qemu-e2k/hw/etraxfs_eth.c
aliguori 0ae18ceeaa Check NIC model in some NIC init functions (Mark McLoughlin)
Some NIC init functions are only called when that model is
the only valid model. In that case, it makes sense to use
qemu_check_nic_model() from the NIC init function itself.

Signed-off-by: Mark McLoughlin <markmc@redhat.com>
Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>



git-svn-id: svn://svn.savannah.nongnu.org/qemu/trunk@6286 c046a42c-6fe2-441c-8c8c-71466251a162
2009-01-13 19:39:36 +00:00

603 lines
13 KiB
C

/*
* QEMU ETRAX Ethernet Controller.
*
* Copyright (c) 2008 Edgar E. Iglesias, Axis Communications AB.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <stdio.h>
#include "hw.h"
#include "net.h"
#include "etraxfs_dma.h"
#define D(x)
/* Advertisement control register. */
#define ADVERTISE_10HALF 0x0020 /* Try for 10mbps half-duplex */
#define ADVERTISE_10FULL 0x0040 /* Try for 10mbps full-duplex */
#define ADVERTISE_100HALF 0x0080 /* Try for 100mbps half-duplex */
#define ADVERTISE_100FULL 0x0100 /* Try for 100mbps full-duplex */
/*
* The MDIO extensions in the TDK PHY model were reversed engineered from the
* linux driver (PHYID and Diagnostics reg).
* TODO: Add friendly names for the register nums.
*/
struct qemu_phy
{
uint32_t regs[32];
int link;
unsigned int (*read)(struct qemu_phy *phy, unsigned int req);
void (*write)(struct qemu_phy *phy, unsigned int req,
unsigned int data);
};
static unsigned int tdk_read(struct qemu_phy *phy, unsigned int req)
{
int regnum;
unsigned r = 0;
regnum = req & 0x1f;
switch (regnum) {
case 1:
if (!phy->link)
break;
/* MR1. */
/* Speeds and modes. */
r |= (1 << 13) | (1 << 14);
r |= (1 << 11) | (1 << 12);
r |= (1 << 5); /* Autoneg complete. */
r |= (1 << 3); /* Autoneg able. */
r |= (1 << 2); /* link. */
break;
case 5:
/* Link partner ability.
We are kind; always agree with whatever best mode
the guest advertises. */
r = 1 << 14; /* Success. */
/* Copy advertised modes. */
r |= phy->regs[4] & (15 << 5);
/* Autoneg support. */
r |= 1;
break;
case 18:
{
/* Diagnostics reg. */
int duplex = 0;
int speed_100 = 0;
if (!phy->link)
break;
/* Are we advertising 100 half or 100 duplex ? */
speed_100 = !!(phy->regs[4] & ADVERTISE_100HALF);
speed_100 |= !!(phy->regs[4] & ADVERTISE_100FULL);
/* Are we advertising 10 duplex or 100 duplex ? */
duplex = !!(phy->regs[4] & ADVERTISE_100FULL);
duplex |= !!(phy->regs[4] & ADVERTISE_10FULL);
r = (speed_100 << 10) | (duplex << 11);
}
break;
default:
r = phy->regs[regnum];
break;
}
D(printf("\n%s %x = reg[%d]\n", __func__, r, regnum));
return r;
}
static void
tdk_write(struct qemu_phy *phy, unsigned int req, unsigned int data)
{
int regnum;
regnum = req & 0x1f;
D(printf("%s reg[%d] = %x\n", __func__, regnum, data));
switch (regnum) {
default:
phy->regs[regnum] = data;
break;
}
}
static void
tdk_init(struct qemu_phy *phy)
{
phy->regs[0] = 0x3100;
/* PHY Id. */
phy->regs[2] = 0x0300;
phy->regs[3] = 0xe400;
