeout = qemu_opt_get(opts, "reboot-timeout");
if (reboot_timeout) {
rt_val = qemu_opt_get_number(opts, "reboot-timeout", -1);
/* validate the input */
if (rt_val > 0xffff && rt_val != (uint64_t)-1) {
error_report("reboot timeout is invalid,"
"it should be a value between -1 and 65535");
exit(1);
}
}
rt_le32 = cpu_to_le32(rt_val);
fw_cfg_add_file(s, "etc/boot-fail-wait", g_memdup(&rt_le32, 4), 4);
}
static void fw_cfg_write(FWCfgState *s, uint8_t value)
{
/* nothing, write support removed in QEMU v2.4+ */
}
static inline uint16_t fw_cfg_file_slots(const FWCfgState *s)
{
return s->file_slots;
}
/* Note: this function returns an exclusive limit. */
static inline uint32_t fw_cfg_max_entry(const FWCfgState *s)
{
return FW_CFG_FILE_FIRST + fw_cfg_file_slots(s);
}
static int fw_cfg_select(FWCfgState *s, uint16_t key)
{
int arch, ret;
FWCfgEntry *e;
s->cur_offset = 0;
if ((key & FW_CFG_ENTRY_MASK) >= fw_cfg_max_entry(s)) {
s->cur_entry = FW_CFG_INVALID;
ret = 0;
} else {
s->cur_entry = key;
ret = 1;
/* entry successfully selected, now run callback if present */
arch = !!(key & FW_CFG_ARCH_LOCAL);
e = &s->entries[arch][key & FW_CFG_ENTRY_MASK];
if (e->select_cb) {
e->select_cb(e->callback_opaque);
}
}
trace_fw_cfg_select(s, key, trace_key_name(key), ret);
return ret;
}
static uint64_t fw_cfg_data_read(void *opaque, hwaddr addr, unsigned size)
{
FWCfgState *s = opaque;
int arch = !!(s->cur_entry & FW_CFG_ARCH_LOCAL);
FWCfgEntry *e = (s->cur_entry == FW_CFG_INVALID) ? NULL :
&s->entries[arch][s->cur_entry & FW_CFG_ENTRY_MASK];
uint64_t value = 0;
assert(size > 0 && size <= sizeof(value));
if (s->cur_entry != FW_CFG_INVALID && e->data && s->cur_offset < e->len) {
/* The least significant 'size' bytes of the return value are
* expected to contain a string preserving portion of the item
* data, padded with zeros on the right in case we run out early.
* In technical terms, we're composing the host-endian representation
* of the big endian interpretation of the fw_cfg string.
*/
do {
value = (value << 8) | e->data[s->cur_offset++];
} while (--size && s->cur_offset < e->len);
/* If size is still not zero, we *did* run out early, so continue
* left-shifting, to add the appropriate number of padding zeros
* on the right.
*/
value <<= 8 * size;
}
trace_fw_cfg_read(s, value);
return value;
}
static void fw_cfg_data_mem_write(void *opaque, hwaddr addr,
uint64_t value, unsigned size)
{
FWCfgState *s = opaque;
unsigned i = size;
do {
fw_cfg_write(s, value >> (8 * --i));
} while (i);
}
static void fw_cfg_dma_transfer(FWCfgState *s)
{
dma_addr_t len;
FWCfgDmaAccess dma;
int arch;
FWCfgEntry *e;
int read = 0, write = 0;
dma_addr_t dma_addr;
/* Reset the address before the next access */
dma_addr = s->dma_addr;
s->dma_addr = 0;
if (dma_memory_read(s->dma_as, dma_addr,
&dma, sizeof(dma), MEMTXATTRS_UNSPECIFIED)) {
stl_be_dma(s->dma_as, dma_addr + offsetof(FWCfgDmaAccess, control),
FW_CFG_DMA_CTL_ERROR, MEMTXATTRS_UNSPECIFIED);
return;
}
dma.address = be64_to_cpu(dma.address);
dma.length = be32_to_cpu(dma.length);
dma.control = be32_to_cpu(dma.control);
if (dma.control & FW_CFG_DMA_CTL_SELECT) {
fw_cfg_select(s, dma.control >> 16);
}
arch = !!(s->cur_entry & FW_CFG_ARCH_LOCAL);
e = (s->cur_entry == FW_CFG_INVALID) ? NULL :
&s->entries[arch][s->cur_entry & FW_CFG_ENTRY_MASK];
if (dma.control & FW_CFG_DMA_CTL_READ) {
read = 1;
write = 0;
} else if (dma.control & FW_CFG_DMA_CTL_WRITE) {
read = 0;
write = 1;
} else if (dma.control & FW_CFG_DMA_CTL_SKIP) {
read = 0;
write = 0;
} else {
dma.length = 0;
}
dma.control = 0;
while (dma.length > 0 && !(dma.control & FW_CFG_DMA_CTL_ERROR)) {
if (s->cur_entry == FW_CFG_INVALID || !e->data ||
s->cur_offset >= e->len) {
len = dma.length;
/* If the access is not a read access, it will be a skip access,
* tested before.
