qemu-e2k/hw/axis_dev88.c
aliguori 0ae18ceeaa Check NIC model in some NIC init functions (Mark McLoughlin)
Some NIC init functions are only called when that model is
the only valid model. In that case, it makes sense to use
qemu_check_nic_model() from the NIC init function itself.

Signed-off-by: Mark McLoughlin <markmc@redhat.com>
Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>



git-svn-id: svn://svn.savannah.nongnu.org/qemu/trunk@6286 c046a42c-6fe2-441c-8c8c-71466251a162
2009-01-13 19:39:36 +00:00

370 lines
10 KiB
C

/*
* QEMU model for the AXIS devboard 88.
*
* Copyright (c) 2009 Edgar E. Iglesias, Axis Communications AB.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <time.h>
#include <sys/time.h>
#include "hw.h"
#include "net.h"
#include "flash.h"
#include "sysemu.h"
#include "devices.h"
#include "boards.h"
#include "etraxfs.h"
#define D(x)
#define DNAND(x)
struct nand_state_t
{
struct nand_flash_s *nand;
unsigned int rdy:1;
unsigned int ale:1;
unsigned int cle:1;
unsigned int ce:1;
};
static struct nand_state_t nand_state;
static uint32_t nand_readl (void *opaque, target_phys_addr_t addr)
{
struct nand_state_t *s = opaque;
uint32_t r;
int rdy;
r = nand_getio(s->nand);
nand_getpins(s->nand, &rdy);
s->rdy = rdy;
DNAND(printf("%s addr=%x r=%x\n", __func__, addr, r));
return r;
}
static void
nand_writel (void *opaque, target_phys_addr_t addr, uint32_t value)
{
struct nand_state_t *s = opaque;
int rdy;
DNAND(printf("%s addr=%x v=%x\n", __func__, addr, value));
nand_setpins(s->nand, s->cle, s->ale, s->ce, 1, 0);
nand_setio(s->nand, value);
nand_getpins(s->nand, &rdy);
s->rdy = rdy;
}
static CPUReadMemoryFunc *nand_read[] = {
&nand_readl,
&nand_readl,
&nand_readl,
};
static CPUWriteMemoryFunc *nand_write[] = {
&nand_writel,
&nand_writel,
&nand_writel,
};
struct tempsensor_t
{
unsigned int shiftreg;
unsigned int count;
enum {
ST_OUT, ST_IN, ST_Z
} state;
uint16_t regs[3];
};
static void tempsensor_clkedge(struct tempsensor_t *s,
unsigned int clk, unsigned int data_in)
{
D(printf("%s clk=%d state=%d sr=%x\n", __func__,
clk, s->state, s->shiftreg));
if (s->count == 0) {
s->count = 16;
s->state = ST_OUT;
}
switch (s->state) {
case ST_OUT:
/* Output reg is clocked at negedge. */
if (!clk) {
s->count--;
s->shiftreg <<= 1;
if (s->count == 0) {
s->shiftreg = 0;
s->state = ST_IN;
s->count = 16;
}
}
break;
case ST_Z:
if (clk) {
s->count--;
if (s->count == 0) {
s->shiftreg = 0;
s->state = ST_OUT;
s->count = 16;
}
}
break;
case ST_IN:
/* Indata is sampled at posedge. */
if (clk) {
s->count--;
s->shiftreg <<= 1;
s->shiftreg |= data_in & 1;
if (s->count == 0) {
D(printf("%s cfgreg=%x\n", __func__, s->shiftreg));
s->regs[0] = s->shiftreg;
s->state = ST_OUT;
s->count = 16;
if ((s->regs[0] & 0xff) == 0) {
/* 25 degrees celcius. */
s->shiftreg = 0x0b9f;
} else if ((s->regs[0] & 0xff) == 0xff) {
/* Sensor ID, 0x8100 LM70. */
s->shiftreg = 0x8100;
} else
printf("Invalid tempsens state %x\n", s->regs[0]);
}
}
break;
}
}
#define RW_PA_DOUT 0x00
#define R_PA_DIN 0x01
#define RW_PA_OE 0x02
#define RW_PD_DOUT 0x10
#define R_PD_DIN 0x11
#define RW_PD_OE 0x12
static struct gpio_state_t
{
struct nand_state_t *nand;
struct tempsensor_t tempsensor;
uint32_t regs[0x5c / 4];
} gpio_state;
static uint32_t gpio_readl (void *opaque, target_phys_addr_t addr)
{
struct gpio_state_t *s = opaque;
uint32_t r = 0;
addr >>= 2;
switch (addr)
{
case R_PA_DIN:
r = s->regs[RW_PA_DOUT] & s->regs[RW_PA_OE];
/* Encode pins from the nand. */
r |= s->nand->rdy << 7;
break;
case R_PD_DIN:
r = s->regs[RW_PD_DOUT] & s->regs[RW_PD_OE];
/* Encode temp sensor pins. */
r |= (!!(s->tempsensor.shiftreg & 0x10000)) << 4;
break;
default:
r = s->regs[addr];
break;
}
return r;
D(printf("%s %x=%x\n", __func__, addr, r));
}
static void gpio_writel (void *opaque, target_phys_addr_t addr, uint32_t value)
{
struct gpio_state_t *s = opaque;
D(printf("%s %x=%x\n", __func__, addr, value));
addr >>= 2;
switch (addr)
{
case RW_PA_DOUT:
/* Decode nand pins. */
s->nand->ale = !!(value & (1 << 6));
