qemu-e2k/hw/slavio_misc.c
Blue Swirl 001faf3269 Replace gcc variadic macro extension with C99 version
Signed-off-by: Blue Swirl <blauwirbel@gmail.com>
2009-05-13 17:53:17 +00:00

509 lines
12 KiB
C

/*
* QEMU Sparc SLAVIO aux io port emulation
*
* Copyright (c) 2005 Fabrice Bellard
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "hw.h"
#include "sun4m.h"
#include "sysemu.h"
/* debug misc */
//#define DEBUG_MISC
/*
* This is the auxio port, chip control and system control part of
* chip STP2001 (Slave I/O), also produced as NCR89C105. See
* http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C105.txt
*
* This also includes the PMC CPU idle controller.
*/
#ifdef DEBUG_MISC
#define MISC_DPRINTF(fmt, ...) \
do { printf("MISC: " fmt , ## __VA_ARGS__); } while (0)
#else
#define MISC_DPRINTF(fmt, ...)
#endif
typedef struct MiscState {
qemu_irq irq;
uint8_t config;
uint8_t aux1, aux2;
uint8_t diag, mctrl;
uint32_t sysctrl;
uint16_t leds;
qemu_irq cpu_halt;
qemu_irq fdc_tc;
} MiscState;
#define MISC_SIZE 1
#define SYSCTRL_SIZE 4
#define MISC_LEDS 0x01600000
#define MISC_CFG 0x01800000
#define MISC_DIAG 0x01a00000
#define MISC_MDM 0x01b00000
#define MISC_SYS 0x01f00000
#define AUX1_TC 0x02
#define AUX2_PWROFF 0x01
#define AUX2_PWRINTCLR 0x02
#define AUX2_PWRFAIL 0x20
#define CFG_PWRINTEN 0x08
#define SYS_RESET 0x01
#define SYS_RESETSTAT 0x02
static void slavio_misc_update_irq(void *opaque)
{
MiscState *s = opaque;
if ((s->aux2 & AUX2_PWRFAIL) && (s->config & CFG_PWRINTEN)) {
MISC_DPRINTF("Raise IRQ\n");
qemu_irq_raise(s->irq);
} else {
MISC_DPRINTF("Lower IRQ\n");
qemu_irq_lower(s->irq);
}
}
static void slavio_misc_reset(void *opaque)
{
MiscState *s = opaque;
// Diagnostic and system control registers not cleared in reset
s->config = s->aux1 = s->aux2 = s->mctrl = 0;
}
void slavio_set_power_fail(void *opaque, int power_failing)
{
MiscState *s = opaque;
MISC_DPRINTF("Power fail: %d, config: %d\n", power_failing, s->config);
if (power_failing && (s->config & CFG_PWRINTEN)) {
s->aux2 |= AUX2_PWRFAIL;
} else {
s->aux2 &= ~AUX2_PWRFAIL;
}
slavio_misc_update_irq(s);
}
static void slavio_cfg_mem_writeb(void *opaque, target_phys_addr_t addr,
uint32_t val)
{
MiscState *s = opaque;
MISC_DPRINTF("Write config %2.2x\n", val & 0xff);
s->config = val & 0xff;
slavio_misc_update_irq(s);
}
static uint32_t slavio_cfg_mem_readb(void *opaque, target_phys_addr_t addr)
{
MiscState *s = opaque;
uint32_t ret = 0;
ret = s->config;
MISC_DPRINTF("Read config %2.2x\n", ret);
return ret;
}
static CPUReadMemoryFunc *slavio_cfg_mem_read[3] = {
slavio_cfg_mem_readb,
NULL,
NULL,
};
static CPUWriteMemoryFunc *slavio_cfg_mem_write[3] = {
slavio_cfg_mem_writeb,
NULL,
NULL,
};
static void slavio_diag_mem_writeb(void *opaque, target_phys_addr_t addr,
uint32_t val)
{
MiscState *s = opaque;
MISC_DPRINTF("Write diag %2.2x\n", val & 0xff);
s->diag = val & 0xff;
}
static uint32_t slavio_diag_mem_readb(void *opaque, target_phys_addr_t addr)
{
MiscState *s = opaque;
uint32_t ret = 0;
ret = s->diag;
MISC_DPRINTF("Read diag %2.2x\n", ret);
return ret;
}
static CPUReadMemoryFunc *slavio_diag_mem_read[3] = {
slavio_diag_mem_readb,
NULL,
NULL,
};
static CPUWriteMemoryFunc *slavio_diag_mem_write[3] = {
slavio_diag_mem_writeb,
NULL,
NULL,
};
static void slavio_mdm_mem_writeb(void *opaque, target_phys_addr_t addr,