*/
if (read) {
if (dma_memory_set(s->dma_as, dma.address, 0, len,
MEMTXATTRS_UNSPECIFIED)) {
dma.control |= FW_CFG_DMA_CTL_ERROR;
}
}
if (write) {
dma.control |= FW_CFG_DMA_CTL_ERROR;
}
} else {
if (dma.length <= (e->len - s->cur_offset)) {
len = dma.length;
} else {
len = (e->len - s->cur_offset);
}
/* If the access is not a read access, it will be a skip access,
* tested before.
*/
if (read) {
if (dma_memory_write(s->dma_as, dma.address,
&e->data[s->cur_offset], len,
MEMTXATTRS_UNSPECIFIED)) {
dma.control |= FW_CFG_DMA_CTL_ERROR;
}
}
if (write) {
if (!e->allow_write ||
len != dma.length ||
dma_memory_read(s->dma_as, dma.address,
&e->data[s->cur_offset], len,
MEMTXATTRS_UNSPECIFIED)) {
dma.control |= FW_CFG_DMA_CTL_ERROR;
} else if (e->write_cb) {
e->write_cb(e->callback_opaque, s->cur_offset, len);
}
}
s->cur_offset += len;
}
dma.address += len;
dma.length -= len;
}
stl_be_dma(s->dma_as, dma_addr + offsetof(FWCfgDmaAccess, control),
dma.control, MEMTXATTRS_UNSPECIFIED);
trace_fw_cfg_read(s, 0);
}
static uint64_t fw_cfg_dma_mem_read(void *opaque, hwaddr addr,
unsigned size)
{
/* Return a signature value (and handle various read sizes) */
return extract64(FW_CFG_DMA_SIGNATURE, (8 - addr - size) * 8, size * 8);
}
static void fw_cfg_dma_mem_write(void *opaque, hwaddr addr,
uint64_t value, unsigned size)
{
FWCfgState *s = opaque;
if (size == 4) {
if (addr == 0) {
/* FWCfgDmaAccess high address */
s->dma_addr = value << 32;
} else if (addr == 4) {
/* FWCfgDmaAccess low address */
s->dma_addr |= value;
fw_cfg_dma_transfer(s);
}
} else if (size == 8 && addr == 0) {
s->dma_addr = value;
fw_cfg_dma_transfer(s);
}
}
static bool fw_cfg_dma_mem_valid(void *opaque, hwaddr addr,
unsigned size, bool is_write,
MemTxAttrs attrs)
{
return !is_write || ((size == 4 && (addr == 0 || addr == 4)) ||
(size == 8 && addr == 0));
}
static bool fw_cfg_data_mem_valid(void *opaque, hwaddr addr,
unsigned size, bool is_write,
MemTxAttrs attrs)
{
return addr == 0;
}
static uint64_t fw_cfg_ctl_mem_read(void *opaque, hwaddr addr, unsigned size)
{
return 0;
}
static void fw_cfg_ctl_mem_write(void *opaque, hwaddr addr,
uint64_t value, unsigned size)
{
fw_cfg_select(opaque, (uint16_t)value);
}
static bool fw_cfg_ctl_mem_valid(void *opaque, hwaddr addr,
unsigned size, bool is_write,
MemTxAttrs attrs)
{
return is_write && size == 2;
}
static void fw_cfg_comb_write(void *opaque, hwaddr addr,
uint64_t value, unsigned size)
{
switch (size) {
case 1:
fw_cfg_write(opaque, (uint8_t)value);
break;
case 2:
fw_cfg_select(opaque, (uint16_t)value);
break;
}
}
static bool fw_cfg_comb_valid(void *opaque, hwaddr addr,
unsigned size, bool is_write,
MemTxAttrs attrs)
{
return (size == 1) || (is_write && size == 2);
}
static const MemoryRegionOps fw_cfg_ctl_mem_ops = {
.read = fw_cfg_ctl_mem_read,
.write = fw_cfg_ctl_mem_write,
.endianness = DEVICE_BIG_ENDIAN,
.valid.accepts = fw_cfg_ctl_mem_valid,
};
static const MemoryRegionOps fw_cfg_data_mem_ops = {
.read = fw_cfg_data_read,
.write = fw_cfg_data_mem_write,
.endianness = DEVICE_BIG_ENDIAN,
.valid = {
.min_access_size = 1,
.max_access_size = 1,
.accepts = fw_cfg_data_mem_valid,
},
};
static const MemoryRegionOps fw_cfg_comb_mem_ops = {
.read = fw_cfg_data_read,
.write = fw_cfg_comb_write,
.endianness = DEVICE_LITTLE_ENDIAN,
.valid.accepts = fw_cfg_comb_valid,
};
static const MemoryRegionOps fw_cfg_dma_mem_ops = {
.read = fw_cfg_dma_mem_read,
.write = fw_cfg_dma_mem_write,
.endianness = DEVICE_BIG_ENDIAN,
.valid.accepts = fw_cfg_dma_mem_valid,
.valid.max_access_size = 8,
.impl.max_access_size = 8,
};
static void fw_cfg_reset(DeviceState *d)
{
FWCfgState *s = FW_CFG(d);
/* we never register a read callback for FW_CFG_SIGNATURE */
fw_cfg_select(s, FW_CFG_SIGNATURE);
}
/* Save restore 32 bit int as uint16_t
This is a Big hack, but it is how the old state did it.