/* Autonegotiation advertisement reg. */
phy->regs[4] = 0x01E1;
phy->link = 1;
phy->read = tdk_read;
phy->write = tdk_write;
}
struct qemu_mdio
{
/* bus. */
int mdc;
int mdio;
/* decoder. */
enum {
PREAMBLE,
SOF,
OPC,
ADDR,
REQ,
TURNAROUND,
DATA
} state;
unsigned int drive;
unsigned int cnt;
unsigned int addr;
unsigned int opc;
unsigned int req;
unsigned int data;
struct qemu_phy *devs[32];
};
static void
mdio_attach(struct qemu_mdio *bus, struct qemu_phy *phy, unsigned int addr)
{
bus->devs[addr & 0x1f] = phy;
}
#ifdef USE_THIS_DEAD_CODE
static void
mdio_detach(struct qemu_mdio *bus, struct qemu_phy *phy, unsigned int addr)
{
bus->devs[addr & 0x1f] = NULL;
}
#endif
static void mdio_read_req(struct qemu_mdio *bus)
{
struct qemu_phy *phy;
phy = bus->devs[bus->addr];
if (phy && phy->read)
bus->data = phy->read(phy, bus->req);
else
bus->data = 0xffff;
}
static void mdio_write_req(struct qemu_mdio *bus)
{
struct qemu_phy *phy;
phy = bus->devs[bus->addr];
if (phy && phy->write)
phy->write(phy, bus->req, bus->data);
}
static void mdio_cycle(struct qemu_mdio *bus)
{
bus->cnt++;
D(printf("mdc=%d mdio=%d state=%d cnt=%d drv=%d\n",
bus->mdc, bus->mdio, bus->state, bus->cnt, bus->drive));
#if 0
if (bus->mdc)
printf("%d", bus->mdio);
#endif
switch (bus->state)
{
case PREAMBLE:
if (bus->mdc) {
if (bus->cnt >= (32 * 2) && !bus->mdio) {
bus->cnt = 0;
bus->state = SOF;
bus->data = 0;
}
}
break;
case SOF:
if (bus->mdc) {
if (bus->mdio != 1)
printf("WARNING: no SOF\n");
if (bus->cnt == 1*2) {
bus->cnt = 0;
bus->opc = 0;
bus->state = OPC;
}
}
break;
case OPC:
if (bus->mdc) {
bus->opc <<= 1;
bus->opc |= bus->mdio & 1;
if (bus->cnt == 2*2) {
bus->cnt = 0;
bus->addr = 0;
bus->state = ADDR;
}
}
break;
case ADDR:
if (bus->mdc) {
bus->addr <<= 1;
bus->addr |= bus->mdio & 1;
if (bus->cnt == 5*2) {
bus->cnt = 0;
bus->req = 0;
bus->state = REQ;
}
}
break;
case REQ:
if (bus->mdc) {
bus->req <<= 1;
bus->req |= bus->mdio & 1;
if (bus->cnt == 5*2) {
bus->cnt = 0;
bus->state = TURNAROUND;
}
}
break;
case TURNAROUND:
if (bus->mdc && bus->cnt == 2*2) {
bus->mdio = 0;
bus->cnt = 0;
if (bus->opc == 2) {
bus->drive = 1;
mdio_read_req(bus);
bus->mdio = bus->data & 1;
}
bus->state = DATA;
}
break;
case DATA:
if (!bus->mdc) {
if (bus->drive) {
bus->mdio = !!(bus->data & (1 << 15));
bus->data <<= 1;
}
} else {
if (!bus->drive) {
bus->data <<= 1;
bus->data |= bus->mdio;
}
if (bus->cnt == 16 * 2) {
bus->cnt = 0;
bus->state = PREAMBLE;
if (!bus->drive)
mdio_write_req(bus);
bus->drive = 0;
}
}
break;
default:
break;
}
}
/* ETRAX-FS Ethernet MAC block starts here. */
#define RW_MA0_LO 0x00
#define RW_MA0_HI 0x01
#define RW_MA1_LO 0x02
#define RW_MA1_HI 0x03
#define RW_GA_LO 0x04
#define RW_GA_HI 0x05
#define RW_GEN_CTRL 0x06
#define RW_REC_CTRL 0x07
#define RW_TR_CTRL 0x08
#define RW_CLR_ERR 0x09
#define RW_MGM_CTRL 0x0a
#define R_STAT 0x0b
#define FS_ETH_MAX_REGS 0x17
struct fs_eth
{
CPUState *env;
qemu_irq *irq;
VLANClientState *vc;
int ethregs;