uint32_t val)
{
MiscState *s = opaque;
MISC_DPRINTF("Write modem control %2.2x\n", val & 0xff);
s->mctrl = val & 0xff;
}
static uint32_t slavio_mdm_mem_readb(void *opaque, target_phys_addr_t addr)
{
MiscState *s = opaque;
uint32_t ret = 0;
ret = s->mctrl;
MISC_DPRINTF("Read modem control %2.2x\n", ret);
return ret;
}
static CPUReadMemoryFunc *slavio_mdm_mem_read[3] = {
slavio_mdm_mem_readb,
NULL,
NULL,
};
static CPUWriteMemoryFunc *slavio_mdm_mem_write[3] = {
slavio_mdm_mem_writeb,
NULL,
NULL,
};
static void slavio_aux1_mem_writeb(void *opaque, target_phys_addr_t addr,
uint32_t val)
{
MiscState *s = opaque;
MISC_DPRINTF("Write aux1 %2.2x\n", val & 0xff);
if (val & AUX1_TC) {
// Send a pulse to floppy terminal count line
if (s->fdc_tc) {
qemu_irq_raise(s->fdc_tc);
qemu_irq_lower(s->fdc_tc);
}
val &= ~AUX1_TC;
}
s->aux1 = val & 0xff;
}
static uint32_t slavio_aux1_mem_readb(void *opaque, target_phys_addr_t addr)
{
MiscState *s = opaque;
uint32_t ret = 0;
ret = s->aux1;
MISC_DPRINTF("Read aux1 %2.2x\n", ret);
return ret;
}
static CPUReadMemoryFunc *slavio_aux1_mem_read[3] = {
slavio_aux1_mem_readb,
NULL,
NULL,
};
static CPUWriteMemoryFunc *slavio_aux1_mem_write[3] = {
slavio_aux1_mem_writeb,
NULL,
NULL,
};
static void slavio_aux2_mem_writeb(void *opaque, target_phys_addr_t addr,
uint32_t val)
{
MiscState *s = opaque;
val &= AUX2_PWRINTCLR | AUX2_PWROFF;
MISC_DPRINTF("Write aux2 %2.2x\n", val);
val |= s->aux2 & AUX2_PWRFAIL;
if (val & AUX2_PWRINTCLR) // Clear Power Fail int
val &= AUX2_PWROFF;
s->aux2 = val;
if (val & AUX2_PWROFF)
qemu_system_shutdown_request();
slavio_misc_update_irq(s);
}
static uint32_t slavio_aux2_mem_readb(void *opaque, target_phys_addr_t addr)
{
MiscState *s = opaque;
uint32_t ret = 0;
ret = s->aux2;
MISC_DPRINTF("Read aux2 %2.2x\n", ret);
return ret;
}
static CPUReadMemoryFunc *slavio_aux2_mem_read[3] = {
slavio_aux2_mem_readb,
NULL,
NULL,
};
static CPUWriteMemoryFunc *slavio_aux2_mem_write[3] = {
slavio_aux2_mem_writeb,
NULL,
NULL,
};
static void apc_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
{
MiscState *s = opaque;
MISC_DPRINTF("Write power management %2.2x\n", val & 0xff);
qemu_irq_raise(s->cpu_halt);
}
static uint32_t apc_mem_readb(void *opaque, target_phys_addr_t addr)
{
uint32_t ret = 0;
MISC_DPRINTF("Read power management %2.2x\n", ret);
return ret;
}
static CPUReadMemoryFunc *apc_mem_read[3] = {
apc_mem_readb,
NULL,
NULL,
};
static CPUWriteMemoryFunc *apc_mem_write[3] = {
apc_mem_writeb,
NULL,
NULL,
};
static uint32_t slavio_sysctrl_mem_readl(void *opaque, target_phys_addr_t addr)
{
MiscState *s = opaque;
uint32_t ret = 0;
switch (addr) {
case 0:
ret = s->sysctrl;
break;
default:
break;
}
MISC_DPRINTF("Read system control %08x\n", ret);
return ret;
}
static void slavio_sysctrl_mem_writel(void *opaque, target_phys_addr_t addr,
uint32_t val)
{
MiscState *s = opaque;
MISC_DPRINTF("Write system control %08x\n", val);
switch (addr) {
case 0:
if (val & SYS_RESET) {
s->sysctrl = SYS_RESETSTAT;
qemu_system_reset_request();
}
break;
default:
break;
}
}
static CPUReadMemoryFunc *slavio_sysctrl_mem_read[3] = {
NULL,
NULL,
slavio_sysctrl_mem_readl,
};
static CPUWriteMemoryFunc *slavio_sysctrl_mem_write[3] = {
NULL,
NULL,
slavio_sysctrl_mem_writel,
};