Or we broke compatibility in the state, or we can't use struct tm
*/
static int get_uint32_as_uint16(QEMUFile *f, void *pv, size_t size,
const VMStateField *field)
{
uint32_t *v = pv;
*v = qemu_get_be16(f);
return 0;
}
static int put_unused(QEMUFile *f, void *pv, size_t size,
const VMStateField *field, JSONWriter *vmdesc)
{
fprintf(stderr, "uint32_as_uint16 is only used for backward compatibility.\n");
fprintf(stderr, "This functions shouldn't be called.\n");
return 0;
}
static const VMStateInfo vmstate_hack_uint32_as_uint16 = {
.name = "int32_as_uint16",
.get = get_uint32_as_uint16,
.put = put_unused,
};
#define VMSTATE_UINT16_HACK(_f, _s, _t) \
VMSTATE_SINGLE_TEST(_f, _s, _t, 0, vmstate_hack_uint32_as_uint16, uint32_t)
static bool is_version_1(void *opaque, int version_id)
{
return version_id == 1;
}
bool fw_cfg_dma_enabled(void *opaque)
{
FWCfgState *s = opaque;
return s->dma_enabled;
}
static bool fw_cfg_acpi_mr_restore(void *opaque)
{
FWCfgState *s = opaque;
bool mr_aligned;
mr_aligned = QEMU_IS_ALIGNED(s->table_mr_size, qemu_real_host_page_size) &&
QEMU_IS_ALIGNED(s->linker_mr_size, qemu_real_host_page_size) &&
QEMU_IS_ALIGNED(s->rsdp_mr_size, qemu_real_host_page_size);
return s->acpi_mr_restore && !mr_aligned;
}
static void fw_cfg_update_mr(FWCfgState *s, uint16_t key, size_t size)
{
MemoryRegion *mr;
ram_addr_t offset;
int arch = !!(key & FW_CFG_ARCH_LOCAL);
void *ptr;
key &= FW_CFG_ENTRY_MASK;
assert(key < fw_cfg_max_entry(s));
ptr = s->entries[arch][key].data;
mr = memory_region_from_host(ptr, &offset);
memory_region_ram_resize(mr, size, &error_abort);
}
static int fw_cfg_acpi_mr_restore_post_load(void *opaque, int version_id)
{
FWCfgState *s = opaque;
int i, index;
assert(s->files);
index = be32_to_cpu(s->files->count);
for (i = 0; i < index; i++) {
if (!strcmp(s->files->f[i].name, ACPI_BUILD_TABLE_FILE)) {
fw_cfg_update_mr(s, FW_CFG_FILE_FIRST + i, s->table_mr_size);
} else if (!strcmp(s->files->f[i].name, ACPI_BUILD_LOADER_FILE)) {
fw_cfg_update_mr(s, FW_CFG_FILE_FIRST + i, s->linker_mr_size);
} else if (!strcmp(s->files->f[i].name, ACPI_BUILD_RSDP_FILE)) {
fw_cfg_update_mr(s, FW_CFG_FILE_FIRST + i, s->rsdp_mr_size);
}
}
return 0;
}
static const VMStateDescription vmstate_fw_cfg_dma = {
.name = "fw_cfg/dma",
.needed = fw_cfg_dma_enabled,
.fields = (VMStateField[]) {
VMSTATE_UINT64(dma_addr, FWCfgState),
VMSTATE_END_OF_LIST()
},
};
static const VMStateDescription vmstate_fw_cfg_acpi_mr = {
.name = "fw_cfg/acpi_mr",
.version_id = 1,
.minimum_version_id = 1,
.needed = fw_cfg_acpi_mr_restore,
.post_load = fw_cfg_acpi_mr_restore_post_load,
.fields = (VMStateField[]) {
VMSTATE_UINT64(table_mr_size, FWCfgState),
VMSTATE_UINT64(linker_mr_size, FWCfgState),
VMSTATE_UINT64(rsdp_mr_size, FWCfgState),
VMSTATE_END_OF_LIST()
},
};
static const VMStateDescription vmstate_fw_cfg = {
.name = "fw_cfg",
.version_id = 2,
.minimum_version_id = 1,
.fields = (VMStateField[]) {
VMSTATE_UINT16(cur_entry, FWCfgState),
VMSTATE_UINT16_HACK(cur_offset, FWCfgState, is_version_1),
VMSTATE_UINT32_V(cur_offset, FWCfgState, 2),
VMSTATE_END_OF_LIST()
},
.subsections = (const VMStateDescription*[]) {
&vmstate_fw_cfg_dma,
&vmstate_fw_cfg_acpi_mr,
NULL,
}
};
static void fw_cfg_add_bytes_callback(FWCfgState *s, uint16_t key,
FWCfgCallback select_cb,
FWCfgWriteCallback write_cb,
void *callback_opaque,
void *data, size_t len,
bool read_only)
{
int arch = !!(key & FW_CFG_ARCH_LOCAL);
key &= FW_CFG_ENTRY_MASK;
assert(key < fw_cfg_max_entry(s) && len < UINT32_MAX);
