e414270000
The datasheet does not say what happens when interrupt was asserted (ICR.INT_ASSERT=1) and auto mask is *not* active. However, section of 13.3.27 the PCIe* GbE Controllers Open Source Software Developer’s Manual, which were written for older devices, namely 631xESB/632xESB, 82563EB/82564EB, 82571EB/82572EI & 82573E/82573V/82573L, does say: > If IMS = 0b, then the ICR register is always clear-on-read. If IMS is > not 0b, but some ICR bit is set where the corresponding IMS bit is not > set, then a read does not clear the ICR register. For example, if > IMS = 10101010b and ICR = 01010101b, then a read to the ICR register > does not clear it. If IMS = 10101010b and ICR = 0101011b, then a read > to the ICR register clears it entirely (ICR.INT_ASSERTED = 1b). Linux does no longer activate auto mask since commit 0a8047ac68e50e4ccbadcfc6b6b070805b976885 and the real hardware clears ICR even in such a case so we also should do so. Buglink: https://bugzilla.redhat.com/show_bug.cgi?id=1707441 Signed-off-by: Andrew Melnychenko <andrew@daynix.com> Signed-off-by: Akihiko Odaki <akihiko.odaki@daynix.com> Signed-off-by: Jason Wang <jasowang@redhat.com>
3577 lines
104 KiB
C
3577 lines
104 KiB
C
/*
|
||
* Core code for QEMU e1000e emulation
|
||
*
|
||
* Software developer's manuals:
|
||
* http://www.intel.com/content/dam/doc/datasheet/82574l-gbe-controller-datasheet.pdf
|
||
*
|
||
* Copyright (c) 2015 Ravello Systems LTD (http://ravellosystems.com)
|
||
* Developed by Daynix Computing LTD (http://www.daynix.com)
|
||
*
|
||
* Authors:
|
||
* Dmitry Fleytman <dmitry@daynix.com>
|
||
* Leonid Bloch <leonid@daynix.com>
|
||
* Yan Vugenfirer <yan@daynix.com>
|
||
*
|
||
* Based on work done by:
|
||
* Nir Peleg, Tutis Systems Ltd. for Qumranet Inc.
|
||
* Copyright (c) 2008 Qumranet
|
||
* Based on work done by:
|
||
* Copyright (c) 2007 Dan Aloni
|
||
* Copyright (c) 2004 Antony T Curtis
|
||
*
|
||
* This library is free software; you can redistribute it and/or
|
||
* modify it under the terms of the GNU Lesser General Public
|
||
* License as published by the Free Software Foundation; either
|
||
* version 2.1 of the License, or (at your option) any later version.
|
||
*
|
||
* This library is distributed in the hope that it will be useful,
|
||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||
* Lesser General Public License for more details.
|
||
*
|
||
* You should have received a copy of the GNU Lesser General Public
|
||
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
|
||
*/
|
||
|
||
#include "qemu/osdep.h"
|
||
#include "qemu/log.h"
|
||
#include "net/net.h"
|
||
#include "net/tap.h"
|
||
#include "hw/net/mii.h"
|
||
#include "hw/pci/msi.h"
|
||
#include "hw/pci/msix.h"
|
||
#include "sysemu/runstate.h"
|
||
|
||
#include "net_tx_pkt.h"
|
||
#include "net_rx_pkt.h"
|
||
|
||
#include "e1000_common.h"
|
||
#include "e1000x_common.h"
|
||
#include "e1000e_core.h"
|
||
|
||
#include "trace.h"
|
||
|
||
/* No more then 7813 interrupts per second according to spec 10.2.4.2 */
|
||
#define E1000E_MIN_XITR (500)
|
||
|
||
#define E1000E_MAX_TX_FRAGS (64)
|
||
|
||
union e1000_rx_desc_union {
|
||
struct e1000_rx_desc legacy;
|
||
union e1000_rx_desc_extended extended;
|
||
union e1000_rx_desc_packet_split packet_split;
|
||
};
|
||
|
||
static ssize_t
|
||
e1000e_receive_internal(E1000ECore *core, const struct iovec *iov, int iovcnt,
|
||
bool has_vnet);
|
||
|
||
static inline void
|
||
e1000e_set_interrupt_cause(E1000ECore *core, uint32_t val);
|
||
|
||
static void e1000e_reset(E1000ECore *core, bool sw);
|
||
|
||
static inline void
|
||
e1000e_process_ts_option(E1000ECore *core, struct e1000_tx_desc *dp)
|
||
{
|
||
if (le32_to_cpu(dp->upper.data) & E1000_TXD_EXTCMD_TSTAMP) {
|
||
trace_e1000e_wrn_no_ts_support();
|
||
}
|
||
}
|
||
|
||
static inline void
|
||
e1000e_process_snap_option(E1000ECore *core, uint32_t cmd_and_length)
|
||
{
|
||
if (cmd_and_length & E1000_TXD_CMD_SNAP) {
|
||
trace_e1000e_wrn_no_snap_support();
|
||
}
|
||
}
|
||
|
||
static inline void
|
||
e1000e_raise_legacy_irq(E1000ECore *core)
|
||
{
|
||
