qemu-e2k/arch_init.c
Michael Walle 81ea0e1304 LatticeMico32 target support
This patch adds support for the LatticeMico32 softcore processor by Lattice
Semiconductor.

Signed-off-by: Michael Walle <michael@walle.cc>
Signed-off-by: Edgar E. Iglesias <edgar.iglesias@gmail.com>
2011-03-07 13:42:36 +01:00

729 lines
18 KiB
C

/*
* QEMU System Emulator
*
* Copyright (c) 2003-2008 Fabrice Bellard
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <stdint.h>
#include <stdarg.h>
#include <stdlib.h>
#ifndef _WIN32
#include <sys/types.h>
#include <sys/mman.h>
#endif
#include "config.h"
#include "monitor.h"
#include "sysemu.h"
#include "arch_init.h"
#include "audio/audio.h"
#include "hw/pc.h"
#include "hw/pci.h"
#include "hw/audiodev.h"
#include "kvm.h"
#include "migration.h"
#include "net.h"
#include "gdbstub.h"
#include "hw/smbios.h"
#ifdef TARGET_SPARC
int graphic_width = 1024;
int graphic_height = 768;
int graphic_depth = 8;
#else
int graphic_width = 800;
int graphic_height = 600;
int graphic_depth = 15;
#endif
const char arch_config_name[] = CONFIG_QEMU_CONFDIR "/target-" TARGET_ARCH ".conf";
#if defined(TARGET_ALPHA)
#define QEMU_ARCH QEMU_ARCH_ALPHA
#elif defined(TARGET_ARM)
#define QEMU_ARCH QEMU_ARCH_ARM
#elif defined(TARGET_CRIS)
#define QEMU_ARCH QEMU_ARCH_CRIS
#elif defined(TARGET_I386)
#define QEMU_ARCH QEMU_ARCH_I386
#elif defined(TARGET_M68K)
#define QEMU_ARCH QEMU_ARCH_M68K
#elif defined(TARGET_LM32)
#define QEMU_ARCH QEMU_ARCH_LM32
#elif defined(TARGET_MICROBLAZE)
#define QEMU_ARCH QEMU_ARCH_MICROBLAZE
#elif defined(TARGET_MIPS)
#define QEMU_ARCH QEMU_ARCH_MIPS
#elif defined(TARGET_PPC)
#define QEMU_ARCH QEMU_ARCH_PPC
#elif defined(TARGET_S390X)
#define QEMU_ARCH QEMU_ARCH_S390X
#elif defined(TARGET_SH4)
#define QEMU_ARCH QEMU_ARCH_SH4
#elif defined(TARGET_SPARC)
#define QEMU_ARCH QEMU_ARCH_SPARC
#endif
const uint32_t arch_type = QEMU_ARCH;
/***********************************************************/
/* ram save/restore */
#define RAM_SAVE_FLAG_FULL 0x01 /* Obsolete, not used anymore */
#define RAM_SAVE_FLAG_COMPRESS 0x02
#define RAM_SAVE_FLAG_MEM_SIZE 0x04
#define RAM_SAVE_FLAG_PAGE 0x08
#define RAM_SAVE_FLAG_EOS 0x10
#define RAM_SAVE_FLAG_CONTINUE 0x20
static int is_dup_page(uint8_t *page, uint8_t ch)
{
uint32_t val = ch << 24 | ch << 16 | ch << 8 | ch;
uint32_t *array = (uint32_t *)page;
int i;
for (i = 0; i < (TARGET_PAGE_SIZE / 4); i++) {
if (array[i] != val) {
return 0;
}
}
return 1;
}
static RAMBlock *last_block;
static ram_addr_t last_offset;
static int ram_save_block(QEMUFile *f)
{
RAMBlock *block = last_block;
ram_addr_t offset = last_offset;
ram_addr_t current_addr;
int bytes_sent = 0;
if (!block)
block = QLIST_FIRST(&ram_list.blocks);
current_addr = block->offset + offset;
do {
if (cpu_physical_memory_get_dirty(current_addr, MIGRATION_DIRTY_FLAG)) {
uint8_t *p;
int cont = (block == last_block) ? RAM_SAVE_FLAG_CONTINUE : 0;
cpu_physical_memory_reset_dirty(current_addr,
current_addr + TARGET_PAGE_SIZE,
MIGRATION_DIRTY_FLAG);
p = block->host + offset;
if (is_dup_page(p, *p)) {
qemu_put_be64(f, offset | cont | RAM_SAVE_FLAG_COMPRESS);
if (!cont) {
qemu_put_byte(f, strlen(block->idstr));
qemu_put_buffer(f, (uint8_t *)block->idstr,
strlen(block->idstr));
}
qemu_put_byte(f, *p);
bytes_sent = 1;