assert(s->entries[arch][key].data == NULL); /* avoid key conflict */
s->entries[arch][key].data = data;
s->entries[arch][key].len = (uint32_t)len;
s->entries[arch][key].select_cb = select_cb;
s->entries[arch][key].write_cb = write_cb;
s->entries[arch][key].callback_opaque = callback_opaque;
s->entries[arch][key].allow_write = !read_only;
}
static void *fw_cfg_modify_bytes_read(FWCfgState *s, uint16_t key,
void *data, size_t len)
{
void *ptr;
int arch = !!(key & FW_CFG_ARCH_LOCAL);
key &= FW_CFG_ENTRY_MASK;
assert(key < fw_cfg_max_entry(s) && len < UINT32_MAX);
/* return the old data to the function caller, avoid memory leak */
ptr = s->entries[arch][key].data;
s->entries[arch][key].data = data;
s->entries[arch][key].len = len;
s->entries[arch][key].callback_opaque = NULL;
s->entries[arch][key].allow_write = false;
return ptr;
}
void fw_cfg_add_bytes(FWCfgState *s, uint16_t key, void *data, size_t len)
{
trace_fw_cfg_add_bytes(key, trace_key_name(key), len);
fw_cfg_add_bytes_callback(s, key, NULL, NULL, NULL, data, len, true);
}
void fw_cfg_add_string(FWCfgState *s, uint16_t key, const char *value)
{
size_t sz = strlen(value) + 1;
trace_fw_cfg_add_string(key, trace_key_name(key), value);
fw_cfg_add_bytes(s, key, g_memdup(value, sz), sz);
}
void fw_cfg_modify_string(FWCfgState *s, uint16_t key, const char *value)
{
size_t sz = strlen(value) + 1;
char *old;
old = fw_cfg_modify_bytes_read(s, key, g_memdup(value, sz), sz);
g_free(old);
}
void fw_cfg_add_i16(FWCfgState *s, uint16_t key, uint16_t value)
{
uint16_t *copy;
copy = g_malloc(sizeof(value));
*copy = cpu_to_le16(value);
trace_fw_cfg_add_i16(key, trace_key_name(key), value);
fw_cfg_add_bytes(s, key, copy, sizeof(value));
}
void fw_cfg_modify_i16(FWCfgState *s, uint16_t key, uint16_t value)
{
uint16_t *copy, *old;
copy = g_malloc(sizeof(value));
*copy = cpu_to_le16(value);
old = fw_cfg_modify_bytes_read(s, key, copy, sizeof(value));
g_free(old);
}
void fw_cfg_add_i32(FWCfgState *s, uint16_t key, uint32_t value)
{
uint32_t *copy;
copy = g_malloc(sizeof(value));
*copy = cpu_to_le32(value);
trace_fw_cfg_add_i32(key, trace_key_name(key), value);
fw_cfg_add_bytes(s, key, copy, sizeof(value));
}
void fw_cfg_modify_i32(FWCfgState *s, uint16_t key, uint32_t value)
{
uint32_t *copy, *old;
copy = g_malloc(sizeof(value));
*copy = cpu_to_le32(value);
old = fw_cfg_modify_bytes_read(s, key, copy, sizeof(value));
g_free(old);
}
void fw_cfg_add_i64(FWCfgState *s, uint16_t key, uint64_t value)
{
uint64_t *copy;
copy = g_malloc(sizeof(value));
*copy = cpu_to_le64(value);
trace_fw_cfg_add_i64(key, trace_key_name(key), value);
fw_cfg_add_bytes(s, key, copy, sizeof(value));
}
void fw_cfg_modify_i64(FWCfgState *s, uint16_t key, uint64_t value)
{
uint64_t *copy, *old;
copy = g_malloc(sizeof(value));
*copy = cpu_to_le64(value);
old = fw_cfg_modify_bytes_read(s, key, copy, sizeof(value));
g_free(old);
}
void fw_cfg_set_order_override(FWCfgState *s, int order)
{
assert(s->fw_cfg_order_override == 0);
s->fw_cfg_order_override = order;
}
void fw_cfg_reset_order_override(FWCfgState *s)
{
assert(s->fw_cfg_order_override != 0);
s->fw_cfg_order_override = 0;
}
/*
* This is the legacy order list. For legacy systems, files are in
* the fw_cfg in the order defined below, by the "order" value. Note
* that some entries (VGA ROMs, NIC option ROMS, etc.) go into a
* specific area, but there may be more than one and they occur in the
* order that the user specifies them on the command line. Those are
* handled in a special manner, using the order override above.
