David Hildenbrand 55b1b753df s390x/gdb: synchronize cpu state after modifying acrs
Whenever we touch the access control registers, we have to make sure that
the values will make it into kvm. Otherwise the change will simply be lost.

When synchronizing qemu and kvm, a normal KVM_PUT_RUNTIME_STATE does not take
care of these registers. Let's simply trigger a KVM_PUT_FULL_STATE sync,
so the values will directly be written to kvm. The performance overhead can
be ignored and this is much cleaner than manually writing these registers to kvm
via our two supported ways.

Reviewed-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Cornelia Huck <cornelia.huck@de.ibm.com>
2015-07-02 15:35:33 +02:00

191 lines
5.3 KiB
C

/*
* s390x gdb server stub
*
* Copyright (c) 2003-2005 Fabrice Bellard
* Copyright (c) 2013 SUSE LINUX Products GmbH
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#include "config.h"
#include "qemu-common.h"
#include "exec/gdbstub.h"
#include "qemu/bitops.h"
int s390_cpu_gdb_read_register(CPUState *cs, uint8_t *mem_buf, int n)
{
S390CPU *cpu = S390_CPU(cs);
CPUS390XState *env = &cpu->env;
uint64_t val;
int cc_op;
switch (n) {
case S390_PSWM_REGNUM:
if (tcg_enabled()) {
cc_op = calc_cc(env, env->cc_op, env->cc_src, env->cc_dst,
env->cc_vr);
val = deposit64(env->psw.mask, 44, 2, cc_op);
return gdb_get_regl(mem_buf, val);
}
return gdb_get_regl(mem_buf, env->psw.mask);
case S390_PSWA_REGNUM:
return gdb_get_regl(mem_buf, env->psw.addr);
case S390_R0_REGNUM ... S390_R15_REGNUM:
return gdb_get_regl(mem_buf, env->regs[n - S390_R0_REGNUM]);
}
return 0;
}
int s390_cpu_gdb_write_register(CPUState *cs, uint8_t *mem_buf, int n)
{
S390CPU *cpu = S390_CPU(cs);
CPUS390XState *env = &cpu->env;
target_ulong tmpl = ldtul_p(mem_buf);
switch (n) {
case S390_PSWM_REGNUM:
env->psw.mask = tmpl;
if (tcg_enabled()) {
env->cc_op = extract64(tmpl, 44, 2);
}
break;
case S390_PSWA_REGNUM:
env->psw.addr = tmpl;
break;
case S390_R0_REGNUM ... S390_R15_REGNUM:
env->regs[n - S390_R0_REGNUM] = tmpl;
break;
default:
return 0;
}
return 8;
}
/* the values represent the positions in s390-acr.xml */
#define S390_A0_REGNUM 0
#define S390_A15_REGNUM 15
/* total number of registers in s390-acr.xml */
#define S390_NUM_AC_REGS 16
static int cpu_read_ac_reg(CPUS390XState *env, uint8_t *mem_buf, int n)
{
switch (n) {
case S390_A0_REGNUM ... S390_A15_REGNUM:
return gdb_get_reg32(mem_buf, env->aregs[n]);
default:
return 0;
}
}
static int cpu_write_ac_reg(CPUS390XState *env, uint8_t *mem_buf, int n)
{
switch (n) {
case S390_A0_REGNUM ... S390_A15_REGNUM:
env->aregs[n] = ldl_p(mem_buf);
cpu_synchronize_post_init(ENV_GET_CPU(env));
return 4;
default:
return 0;
}
}
/* the values represent the positions in s390-fpr.xml */
#define S390_FPC_REGNUM 0
#define S390_F0_REGNUM 1
#define S390_F15_REGNUM 16
/* total number of registers in s390-fpr.xml */
#define S390_NUM_FP_REGS 17
static int cpu_read_fp_reg(CPUS390XState *env, uint8_t *mem_buf, int n)
{
switch (n) {
case S390_FPC_REGNUM:
return gdb_get_reg32(mem_buf, env->fpc);
case S390_F0_REGNUM ... S390_F15_REGNUM:
return gdb_get_reg64(mem_buf, get_freg(env, n - S390_F0_REGNUM)->ll);
default:
return 0;
}
}
static int cpu_write_fp_reg(CPUS390XState *env, uint8_t *mem_buf, int n)
{
switch (n) {
case S390_FPC_REGNUM:
env->fpc = ldl_p(mem_buf);
return 4;
case S390_F0_REGNUM ... S390_F15_REGNUM:
get_freg(env, n - S390_F0_REGNUM)->ll = ldtul_p(mem_buf);
return 8;
default:
return 0;
}
}
/* the values represent the positions in s390-vx.xml */
#define S390_V0L_REGNUM 0
#define S390_V15L_REGNUM 15
#define S390_V16_REGNUM 16
#define S390_V31_REGNUM 31
/* total number of registers in s390-vx.xml */
#define S390_NUM_VREGS 32
static int cpu_read_vreg(CPUS390XState *env, uint8_t *mem_buf, int n)
{
int ret;
switch (n) {
case S390_V0L_REGNUM ... S390_V15L_REGNUM:
ret = gdb_get_reg64(mem_buf, env->vregs[n][1].ll);
break;
case S390_V16_REGNUM ... S390_V31_REGNUM:
ret = gdb_get_reg64(mem_buf, env->vregs[n][0].ll);
ret += gdb_get_reg64(mem_buf + 8, env->vregs[n][1].ll);
break;
default:
ret = 0;
}
return ret;
}
static int cpu_write_vreg(CPUS390XState *env, uint8_t *mem_buf, int n)
{
switch (n) {
case S390_V0L_REGNUM ... S390_V15L_REGNUM:
env->vregs[n][1].ll = ldtul_p(mem_buf + 8);
return 8;
case S390_V16_REGNUM ... S390_V31_REGNUM:
env->vregs[n][0].ll = ldtul_p(mem_buf);
env->vregs[n][1].ll = ldtul_p(mem_buf + 8);
return 16;
default:
return 0;
}
}
void s390_cpu_gdb_init(CPUState *cs)
{
gdb_register_coprocessor(cs, cpu_read_ac_reg,
cpu_write_ac_reg,
S390_NUM_AC_REGS, "s390-acr.xml", 0);
gdb_register_coprocessor(cs, cpu_read_fp_reg,
cpu_write_fp_reg,
S390_NUM_FP_REGS, "s390-fpr.xml", 0);
gdb_register_coprocessor(cs, cpu_read_vreg,
cpu_write_vreg,
S390_NUM_VREGS, "s390-vx.xml", 0);
}