static uint32_t slavio_led_mem_readw(void *opaque, target_phys_addr_t addr)
{
MiscState *s = opaque;
uint32_t ret = 0;
switch (addr) {
case 0:
ret = s->leds;
break;
default:
break;
}
MISC_DPRINTF("Read diagnostic LED %04x\n", ret);
return ret;
}
static void slavio_led_mem_writew(void *opaque, target_phys_addr_t addr,
uint32_t val)
{
MiscState *s = opaque;
MISC_DPRINTF("Write diagnostic LED %04x\n", val & 0xffff);
switch (addr) {
case 0:
s->leds = val;
break;
default:
break;
}
}
static CPUReadMemoryFunc *slavio_led_mem_read[3] = {
NULL,
slavio_led_mem_readw,
NULL,
};
static CPUWriteMemoryFunc *slavio_led_mem_write[3] = {
NULL,
slavio_led_mem_writew,
NULL,
};
static void slavio_misc_save(QEMUFile *f, void *opaque)
{
MiscState *s = opaque;
uint32_t tmp = 0;
uint8_t tmp8;
qemu_put_be32s(f, &tmp); /* ignored, was IRQ. */
qemu_put_8s(f, &s->config);
qemu_put_8s(f, &s->aux1);
qemu_put_8s(f, &s->aux2);
qemu_put_8s(f, &s->diag);
qemu_put_8s(f, &s->mctrl);
tmp8 = s->sysctrl & 0xff;
qemu_put_8s(f, &tmp8);
}
static int slavio_misc_load(QEMUFile *f, void *opaque, int version_id)
{
MiscState *s = opaque;
uint32_t tmp;
uint8_t tmp8;
if (version_id != 1)
return -EINVAL;
qemu_get_be32s(f, &tmp);
qemu_get_8s(f, &s->config);
qemu_get_8s(f, &s->aux1);
qemu_get_8s(f, &s->aux2);
qemu_get_8s(f, &s->diag);
qemu_get_8s(f, &s->mctrl);
qemu_get_8s(f, &tmp8);
s->sysctrl = (uint32_t)tmp8;
return 0;
}
void *slavio_misc_init(target_phys_addr_t base, target_phys_addr_t power_base,
target_phys_addr_t aux1_base,
target_phys_addr_t aux2_base, qemu_irq irq,
qemu_irq cpu_halt, qemu_irq **fdc_tc)
{
int io;
MiscState *s;
s = qemu_mallocz(sizeof(MiscState));
if (base) {
/* 8 bit registers */
// Slavio control
io = cpu_register_io_memory(0, slavio_cfg_mem_read,
slavio_cfg_mem_write, s);
cpu_register_physical_memory(base + MISC_CFG, MISC_SIZE, io);
// Diagnostics
io = cpu_register_io_memory(0, slavio_diag_mem_read,
slavio_diag_mem_write, s);
cpu_register_physical_memory(base + MISC_DIAG, MISC_SIZE, io);
// Modem control
io = cpu_register_io_memory(0, slavio_mdm_mem_read,
slavio_mdm_mem_write, s);
cpu_register_physical_memory(base + MISC_MDM, MISC_SIZE, io);
/* 16 bit registers */
io = cpu_register_io_memory(0, slavio_led_mem_read,
slavio_led_mem_write, s);
/* ss600mp diag LEDs */
cpu_register_physical_memory(base + MISC_LEDS, MISC_SIZE, io);
/* 32 bit registers */
io = cpu_register_io_memory(0, slavio_sysctrl_mem_read,
slavio_sysctrl_mem_write, s);
// System control
cpu_register_physical_memory(base + MISC_SYS, SYSCTRL_SIZE, io);
}
// AUX 1 (Misc System Functions)
if (aux1_base) {
io = cpu_register_io_memory(0, slavio_aux1_mem_read,
slavio_aux1_mem_write, s);
cpu_register_physical_memory(aux1_base, MISC_SIZE, io);
}
// AUX 2 (Software Powerdown Control)
if (aux2_base) {
io = cpu_register_io_memory(0, slavio_aux2_mem_read,
slavio_aux2_mem_write, s);
cpu_register_physical_memory(aux2_base, MISC_SIZE, io);
}
// Power management (APC) XXX: not a Slavio device
if (power_base) {
io = cpu_register_io_memory(0, apc_mem_read, apc_mem_write, s);
cpu_register_physical_memory(power_base, MISC_SIZE, io);
}
s->irq = irq;
s->cpu_halt = cpu_halt;
*fdc_tc = &s->fdc_tc;
register_savevm("slavio_misc", base, 1, slavio_misc_save, slavio_misc_load,
s);
qemu_register_reset(slavio_misc_reset, s);
slavio_misc_reset(s);
return s;
}