s->nand->cle = !!(value & (1 << 5));
s->nand->ce = !!(value & (1 << 4));
s->regs[addr] = value;
break;
case RW_PD_DOUT:
/* Temp sensor clk. */
if ((s->regs[addr] ^ value) & 2)
tempsensor_clkedge(&s->tempsensor, !!(value & 2),
!!(value & 16));
s->regs[addr] = value;
break;
default:
s->regs[addr] = value;
break;
}
}
static CPUReadMemoryFunc *gpio_read[] = {
NULL, NULL,
&gpio_readl,
};
static CPUWriteMemoryFunc *gpio_write[] = {
NULL, NULL,
&gpio_writel,
};
#define INTMEM_SIZE (128 * 1024)
static uint32_t bootstrap_pc;
static void main_cpu_reset(void *opaque)
{
CPUState *env = opaque;
cpu_reset(env);
env->pc = bootstrap_pc;
}
static
void axisdev88_init (ram_addr_t ram_size, int vga_ram_size,
const char *boot_device, DisplayState *ds,
const char *kernel_filename, const char *kernel_cmdline,
const char *initrd_filename, const char *cpu_model)
{
CPUState *env;
struct etraxfs_pic *pic;
void *etraxfs_dmac;
struct etraxfs_dma_client *eth[2] = {NULL, NULL};
int kernel_size;
int i;
int nand_regs;
int gpio_regs;
ram_addr_t phys_ram;
ram_addr_t phys_intmem;
/* init CPUs */
if (cpu_model == NULL) {
cpu_model = "crisv32";
}
env = cpu_init(cpu_model);
qemu_register_reset(main_cpu_reset, env);
/* allocate RAM */
phys_ram = qemu_ram_alloc(ram_size);
cpu_register_physical_memory(0x40000000, ram_size, phys_ram | IO_MEM_RAM);
/* The ETRAX-FS has 128Kb on chip ram, the docs refer to it as the
internal memory. */
phys_intmem = qemu_ram_alloc(INTMEM_SIZE);
cpu_register_physical_memory(0x38000000, INTMEM_SIZE,
phys_intmem | IO_MEM_RAM);
/* Attach a NAND flash to CS1. */
nand_state.nand = nand_init(NAND_MFR_STMICRO, 0x39);
nand_regs = cpu_register_io_memory(0, nand_read, nand_write, &nand_state);
cpu_register_physical_memory(0x10000000, 0x05000000, nand_regs);
gpio_state.nand = &nand_state;
gpio_regs = cpu_register_io_memory(0, gpio_read, gpio_write, &gpio_state);
cpu_register_physical_memory(0x3001a000, 0x5c, gpio_regs);
pic = etraxfs_pic_init(env, 0x3001c000);
etraxfs_dmac = etraxfs_dmac_init(env, 0x30000000, 10);
for (i = 0; i < 10; i++) {
/* On ETRAX, odd numbered channels are inputs. */
etraxfs_dmac_connect(etraxfs_dmac, i, pic->irq + 7 + i, i & 1);
}
/* Add the two ethernet blocks. */
eth[0] = etraxfs_eth_init(&nd_table[0], env, pic->irq + 25, 0x30034000, 1);
if (nb_nics > 1)
eth[1] = etraxfs_eth_init(&nd_table[1], env,
pic->irq + 26, 0x30036000, 2);
/* The DMA Connector block is missing, hardwire things for now. */
etraxfs_dmac_connect_client(etraxfs_dmac, 0, eth[0]);
etraxfs_dmac_connect_client(etraxfs_dmac, 1, eth[0] + 1);
if (eth[1]) {
etraxfs_dmac_connect_client(etraxfs_dmac, 6, eth[1]);
etraxfs_dmac_connect_client(etraxfs_dmac, 7, eth[1] + 1);
}
/* 2 timers. */
etraxfs_timer_init(env, pic->irq + 0x1b, pic->nmi + 1, 0x3001e000);
etraxfs_timer_init(env, pic->irq + 0x1b, pic->nmi + 1, 0x3005e000);
for (i = 0; i < 4; i++) {
if (serial_hds[i]) {
etraxfs_ser_init(env, pic->irq + 0x14 + i,
serial_hds[i], 0x30026000 + i * 0x2000);
}
}
if (kernel_filename) {
uint64_t entry, high;
int kcmdline_len;
/* Boots a kernel elf binary, os/linux-2.6/vmlinux from the axis
devboard SDK. */
kernel_size = load_elf(kernel_filename, -0x80000000LL,
&entry, NULL, &high);
bootstrap_pc = entry;
if (kernel_size < 0) {
/* Takes a kimage from the axis devboard SDK. */
kernel_size = load_image(kernel_filename, phys_ram_base + 0x4000);
bootstrap_pc = 0x40004000;
env->regs[9] = 0x40004000 + kernel_size;
}
env->regs[8] = 0x56902387; /* RAM init magic. */
if (kernel_cmdline && (kcmdline_len = strlen(kernel_cmdline))) {
if (kcmdline_len > 256) {
fprintf(stderr, "Too long CRIS kernel cmdline (max 256)\n");
exit(1);
}
pstrcpy_targphys(high, 256, kernel_cmdline);
/* Let the kernel know we are modifying the cmdline. */
env->regs[10] = 0x87109563;
env->regs[11] = high;
}
}
env->pc = bootstrap_pc;
printf ("pc =%x\n", env->pc);
printf ("ram size =%ld\n", ram_size);
}
QEMUMachine axisdev88_machine = {
.name = "axis-dev88",
.desc = "AXIS devboard 88",
.init = axisdev88_init,
.ram_require = 0x8000000,
};