*
* For non-legacy, the files are sorted by filename to avoid this kind
* of complexity in the future.
*
* This is only for x86, other arches don't implement versioning so
* they won't set legacy mode.
*/
static struct {
const char *name;
int order;
} fw_cfg_order[] = {
{ "etc/boot-menu-wait", 10 },
{ "bootsplash.jpg", 11 },
{ "bootsplash.bmp", 12 },
{ "etc/boot-fail-wait", 15 },
{ "etc/smbios/smbios-tables", 20 },
{ "etc/smbios/smbios-anchor", 30 },
{ "etc/e820", 40 },
{ "etc/reserved-memory-end", 50 },
{ "genroms/kvmvapic.bin", 55 },
{ "genroms/linuxboot.bin", 60 },
{ }, /* VGA ROMs from pc_vga_init come here, 70. */
{ }, /* NIC option ROMs from pc_nic_init come here, 80. */
{ "etc/system-states", 90 },
{ }, /* User ROMs come here, 100. */
{ }, /* Device FW comes here, 110. */
{ "etc/extra-pci-roots", 120 },
{ "etc/acpi/tables", 130 },
{ "etc/table-loader", 140 },
{ "etc/tpm/log", 150 },
{ "etc/acpi/rsdp", 160 },
{ "bootorder", 170 },
{ "etc/msr_feature_control", 180 },
#define FW_CFG_ORDER_OVERRIDE_LAST 200
};
/*
* Any sub-page size update to these table MRs will be lost during migration,
* as we use aligned size in ram_load_precopy() -> qemu_ram_resize() path.
* In order to avoid the inconsistency in sizes save them seperately and
* migrate over in vmstate post_load().
*/
static void fw_cfg_acpi_mr_save(FWCfgState *s, const char *filename, size_t len)
{
if (!strcmp(filename, ACPI_BUILD_TABLE_FILE)) {
s->table_mr_size = len;
} else if (!strcmp(filename, ACPI_BUILD_LOADER_FILE)) {
s->linker_mr_size = len;
} else if (!strcmp(filename, ACPI_BUILD_RSDP_FILE)) {
s->rsdp_mr_size = len;
}
}
static int get_fw_cfg_order(FWCfgState *s, const char *name)
{
int i;
if (s->fw_cfg_order_override > 0) {
return s->fw_cfg_order_override;
}
for (i = 0; i < ARRAY_SIZE(fw_cfg_order); i++) {
if (fw_cfg_order[i].name == NULL) {
continue;
}
if (strcmp(name, fw_cfg_order[i].name) == 0) {
return fw_cfg_order[i].order;
}
}
/* Stick unknown stuff at the end. */
warn_report("Unknown firmware file in legacy mode: %s", name);
return FW_CFG_ORDER_OVERRIDE_LAST;
}
void fw_cfg_add_file_callback(FWCfgState *s, const char *filename,
FWCfgCallback select_cb,
FWCfgWriteCallback write_cb,
void *callback_opaque,
void *data, size_t len, bool read_only)
{
int i, index, count;
size_t dsize;
MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
int order = 0;
if (!s->files) {
dsize = sizeof(uint32_t) + sizeof(FWCfgFile) * fw_cfg_file_slots(s);
s->files = g_malloc0(dsize);
fw_cfg_add_bytes(s, FW_CFG_FILE_DIR, s->files, dsize);
}
count = be32_to_cpu(s->files->count);
assert(count < fw_cfg_file_slots(s));
/* Find the insertion point. */
if (mc->legacy_fw_cfg_order) {
/*
* Sort by order. For files with the same order, we keep them
* in the sequence in which they were added.
*/
order = get_fw_cfg_order(s, filename);
for (index = count;
index > 0 && order < s->entry_order[index - 1];
index--);
} else {
/* Sort by file name. */
for (index = count;
index > 0 && strcmp(filename, s->files->f[index - 1].name) < 0;
index--);
}
/*
* Move all the entries from the index point and after down one
* to create a slot for the new entry. Because calculations are
* being done with the index, make it so that "i" is the current
* index and "i - 1" is the one being copied from, thus the
* unusual start and end in the for statement.