/* Two addrs in the filter. */
uint8_t macaddr[2][6];
uint32_t regs[FS_ETH_MAX_REGS];
struct etraxfs_dma_client *dma_out;
struct etraxfs_dma_client *dma_in;
/* MDIO bus. */
struct qemu_mdio mdio_bus;
unsigned int phyaddr;
int duplex_mismatch;
/* PHY. */
struct qemu_phy phy;
};
static void eth_validate_duplex(struct fs_eth *eth)
{
struct qemu_phy *phy;
unsigned int phy_duplex;
unsigned int mac_duplex;
int new_mm = 0;
phy = eth->mdio_bus.devs[eth->phyaddr];
phy_duplex = !!(phy->read(phy, 18) & (1 << 11));
mac_duplex = !!(eth->regs[RW_REC_CTRL] & 128);
if (mac_duplex != phy_duplex)
new_mm = 1;
if (eth->regs[RW_GEN_CTRL] & 1) {
if (new_mm != eth->duplex_mismatch) {
if (new_mm)
printf("HW: WARNING "
"ETH duplex mismatch MAC=%d PHY=%d\n",
mac_duplex, phy_duplex);
else
printf("HW: ETH duplex ok.\n");
}
eth->duplex_mismatch = new_mm;
}
}
static uint32_t eth_readl (void *opaque, target_phys_addr_t addr)
{
struct fs_eth *eth = opaque;
uint32_t r = 0;
addr >>= 2;
switch (addr) {
case R_STAT:
r = eth->mdio_bus.mdio & 1;
break;
default:
r = eth->regs[addr];
D(printf ("%s %x\n", __func__, addr * 4));
break;
}
return r;
}
static void eth_update_ma(struct fs_eth *eth, int ma)
{
int reg;
int i = 0;
ma &= 1;
reg = RW_MA0_LO;
if (ma)
reg = RW_MA1_LO;
eth->macaddr[ma][i++] = eth->regs[reg];
eth->macaddr[ma][i++] = eth->regs[reg] >> 8;
eth->macaddr[ma][i++] = eth->regs[reg] >> 16;
eth->macaddr[ma][i++] = eth->regs[reg] >> 24;
eth->macaddr[ma][i++] = eth->regs[reg + 4];
eth->macaddr[ma][i++] = eth->regs[reg + 4] >> 8;
D(printf("set mac%d=%x.%x.%x.%x.%x.%x\n", ma,
eth->macaddr[ma][0], eth->macaddr[ma][1],
eth->macaddr[ma][2], eth->macaddr[ma][3],
eth->macaddr[ma][4], eth->macaddr[ma][5]));
}
static void
eth_writel (void *opaque, target_phys_addr_t addr, uint32_t value)
{
struct fs_eth *eth = opaque;
addr >>= 2;
switch (addr)
{
case RW_MA0_LO:
case RW_MA0_HI:
eth->regs[addr] = value;
eth_update_ma(eth, 0);
break;
case RW_MA1_LO:
case RW_MA1_HI:
eth->regs[addr] = value;
eth_update_ma(eth, 1);
break;
case RW_MGM_CTRL:
/* Attach an MDIO/PHY abstraction. */
if (value & 2)
eth->mdio_bus.mdio = value & 1;
if (eth->mdio_bus.mdc != (value & 4)) {
mdio_cycle(&eth->mdio_bus);
eth_validate_duplex(eth);
}
eth->mdio_bus.mdc = !!(value & 4);
break;
case RW_REC_CTRL:
eth->regs[addr] = value;
eth_validate_duplex(eth);
break;
default:
eth->regs[addr] = value;
D(printf ("%s %x %x\n",
__func__, addr, value));
break;
}
}
/* The ETRAX FS has a groupt address table (GAT) which works like a k=1 bloom
filter dropping group addresses we have not joined. The filter has 64
bits (m). The has function is a simple nible xor of the group addr. */
static int eth_match_groupaddr(struct fs_eth *eth, const unsigned char *sa)
{
unsigned int hsh;
int m_individual = eth->regs[RW_REC_CTRL] & 4;
int match;
/* First bit on the wire of a MAC address signals multicast or
physical address. */
if (!m_individual && !sa[0] & 1)
return 0;
/* Calculate the hash index for the GA registers. */