} else {
qemu_put_be64(f, offset | cont | RAM_SAVE_FLAG_PAGE);
if (!cont) {
qemu_put_byte(f, strlen(block->idstr));
qemu_put_buffer(f, (uint8_t *)block->idstr,
strlen(block->idstr));
}
qemu_put_buffer(f, p, TARGET_PAGE_SIZE);
bytes_sent = TARGET_PAGE_SIZE;
}
break;
}
offset += TARGET_PAGE_SIZE;
if (offset >= block->length) {
offset = 0;
block = QLIST_NEXT(block, next);
if (!block)
block = QLIST_FIRST(&ram_list.blocks);
}
current_addr = block->offset + offset;
} while (current_addr != last_block->offset + last_offset);
last_block = block;
last_offset = offset;
return bytes_sent;
}
static uint64_t bytes_transferred;
static ram_addr_t ram_save_remaining(void)
{
RAMBlock *block;
ram_addr_t count = 0;
QLIST_FOREACH(block, &ram_list.blocks, next) {
ram_addr_t addr;
for (addr = block->offset; addr < block->offset + block->length;
addr += TARGET_PAGE_SIZE) {
if (cpu_physical_memory_get_dirty(addr, MIGRATION_DIRTY_FLAG)) {
count++;
}
}
}
return count;
}
uint64_t ram_bytes_remaining(void)
{
return ram_save_remaining() * TARGET_PAGE_SIZE;
}
uint64_t ram_bytes_transferred(void)
{
return bytes_transferred;
}
uint64_t ram_bytes_total(void)
{
RAMBlock *block;
uint64_t total = 0;
QLIST_FOREACH(block, &ram_list.blocks, next)
total += block->length;
return total;
}
static int block_compar(const void *a, const void *b)
{
RAMBlock * const *ablock = a;
RAMBlock * const *bblock = b;
if ((*ablock)->offset < (*bblock)->offset) {
return -1;
} else if ((*ablock)->offset > (*bblock)->offset) {
return 1;
}
return 0;
}
static void sort_ram_list(void)
{
RAMBlock *block, *nblock, **blocks;
int n;
n = 0;
QLIST_FOREACH(block, &ram_list.blocks, next) {
++n;
}
blocks = qemu_malloc(n * sizeof *blocks);
n = 0;
QLIST_FOREACH_SAFE(block, &ram_list.blocks, next, nblock) {
blocks[n++] = block;
QLIST_REMOVE(block, next);
}
qsort(blocks, n, sizeof *blocks, block_compar);
while (--n >= 0) {
QLIST_INSERT_HEAD(&ram_list.blocks, blocks[n], next);
}
qemu_free(blocks);
}
int ram_save_live(Monitor *mon, QEMUFile *f, int stage, void *opaque)
{
ram_addr_t addr;
uint64_t bytes_transferred_last;
double bwidth = 0;
uint64_t expected_time = 0;
if (stage < 0) {
cpu_physical_memory_set_dirty_tracking(0);
return 0;
}
if (cpu_physical_sync_dirty_bitmap(0, TARGET_PHYS_ADDR_MAX) != 0) {
qemu_file_set_error(f);
return 0;
}
if (stage == 1) {
RAMBlock *block;
bytes_transferred = 0;
last_block = NULL;
last_offset = 0;
sort_ram_list();
/* Make sure all dirty bits are set */
QLIST_FOREACH(block, &ram_list.blocks, next) {
for (addr = block->offset; addr < block->offset + block->length;
addr += TARGET_PAGE_SIZE) {
if (!cpu_physical_memory_get_dirty(addr,
MIGRATION_DIRTY_FLAG)) {
cpu_physical_memory_set_dirty(addr);
}
}
}
/* Enable dirty memory tracking */
cpu_physical_memory_set_dirty_tracking(1);
qemu_put_be64(f, ram_bytes_total() | RAM_SAVE_FLAG_MEM_SIZE);
QLIST_FOREACH(block, &ram_list.blocks, next) {
qemu_put_byte(f, strlen(block->idstr));
qemu_put_buffer(f, (uint8_t *)block->idstr, strlen(block->idstr));
qemu_put_be64(f, block->length);
}
}
bytes_transferred_last = bytes_transferred;
bwidth = qemu_get_clock_ns(rt_clock);
while (!qemu_file_rate_limit(f)) {
int bytes_sent;
bytes_sent = ram_save_block(f);
bytes_transferred += bytes_sent;
if (bytes_sent == 0) { /* no more blocks */