*/
for (i = count; i > index; i--) {
s->files->f[i] = s->files->f[i - 1];
s->files->f[i].select = cpu_to_be16(FW_CFG_FILE_FIRST + i);
s->entries[0][FW_CFG_FILE_FIRST + i] =
s->entries[0][FW_CFG_FILE_FIRST + i - 1];
s->entry_order[i] = s->entry_order[i - 1];
}
memset(&s->files->f[index], 0, sizeof(FWCfgFile));
memset(&s->entries[0][FW_CFG_FILE_FIRST + index], 0, sizeof(FWCfgEntry));
pstrcpy(s->files->f[index].name, sizeof(s->files->f[index].name), filename);
for (i = 0; i <= count; i++) {
if (i != index &&
strcmp(s->files->f[index].name, s->files->f[i].name) == 0) {
error_report("duplicate fw_cfg file name: %s",
s->files->f[index].name);
exit(1);
}
}
fw_cfg_add_bytes_callback(s, FW_CFG_FILE_FIRST + index,
select_cb, write_cb,
callback_opaque, data, len,
read_only);
s->files->f[index].size = cpu_to_be32(len);
s->files->f[index].select = cpu_to_be16(FW_CFG_FILE_FIRST + index);
s->entry_order[index] = order;
trace_fw_cfg_add_file(s, index, s->files->f[index].name, len);
s->files->count = cpu_to_be32(count+1);
fw_cfg_acpi_mr_save(s, filename, len);
}
void fw_cfg_add_file(FWCfgState *s, const char *filename,
void *data, size_t len)
{
fw_cfg_add_file_callback(s, filename, NULL, NULL, NULL, data, len, true);
}
void *fw_cfg_modify_file(FWCfgState *s, const char *filename,
void *data, size_t len)
{
int i, index;
void *ptr = NULL;
assert(s->files);
index = be32_to_cpu(s->files->count);
for (i = 0; i < index; i++) {
if (strcmp(filename, s->files->f[i].name) == 0) {
ptr = fw_cfg_modify_bytes_read(s, FW_CFG_FILE_FIRST + i,
data, len);
s->files->f[i].size = cpu_to_be32(len);
fw_cfg_acpi_mr_save(s, filename, len);
return ptr;
}
}
assert(index < fw_cfg_file_slots(s));
/* add new one */
fw_cfg_add_file_callback(s, filename, NULL, NULL, NULL, data, len, true);
return NULL;
}
bool fw_cfg_add_from_generator(FWCfgState *s, const char *filename,
const char *gen_id, Error **errp)
{
FWCfgDataGeneratorClass *klass;
GByteArray *array;
Object *obj;
gsize size;
obj = object_resolve_path_component(object_get_objects_root(), gen_id);
if (!obj) {
error_setg(errp, "Cannot find object ID '%s'", gen_id);
return false;
}
if (!object_dynamic_cast(obj, TYPE_FW_CFG_DATA_GENERATOR_INTERFACE)) {
error_setg(errp, "Object ID '%s' is not a '%s' subclass",
gen_id, TYPE_FW_CFG_DATA_GENERATOR_INTERFACE);
return false;
}
klass = FW_CFG_DATA_GENERATOR_GET_CLASS(obj);
array = klass->get_data(obj, errp);
if (!array) {
return false;
}
size = array->len;
fw_cfg_add_file(s, filename, g_byte_array_free(array, FALSE), size);
return true;
}
void fw_cfg_add_extra_pci_roots(PCIBus *bus, FWCfgState *s)
{
int extra_hosts = 0;
if (!bus) {
return;
}
QLIST_FOREACH(bus, &bus->child, sibling) {
/* look for expander root buses */
if (pci_bus_is_root(bus)) {
extra_hosts++;
}
}
if (extra_hosts && s) {
uint64_t *val = g_malloc(sizeof(*val));
*val = cpu_to_le64(extra_hosts);
fw_cfg_add_file(s, "etc/extra-pci-roots", val, sizeof(*val));
}
}
static void fw_cfg_machine_reset(void *opaque)
{
MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
FWCfgState *s = opaque;
void *ptr;
size_t len;
char *buf;
buf = get_boot_devices_list(&len);
ptr = fw_cfg_modify_file(s, "bootorder", (uint8_t *)buf, len);
g_free(ptr);
if (!mc->legacy_fw_cfg_order) {
buf = get_boot_devices_lchs_list(&len);
ptr = fw_cfg_modify_file(s, "bios-geometry", (uint8_t *)buf, len);
g_free(ptr);
}
}
static void fw_cfg_machine_ready(struct Notifier *n, void *data)
{
FWCfgState *s = container_of(n, FWCfgState, machine_ready);
qemu_register_reset(fw_cfg_machine_reset, s);
}