hsh = 0;
hsh ^= (*sa) & 0x3f;
hsh ^= ((*sa) >> 6) & 0x03;
++sa;
hsh ^= ((*sa) << 2) & 0x03c;
hsh ^= ((*sa) >> 4) & 0xf;
++sa;
hsh ^= ((*sa) << 4) & 0x30;
hsh ^= ((*sa) >> 2) & 0x3f;
++sa;
hsh ^= (*sa) & 0x3f;
hsh ^= ((*sa) >> 6) & 0x03;
++sa;
hsh ^= ((*sa) << 2) & 0x03c;
hsh ^= ((*sa) >> 4) & 0xf;
++sa;
hsh ^= ((*sa) << 4) & 0x30;
hsh ^= ((*sa) >> 2) & 0x3f;
hsh &= 63;
if (hsh > 31)
match = eth->regs[RW_GA_HI] & (1 << (hsh - 32));
else
match = eth->regs[RW_GA_LO] & (1 << hsh);
D(printf("hsh=%x ga=%x.%x mtch=%d\n", hsh,
eth->regs[RW_GA_HI], eth->regs[RW_GA_LO], match));
return match;
}
static int eth_can_receive(void *opaque)
{
return 1;
}
static void eth_receive(void *opaque, const uint8_t *buf, int size)
{
unsigned char sa_bcast[6] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
struct fs_eth *eth = opaque;
int use_ma0 = eth->regs[RW_REC_CTRL] & 1;
int use_ma1 = eth->regs[RW_REC_CTRL] & 2;
int r_bcast = eth->regs[RW_REC_CTRL] & 8;
if (size < 12)
return;
D(printf("%x.%x.%x.%x.%x.%x ma=%d %d bc=%d\n",
buf[0], buf[1], buf[2], buf[3], buf[4], buf[5],
use_ma0, use_ma1, r_bcast));
/* Does the frame get through the address filters? */
if ((!use_ma0 || memcmp(buf, eth->macaddr[0], 6))
&& (!use_ma1 || memcmp(buf, eth->macaddr[1], 6))
&& (!r_bcast || memcmp(buf, sa_bcast, 6))
&& !eth_match_groupaddr(eth, buf))
return;
/* FIXME: Find another way to pass on the fake csum. */
etraxfs_dmac_input(eth->dma_in, (void *)buf, size + 4, 1);
}
static int eth_tx_push(void *opaque, unsigned char *buf, int len)
{
struct fs_eth *eth = opaque;
D(printf("%s buf=%p len=%d\n", __func__, buf, len));
qemu_send_packet(eth->vc, buf, len);
return len;
}
static void eth_set_link(VLANClientState *vc)
{
struct fs_eth *eth = vc->opaque;
D(printf("%s %d\n", __func__, vc->link_down));
eth->phy.link = !vc->link_down;
}
static CPUReadMemoryFunc *eth_read[] = {
NULL, NULL,
&eth_readl,
};
static CPUWriteMemoryFunc *eth_write[] = {
NULL, NULL,
&eth_writel,
};
void *etraxfs_eth_init(NICInfo *nd, CPUState *env,
qemu_irq *irq, target_phys_addr_t base, int phyaddr)
{
struct etraxfs_dma_client *dma = NULL;
struct fs_eth *eth = NULL;
qemu_check_nic_model(nd, "fseth");
dma = qemu_mallocz(sizeof *dma * 2);
if (!dma)
return NULL;
eth = qemu_mallocz(sizeof *eth);
if (!eth)
goto err;
dma[0].client.push = eth_tx_push;
dma[0].client.opaque = eth;
dma[1].client.opaque = eth;
dma[1].client.pull = NULL;
eth->env = env;
eth->irq = irq;
eth->dma_out = dma;
eth->dma_in = dma + 1;
/* Connect the phy. */
eth->phyaddr = phyaddr & 0x1f;
tdk_init(&eth->phy);
mdio_attach(&eth->mdio_bus, &eth->phy, eth->phyaddr);
eth->ethregs = cpu_register_io_memory(0, eth_read, eth_write, eth);
cpu_register_physical_memory (base, 0x5c, eth->ethregs);
eth->vc = qemu_new_vlan_client(nd->vlan, nd->model, nd->name,
eth_receive, eth_can_receive, eth);
eth->vc->opaque = eth;
eth->vc->link_status_changed = eth_set_link;
return dma;
err:
qemu_free(eth);
qemu_free(dma);
return NULL;
}