break;
}
}
bwidth = qemu_get_clock_ns(rt_clock) - bwidth;
bwidth = (bytes_transferred - bytes_transferred_last) / bwidth;
/* if we haven't transferred anything this round, force expected_time to a
* a very high value, but without crashing */
if (bwidth == 0) {
bwidth = 0.000001;
}
/* try transferring iterative blocks of memory */
if (stage == 3) {
int bytes_sent;
/* flush all remaining blocks regardless of rate limiting */
while ((bytes_sent = ram_save_block(f)) != 0) {
bytes_transferred += bytes_sent;
}
cpu_physical_memory_set_dirty_tracking(0);
}
qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
expected_time = ram_save_remaining() * TARGET_PAGE_SIZE / bwidth;
return (stage == 2) && (expected_time <= migrate_max_downtime());
}
static inline void *host_from_stream_offset(QEMUFile *f,
ram_addr_t offset,
int flags)
{
static RAMBlock *block = NULL;
char id[256];
uint8_t len;
if (flags & RAM_SAVE_FLAG_CONTINUE) {
if (!block) {
fprintf(stderr, "Ack, bad migration stream!\n");
return NULL;
}
return block->host + offset;
}
len = qemu_get_byte(f);
qemu_get_buffer(f, (uint8_t *)id, len);
id[len] = 0;
QLIST_FOREACH(block, &ram_list.blocks, next) {
if (!strncmp(id, block->idstr, sizeof(id)))
return block->host + offset;
}
fprintf(stderr, "Can't find block %s!\n", id);
return NULL;
}
int ram_load(QEMUFile *f, void *opaque, int version_id)
{
ram_addr_t addr;
int flags;
if (version_id < 3 || version_id > 4) {
return -EINVAL;
}
do {
addr = qemu_get_be64(f);
flags = addr & ~TARGET_PAGE_MASK;
addr &= TARGET_PAGE_MASK;
if (flags & RAM_SAVE_FLAG_MEM_SIZE) {
if (version_id == 3) {
if (addr != ram_bytes_total()) {
return -EINVAL;
}
} else {
/* Synchronize RAM block list */
char id[256];
ram_addr_t length;
ram_addr_t total_ram_bytes = addr;
while (total_ram_bytes) {
RAMBlock *block;
uint8_t len;
len = qemu_get_byte(f);
qemu_get_buffer(f, (uint8_t *)id, len);
id[len] = 0;
length = qemu_get_be64(f);
QLIST_FOREACH(block, &ram_list.blocks, next) {
if (!strncmp(id, block->idstr, sizeof(id))) {
if (block->length != length)
return -EINVAL;
break;
}
}
if (!block) {
fprintf(stderr, "Unknown ramblock \"%s\", cannot "
"accept migration\n", id);
return -EINVAL;
}
total_ram_bytes -= length;
}
}
}
if (flags & RAM_SAVE_FLAG_COMPRESS) {
void *host;
uint8_t ch;
if (version_id == 3)
host = qemu_get_ram_ptr(addr);
else
host = host_from_stream_offset(f, addr, flags);
if (!host) {
return -EINVAL;
}
ch = qemu_get_byte(f);
memset(host, ch, TARGET_PAGE_SIZE);
#ifndef _WIN32
if (ch == 0 &&
(!kvm_enabled() || kvm_has_sync_mmu())) {
qemu_madvise(host, TARGET_PAGE_SIZE, QEMU_MADV_DONTNEED);
}
#endif
} else if (flags & RAM_SAVE_FLAG_PAGE) {
void *host;
if (version_id == 3)
host = qemu_get_ram_ptr(addr);
else
host = host_from_stream_offset(f, addr, flags);
qemu_get_buffer(f, host, TARGET_PAGE_SIZE);
}
if (qemu_file_has_error(f)) {
return -EIO;
}
} while (!(flags & RAM_SAVE_FLAG_EOS));
return 0;
}
void qemu_service_io(void)
{
qemu_notify_event();
}
#ifdef HAS_AUDIO
struct soundhw {
const char *name;
const char *descr;
int enabled;
int isa;
union {
int (*init_isa) (qemu_irq *pic);
int (*init_pci) (PCIBus *bus);
} init;
};
static struct soundhw soundhw[] = {
#ifdef HAS_AUDIO_CHOICE
#if defined(TARGET_I386) || defined(TARGET_MIPS)
{
"pcspk",