static Property fw_cfg_properties[] = {
DEFINE_PROP_BOOL("acpi-mr-restore", FWCfgState, acpi_mr_restore, true),
DEFINE_PROP_END_OF_LIST(),
};
static void fw_cfg_common_realize(DeviceState *dev, Error **errp)
{
FWCfgState *s = FW_CFG(dev);
MachineState *machine = MACHINE(qdev_get_machine());
uint32_t version = FW_CFG_VERSION;
if (!fw_cfg_find()) {
error_setg(errp, "at most one %s device is permitted", TYPE_FW_CFG);
return;
}
fw_cfg_add_bytes(s, FW_CFG_SIGNATURE, (char *)"QEMU", 4);
fw_cfg_add_bytes(s, FW_CFG_UUID, &qemu_uuid, 16);
fw_cfg_add_i16(s, FW_CFG_NOGRAPHIC, (uint16_t)!machine->enable_graphics);
fw_cfg_add_i16(s, FW_CFG_BOOT_MENU, (uint16_t)boot_menu);
fw_cfg_bootsplash(s);
fw_cfg_reboot(s);
if (s->dma_enabled) {
version |= FW_CFG_VERSION_DMA;
}
fw_cfg_add_i32(s, FW_CFG_ID, version);
s->machine_ready.notify = fw_cfg_machine_ready;
qemu_add_machine_init_done_notifier(&s->machine_ready);
}
FWCfgState *fw_cfg_init_io_dma(uint32_t iobase, uint32_t dma_iobase,
AddressSpace *dma_as)
{
DeviceState *dev;
SysBusDevice *sbd;
FWCfgIoState *ios;
FWCfgState *s;
bool dma_requested = dma_iobase && dma_as;
dev = qdev_new(TYPE_FW_CFG_IO);
if (!dma_requested) {
qdev_prop_set_bit(dev, "dma_enabled", false);
}
object_property_add_child(OBJECT(qdev_get_machine()), TYPE_FW_CFG,
OBJECT(dev));
sbd = SYS_BUS_DEVICE(dev);
sysbus_realize_and_unref(sbd, &error_fatal);
ios = FW_CFG_IO(dev);
sysbus_add_io(sbd, iobase, &ios->comb_iomem);
s = FW_CFG(dev);
if (s->dma_enabled) {
/* 64 bits for the address field */
s->dma_as = dma_as;
s->dma_addr = 0;
sysbus_add_io(sbd, dma_iobase, &s->dma_iomem);
}
return s;
}
FWCfgState *fw_cfg_init_io(uint32_t iobase)
{
return fw_cfg_init_io_dma(iobase, 0, NULL);
}
FWCfgState *fw_cfg_init_mem_wide(hwaddr ctl_addr,
hwaddr data_addr, uint32_t data_width,
hwaddr dma_addr, AddressSpace *dma_as)
{
DeviceState *dev;
SysBusDevice *sbd;
FWCfgState *s;
bool dma_requested = dma_addr && dma_as;
dev = qdev_new(TYPE_FW_CFG_MEM);
qdev_prop_set_uint32(dev, "data_width", data_width);
if (!dma_requested) {
qdev_prop_set_bit(dev, "dma_enabled", false);
}
object_property_add_child(OBJECT(qdev_get_machine()), TYPE_FW_CFG,
OBJECT(dev));
sbd = SYS_BUS_DEVICE(dev);
sysbus_realize_and_unref(sbd, &error_fatal);
sysbus_mmio_map(sbd, 0, ctl_addr);
sysbus_mmio_map(sbd, 1, data_addr);
s = FW_CFG(dev);
if (s->dma_enabled) {
s->dma_as = dma_as;
s->dma_addr = 0;
sysbus_mmio_map(sbd, 2, dma_addr);
}
return s;
}
FWCfgState *fw_cfg_init_mem(hwaddr ctl_addr, hwaddr data_addr)
{
return fw_cfg_init_mem_wide(ctl_addr, data_addr,
fw_cfg_data_mem_ops.valid.max_access_size,
0, NULL);
}
FWCfgState *fw_cfg_find(void)
{
/* Returns NULL unless there is exactly one fw_cfg device */
return FW_CFG(object_resolve_path_type("", TYPE_FW_CFG, NULL));
}
static void fw_cfg_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
dc->reset = fw_cfg_reset;
dc->vmsd = &vmstate_fw_cfg;
device_class_set_props(dc, fw_cfg_properties);
}
static const TypeInfo fw_cfg_info = {
.name = TYPE_FW_CFG,
.parent = TYPE_SYS_BUS_DEVICE,
.abstract = true,
.instance_size = sizeof(FWCfgState),
.class_init = fw_cfg_class_init,
};
static void fw_cfg_file_slots_allocate(FWCfgState *s, Error **errp)
{
uint16_t file_slots_max;
if (fw_cfg_file_slots(s) < FW_CFG_FILE_SLOTS_MIN) {
error_setg(errp, "\"file_slots\" must be at least 0x%x",
FW_CFG_FILE_SLOTS_MIN);
return;
}
/* (UINT16_MAX & FW_CFG_ENTRY_MASK) is the highest inclusive selector value
* that we permit. The actual (exclusive) value coming from the
* configuration is (FW_CFG_FILE_FIRST + fw_cfg_file_slots(s)). */
