qemu-e2k/hw/axis_dev88.c
Avi Kivity c5705a7728 vmstate, memory: decouple vmstate from memory API
Currently creating a memory region automatically registers it for
live migration.  This differs from other state (which is enumerated
in a VMStateDescription structure) and ties the live migration code
into the memory core.

Decouple the two by introducing a separate API, vmstate_register_ram(),
for registering a RAM block for migration.  Currently the same
implementation is reused, but later it can be moved into a separate list,
and registrations can be moved to VMStateDescription blocks.

Signed-off-by: Avi Kivity <avi@redhat.com>
2012-01-04 13:34:48 +02:00

363 lines
11 KiB
C

/*
* QEMU model for the AXIS devboard 88.
*
* Copyright (c) 2009 Edgar E. Iglesias, Axis Communications AB.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "sysbus.h"
#include "net.h"
#include "flash.h"
#include "boards.h"
#include "etraxfs.h"
#include "loader.h"
#include "elf.h"
#include "cris-boot.h"
#include "blockdev.h"
#include "exec-memory.h"
#define D(x)
#define DNAND(x)
struct nand_state_t
{
DeviceState *nand;
MemoryRegion iomem;
unsigned int rdy:1;
unsigned int ale:1;
unsigned int cle:1;
unsigned int ce:1;
};
static struct nand_state_t nand_state;
static uint64_t nand_read(void *opaque, target_phys_addr_t addr, unsigned size)
{
struct nand_state_t *s = opaque;
uint32_t r;
int rdy;
r = nand_getio(s->nand);
nand_getpins(s->nand, &rdy);
s->rdy = rdy;
DNAND(printf("%s addr=%x r=%x\n", __func__, addr, r));
return r;
}
static void
nand_write(void *opaque, target_phys_addr_t addr, uint64_t value,
unsigned size)
{
struct nand_state_t *s = opaque;
int rdy;
DNAND(printf("%s addr=%x v=%x\n", __func__, addr, (unsigned)value));
nand_setpins(s->nand, s->cle, s->ale, s->ce, 1, 0);
nand_setio(s->nand, value);
nand_getpins(s->nand, &rdy);
s->rdy = rdy;
}
static const MemoryRegionOps nand_ops = {
.read = nand_read,
.write = nand_write,
.endianness = DEVICE_NATIVE_ENDIAN,
};
struct tempsensor_t
{
unsigned int shiftreg;
unsigned int count;
enum {
ST_OUT, ST_IN, ST_Z
} state;
uint16_t regs[3];
};
static void tempsensor_clkedge(struct tempsensor_t *s,
unsigned int clk, unsigned int data_in)
{
D(printf("%s clk=%d state=%d sr=%x\n", __func__,
clk, s->state, s->shiftreg));
if (s->count == 0) {
s->count = 16;
s->state = ST_OUT;
}
switch (s->state) {
case ST_OUT:
/* Output reg is clocked at negedge. */
if (!clk) {
s->count--;
s->shiftreg <<= 1;
if (s->count == 0) {
s->shiftreg = 0;
s->state = ST_IN;
s->count = 16;
}
}
break;
case ST_Z:
if (clk) {
s->count--;
if (s->count == 0) {
s->shiftreg = 0;
s->state = ST_OUT;
s->count = 16;
}
}
break;
case ST_IN:
/* Indata is sampled at posedge. */
if (clk) {
s->count--;
s->shiftreg <<= 1;
s->shiftreg |= data_in & 1;
if (s->count == 0) {
D(printf("%s cfgreg=%x\n", __func__, s->shiftreg));
s->regs[0] = s->shiftreg;
s->state = ST_OUT;
s->count = 16;
if ((s->regs[0] & 0xff) == 0) {
/* 25 degrees celcius. */
s->shiftreg = 0x0b9f;
} else if ((s->regs[0] & 0xff) == 0xff) {
/* Sensor ID, 0x8100 LM70. */
s->shiftreg = 0x8100;
} else
printf("Invalid tempsens state %x\n", s->regs[0]);
}
}
break;
}
}
#define RW_PA_DOUT 0x00
#define R_PA_DIN 0x01
#define RW_PA_OE 0x02
#define RW_PD_DOUT 0x10
#define R_PD_DIN 0x11
#define RW_PD_OE 0x12
static struct gpio_state_t
{
MemoryRegion iomem;
struct nand_state_t *nand;
struct tempsensor_t tempsensor;
uint32_t regs[0x5c / 4];
} gpio_state;
static uint64_t gpio_read(void *opaque, target_phys_addr_t addr, unsigned size)
{
struct gpio_state_t *s = opaque;
uint32_t r = 0;
addr >>= 2;
switch (addr)
{
case R_PA_DIN:
r = s->regs[RW_PA_DOUT] & s->regs[RW_PA_OE];
/* Encode pins from the nand. */
r |= s->nand->rdy << 7;
break;
case R_PD_DIN:
r = s->regs[RW_PD_DOUT] & s->regs[RW_PD_OE];
/* Encode temp sensor pins. */
r |= (!!(s->tempsensor.shiftreg & 0x10000)) << 4;
break;
default:
r = s->regs[addr];
break;
}
return r;
D(printf("%s %x=%x\n", __func__, addr, r));
}
static void gpio_write(void *opaque, target_phys_addr_t addr, uint64_t value,
unsigned size)
{
struct gpio_state_t *s = opaque;
D(printf("%s %x=%x\n", __func__, addr, (unsigned)value));
addr >>= 2;
switch (addr)
{
case RW_PA_DOUT:
/* Decode nand pins. */
s->nand->ale = !!(value & (1 << 6));
s->nand->cle = !!(value & (1 << 5));
s->nand->ce = !!(value & (1 << 4));
s->regs[addr] = value;
break;
case RW_PD_DOUT:
/* Temp sensor clk. */
if ((s->regs[addr] ^ value) & 2)
tempsensor_clkedge(&s->tempsensor, !!(value & 2),
!!(value & 16));
s->regs[addr] = value;
break;
default:
s->regs[addr] = value;
break;
}
}
static const MemoryRegionOps gpio_ops = {
.read = gpio_read,
.write = gpio_write,
.endianness = DEVICE_NATIVE_ENDIAN,
.valid = {
.min_access_size = 4,
.max_access_size = 4,
},
};
#define INTMEM_SIZE (128 * 1024)
static struct cris_load_info li;
static
void axisdev88_init (ram_addr_t ram_size,
const char *boot_device,
const char *kernel_filename, const char *kernel_cmdline,
const char *initrd_filename, const char *cpu_model)
{
CPUState *env;
DeviceState *dev;
SysBusDevice *s;
DriveInfo *nand;
qemu_irq irq[30], nmi[2], *cpu_irq;
void *etraxfs_dmac;
struct etraxfs_dma_client *dma_eth;
int i;
MemoryRegion *address_space_mem = get_system_memory();
MemoryRegion *phys_ram = g_new(MemoryRegion, 1);
MemoryRegion *phys_intmem = g_new(MemoryRegion, 1);
/* init CPUs */
if (cpu_model == NULL) {
cpu_model = "crisv32";
}
env = cpu_init(cpu_model);
/* allocate RAM */
memory_region_init_ram(phys_ram, "axisdev88.ram", ram_size);
vmstate_register_ram_global(phys_ram);
memory_region_add_subregion(address_space_mem, 0x40000000, phys_ram);
/* The ETRAX-FS has 128Kb on chip ram, the docs refer to it as the
internal memory. */
memory_region_init_ram(phys_intmem, "axisdev88.chipram", INTMEM_SIZE);
vmstate_register_ram_global(phys_intmem);
memory_region_add_subregion(address_space_mem, 0x38000000, phys_intmem);
/* Attach a NAND flash to CS1. */
nand = drive_get(IF_MTD, 0, 0);
nand_state.nand = nand_init(nand ? nand->bdrv : NULL,
NAND_MFR_STMICRO, 0x39);
memory_region_init_io(&nand_state.iomem, &nand_ops, &nand_state,
"nand", 0x05000000);
memory_region_add_subregion(address_space_mem, 0x10000000,
&nand_state.iomem);
gpio_state.nand = &nand_state;
memory_region_init_io(&gpio_state.iomem, &gpio_ops, &gpio_state,
"gpio", 0x5c);
memory_region_add_subregion(address_space_mem, 0x3001a000,
&gpio_state.iomem);
cpu_irq = cris_pic_init_cpu(env);
dev = qdev_create(NULL, "etraxfs,pic");
/* FIXME: Is there a proper way to signal vectors to the CPU core? */
qdev_prop_set_ptr(dev, "interrupt_vector", &env->interrupt_vector);
qdev_init_nofail(dev);
s = sysbus_from_qdev(dev);
sysbus_mmio_map(s, 0, 0x3001c000);
sysbus_connect_irq(s, 0, cpu_irq[0]);
sysbus_connect_irq(s, 1, cpu_irq[1]);
for (i = 0; i < 30; i++) {
irq[i] = qdev_get_gpio_in(dev, i);
}
nmi[0] = qdev_get_gpio_in(dev, 30);
nmi[1] = qdev_get_gpio_in(dev, 31);
etraxfs_dmac = etraxfs_dmac_init(0x30000000, 10);
for (i = 0; i < 10; i++) {
/* On ETRAX, odd numbered channels are inputs. */
etraxfs_dmac_connect(etraxfs_dmac, i, irq + 7 + i, i & 1);
}
/* Add the two ethernet blocks. */
dma_eth = g_malloc0(sizeof dma_eth[0] * 4); /* Allocate 4 channels. */
etraxfs_eth_init(&nd_table[0], 0x30034000, 1, &dma_eth[0], &dma_eth[1]);
if (nb_nics > 1) {
etraxfs_eth_init(&nd_table[1], 0x30036000, 2, &dma_eth[2], &dma_eth[3]);
}
/* The DMA Connector block is missing, hardwire things for now. */
etraxfs_dmac_connect_client(etraxfs_dmac, 0, &dma_eth[0]);
etraxfs_dmac_connect_client(etraxfs_dmac, 1, &dma_eth[1]);
if (nb_nics > 1) {
etraxfs_dmac_connect_client(etraxfs_dmac, 6, &dma_eth[2]);
etraxfs_dmac_connect_client(etraxfs_dmac, 7, &dma_eth[3]);
}
/* 2 timers. */
sysbus_create_varargs("etraxfs,timer", 0x3001e000, irq[0x1b], nmi[1], NULL);
sysbus_create_varargs("etraxfs,timer", 0x3005e000, irq[0x1b], nmi[1], NULL);
for (i = 0; i < 4; i++) {
sysbus_create_simple("etraxfs,serial", 0x30026000 + i * 0x2000,
irq[0x14 + i]);
}
if (!kernel_filename) {
fprintf(stderr, "Kernel image must be specified\n");
exit(1);
}
li.image_filename = kernel_filename;
li.cmdline = kernel_cmdline;
cris_load_image(env, &li);
}
static QEMUMachine axisdev88_machine = {
.name = "axis-dev88",
.desc = "AXIS devboard 88",
.init = axisdev88_init,
.is_default = 1,
};
static void axisdev88_machine_init(void)
{
qemu_register_machine(&axisdev88_machine);
}
machine_init(axisdev88_machine_init);