"PC speaker",
0,
1,
{ .init_isa = pcspk_audio_init }
},
#endif
#ifdef CONFIG_SB16
{
"sb16",
"Creative Sound Blaster 16",
0,
1,
{ .init_isa = SB16_init }
},
#endif
#ifdef CONFIG_CS4231A
{
"cs4231a",
"CS4231A",
0,
1,
{ .init_isa = cs4231a_init }
},
#endif
#ifdef CONFIG_ADLIB
{
"adlib",
#ifdef HAS_YMF262
"Yamaha YMF262 (OPL3)",
#else
"Yamaha YM3812 (OPL2)",
#endif
0,
1,
{ .init_isa = Adlib_init }
},
#endif
#ifdef CONFIG_GUS
{
"gus",
"Gravis Ultrasound GF1",
0,
1,
{ .init_isa = GUS_init }
},
#endif
#ifdef CONFIG_AC97
{
"ac97",
"Intel 82801AA AC97 Audio",
0,
0,
{ .init_pci = ac97_init }
},
#endif
#ifdef CONFIG_ES1370
{
"es1370",
"ENSONIQ AudioPCI ES1370",
0,
0,
{ .init_pci = es1370_init }
},
#endif
#ifdef CONFIG_HDA
{
"hda",
"Intel HD Audio",
0,
0,
{ .init_pci = intel_hda_and_codec_init }
},
#endif
#endif /* HAS_AUDIO_CHOICE */
{ NULL, NULL, 0, 0, { NULL } }
};
void select_soundhw(const char *optarg)
{
struct soundhw *c;
if (*optarg == '?') {
show_valid_cards:
printf("Valid sound card names (comma separated):\n");
for (c = soundhw; c->name; ++c) {
printf ("%-11s %s\n", c->name, c->descr);
}
printf("\n-soundhw all will enable all of the above\n");
exit(*optarg != '?');
}
else {
size_t l;
const char *p;
char *e;
int bad_card = 0;
if (!strcmp(optarg, "all")) {
for (c = soundhw; c->name; ++c) {
c->enabled = 1;
}
return;
}
p = optarg;
while (*p) {
e = strchr(p, ',');
l = !e ? strlen(p) : (size_t) (e - p);
for (c = soundhw; c->name; ++c) {
if (!strncmp(c->name, p, l) && !c->name[l]) {
c->enabled = 1;
break;
}
}
if (!c->name) {
if (l > 80) {
fprintf(stderr,
"Unknown sound card name (too big to show)\n");
}
else {
fprintf(stderr, "Unknown sound card name `%.*s'\n",
(int) l, p);
}
bad_card = 1;
}
p += l + (e != NULL);
}
if (bad_card) {
goto show_valid_cards;
}
}
}
void audio_init(qemu_irq *isa_pic, PCIBus *pci_bus)
{
struct soundhw *c;
for (c = soundhw; c->name; ++c) {
if (c->enabled) {
if (c->isa) {
if (isa_pic) {
c->init.init_isa(isa_pic);
}
} else {
if (pci_bus) {
c->init.init_pci(pci_bus);
}
}
}
}
}
#else
void select_soundhw(const char *optarg)
{
}
void audio_init(qemu_irq *isa_pic, PCIBus *pci_bus)
{
}
#endif
int qemu_uuid_parse(const char *str, uint8_t *uuid)
{
int ret;
if (strlen(str) != 36) {
return -1;
}
ret = sscanf(str, UUID_FMT, &uuid[0], &uuid[1], &uuid[2], &uuid[3],
&uuid[4], &uuid[5], &uuid[6], &uuid[7], &uuid[8], &uuid[9],
&uuid[10], &uuid[11], &uuid[12], &uuid[13], &uuid[14],
&uuid[15]);
if (ret != 16) {
return -1;
}
#ifdef TARGET_I386
smbios_add_field(1, offsetof(struct smbios_type_1, uuid), 16, uuid);
#endif
return 0;
}
void do_acpitable_option(const char *optarg)
{
#ifdef TARGET_I386
if (acpi_table_add(optarg) < 0) {
fprintf(stderr, "Wrong acpi table provided\n");
exit(1);
}
#endif
}
void do_smbios_option(const char *optarg)
{
#ifdef TARGET_I386
if (smbios_entry_add(optarg) < 0) {
fprintf(stderr, "Wrong smbios provided\n");
exit(1);
}
#endif
}
void cpudef_init(void)
{
#if defined(cpudef_setup)
cpudef_setup(); /* parse cpu definitions in target config file */
#endif
}
int audio_available(void)
{
#ifdef HAS_AUDIO
return 1;
#else
return 0;
#endif
}
int kvm_available(void)
{
#ifdef CONFIG_KVM
return 1;
#else
return 0;
#endif
}
int xen_available(void)
{
#ifdef CONFIG_XEN
return 1;
#else
return 0;
#endif
}