file_slots_max = (UINT16_MAX & FW_CFG_ENTRY_MASK) - FW_CFG_FILE_FIRST + 1;
if (fw_cfg_file_slots(s) > file_slots_max) {
error_setg(errp, "\"file_slots\" must not exceed 0x%" PRIx16,
file_slots_max);
return;
}
s->entries[0] = g_new0(FWCfgEntry, fw_cfg_max_entry(s));
s->entries[1] = g_new0(FWCfgEntry, fw_cfg_max_entry(s));
s->entry_order = g_new0(int, fw_cfg_max_entry(s));
}
static Property fw_cfg_io_properties[] = {
DEFINE_PROP_BOOL("dma_enabled", FWCfgIoState, parent_obj.dma_enabled,
true),
DEFINE_PROP_UINT16("x-file-slots", FWCfgIoState, parent_obj.file_slots,
FW_CFG_FILE_SLOTS_DFLT),
DEFINE_PROP_END_OF_LIST(),
};
static void fw_cfg_io_realize(DeviceState *dev, Error **errp)
{
ERRP_GUARD();
FWCfgIoState *s = FW_CFG_IO(dev);
fw_cfg_file_slots_allocate(FW_CFG(s), errp);
if (*errp) {
return;
}
/* when using port i/o, the 8-bit data register ALWAYS overlaps
* with half of the 16-bit control register. Hence, the total size
* of the i/o region used is FW_CFG_CTL_SIZE */
memory_region_init_io(&s->comb_iomem, OBJECT(s), &fw_cfg_comb_mem_ops,
FW_CFG(s), "fwcfg", FW_CFG_CTL_SIZE);
if (FW_CFG(s)->dma_enabled) {
memory_region_init_io(&FW_CFG(s)->dma_iomem, OBJECT(s),
&fw_cfg_dma_mem_ops, FW_CFG(s), "fwcfg.dma",
sizeof(dma_addr_t));
}
fw_cfg_common_realize(dev, errp);
}
static void fw_cfg_io_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
dc->realize = fw_cfg_io_realize;
device_class_set_props(dc, fw_cfg_io_properties);
}
static const TypeInfo fw_cfg_io_info = {
.name = TYPE_FW_CFG_IO,
.parent = TYPE_FW_CFG,
.instance_size = sizeof(FWCfgIoState),
.class_init = fw_cfg_io_class_init,
};
static Property fw_cfg_mem_properties[] = {
DEFINE_PROP_UINT32("data_width", FWCfgMemState, data_width, -1),
DEFINE_PROP_BOOL("dma_enabled", FWCfgMemState, parent_obj.dma_enabled,
true),
DEFINE_PROP_UINT16("x-file-slots", FWCfgMemState, parent_obj.file_slots,
FW_CFG_FILE_SLOTS_DFLT),
DEFINE_PROP_END_OF_LIST(),
};
static void fw_cfg_mem_realize(DeviceState *dev, Error **errp)
{
ERRP_GUARD();
FWCfgMemState *s = FW_CFG_MEM(dev);
SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
const MemoryRegionOps *data_ops = &fw_cfg_data_mem_ops;
fw_cfg_file_slots_allocate(FW_CFG(s), errp);
if (*errp) {
return;
}
memory_region_init_io(&s->ctl_iomem, OBJECT(s), &fw_cfg_ctl_mem_ops,
FW_CFG(s), "fwcfg.ctl", FW_CFG_CTL_SIZE);
sysbus_init_mmio(sbd, &s->ctl_iomem);
if (s->data_width > data_ops->valid.max_access_size) {
s->wide_data_ops = *data_ops;
s->wide_data_ops.valid.max_access_size = s->data_width;
s->wide_data_ops.impl.max_access_size = s->data_width;
data_ops = &s->wide_data_ops;
}
memory_region_init_io(&s->data_iomem, OBJECT(s), data_ops, FW_CFG(s),
"fwcfg.data", data_ops->valid.max_access_size);
sysbus_init_mmio(sbd, &s->data_iomem);
if (FW_CFG(s)->dma_enabled) {
memory_region_init_io(&FW_CFG(s)->dma_iomem, OBJECT(s),
&fw_cfg_dma_mem_ops, FW_CFG(s), "fwcfg.dma",
sizeof(dma_addr_t));
sysbus_init_mmio(sbd, &FW_CFG(s)->dma_iomem);
}
fw_cfg_common_realize(dev, errp);
}
static void fw_cfg_mem_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
dc->realize = fw_cfg_mem_realize;
device_class_set_props(dc, fw_cfg_mem_properties);
}
static const TypeInfo fw_cfg_mem_info = {
.name = TYPE_FW_CFG_MEM,
.parent = TYPE_FW_CFG,
.instance_size = sizeof(FWCfgMemState),
.class_init = fw_cfg_mem_class_init,
};
static void fw_cfg_register_types(void)
{
type_register_static(&fw_cfg_info);
type_register_static(&fw_cfg_io_info);
type_register_static(&fw_cfg_mem_info);
}
type_init(fw_cfg_register_types)