trace_e1000e_irq_legacy_notify(true);
|
||
e1000x_inc_reg_if_not_full(core->mac, IAC);
|
||
pci_set_irq(core->owner, 1);
|
||
}
|
||
|
||
static inline void
|
||
e1000e_lower_legacy_irq(E1000ECore *core)
|
||
{
|
||
trace_e1000e_irq_legacy_notify(false);
|
||
pci_set_irq(core->owner, 0);
|
||
}
|
||
|
||
static inline void
|
||
e1000e_intrmgr_rearm_timer(E1000IntrDelayTimer *timer)
|
||
{
|
||
int64_t delay_ns = (int64_t) timer->core->mac[timer->delay_reg] *
|
||
timer->delay_resolution_ns;
|
||
|
||
trace_e1000e_irq_rearm_timer(timer->delay_reg << 2, delay_ns);
|
||
|
||
timer_mod(timer->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + delay_ns);
|
||
|
||
timer->running = true;
|
||
}
|
||
|
||
static void
|
||
e1000e_intmgr_timer_resume(E1000IntrDelayTimer *timer)
|
||
{
|
||
if (timer->running) {
|
||
e1000e_intrmgr_rearm_timer(timer);
|
||
}
|
||
}
|
||
|
||
static void
|
||
e1000e_intmgr_timer_pause(E1000IntrDelayTimer *timer)
|
||
{
|
||
if (timer->running) {
|
||
timer_del(timer->timer);
|
||
}
|
||
}
|
||
|
||
static inline void
|
||
e1000e_intrmgr_stop_timer(E1000IntrDelayTimer *timer)
|
||
{
|
||
if (timer->running) {
|
||
timer_del(timer->timer);
|
||
timer->running = false;
|
||
}
|
||
}
|
||
|
||
static inline void
|
||
e1000e_intrmgr_fire_delayed_interrupts(E1000ECore *core)
|
||
{
|
||
trace_e1000e_irq_fire_delayed_interrupts();
|
||
e1000e_set_interrupt_cause(core, 0);
|
||
}
|
||
|
||
static void
|
||
e1000e_intrmgr_on_timer(void *opaque)
|
||
{
|
||
E1000IntrDelayTimer *timer = opaque;
|
||
|
||
trace_e1000e_irq_throttling_timer(timer->delay_reg << 2);
|
||
|
||
timer->running = false;
|
||
e1000e_intrmgr_fire_delayed_interrupts(timer->core);
|
||
}
|
||
|
||
static void
|
||
e1000e_intrmgr_on_throttling_timer(void *opaque)
|
||
{
|
||
E1000IntrDelayTimer *timer = opaque;
|
||
|
||
timer->running = false;
|
||
|
||
if (timer->core->mac[IMS] & timer->core->mac[ICR]) {
|
||
if (msi_enabled(timer->core->owner)) {
|
||
trace_e1000e_irq_msi_notify_postponed();
|
||
msi_notify(timer->core->owner, 0);
|
||
} else {
|
||
trace_e1000e_irq_legacy_notify_postponed();
|
||
e1000e_raise_legacy_irq(timer->core);
|
||
}
|
||
}
|
||
}
|
||
|
||
static void
|
||
e1000e_intrmgr_on_msix_throttling_timer(void *opaque)
|
||
{
|
||
E1000IntrDelayTimer *timer = opaque;
|
||
int idx = timer - &timer->core->eitr[0];
|
||
|
||
timer->running = false;
|
||
|
||
trace_e1000e_irq_msix_notify_postponed_vec(idx);
|
||
msix_notify(timer->core->owner, idx);
|
||
}
|
||
|
||
static void
|
||
e1000e_intrmgr_initialize_all_timers(E1000ECore *core, bool create)
|
||
{
|
||
int i;
|
||
|
||
core->radv.delay_reg = RADV;
|
||
core->rdtr.delay_reg = RDTR;
|
||
core->raid.delay_reg = RAID;
|
||
core->tadv.delay_reg = TADV;
|
||
core->tidv.delay_reg = TIDV;
|
||
|
||
core->radv.delay_resolution_ns = E1000_INTR_DELAY_NS_RES;
|
||
core->rdtr.delay_resolution_ns = E1000_INTR_DELAY_NS_RES;
|
||
core->raid.delay_resolution_ns = E1000_INTR_DELAY_NS_RES;
|
||
core->tadv.delay_resolution_ns = E1000_INTR_DELAY_NS_RES;
|
||
core->tidv.delay_resolution_ns = E1000_INTR_DELAY_NS_RES;
|
||
|
||
core->radv.core = core;
|
||
core->rdtr.core = core;
|
||
core->raid.core = core;
|
||
core->tadv.core = core;
|
||
core->tidv.core = core;
|
||
|
||
core->itr.core = core;
|
||
core->itr.delay_reg = ITR;
|
||
core->itr.delay_resolution_ns = E1000_INTR_THROTTLING_NS_RES;
|
||
|
||
for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) {
|
||
core->eitr[i].core = core;
|
||
core->eitr[i].delay_reg = EITR + i;
|
||
core->eitr[i].delay_resolution_ns = E1000_INTR_THROTTLING_NS_RES;
|
||
}
|
||
|
||
if (!create) {
|
||
return;
|
||
}
|
||
|
||
core->radv.timer =
|
||
timer_new_ns(QEMU_CLOCK_VIRTUAL, e1000e_intrmgr_on_timer, &core->radv);
|
||
core->rdtr.timer =
|
||
timer_new_ns(QEMU_CLOCK_VIRTUAL, e1000e_intrmgr_on_timer, &core->rdtr);
|
||
core->raid.timer =
|
||
timer_new_ns(QEMU_CLOCK_VIRTUAL, e1000e_intrmgr_on_timer, &core->raid);
|
||
|
||
core->tadv.timer =
|
||
timer_new_ns(QEMU_CLOCK_VIRTUAL, e1000e_intrmgr_on_timer, &core->tadv);
|
||
core->tidv.timer =
|
||
timer_new_ns(QEMU_CLOCK_VIRTUAL, e1000e_intrmgr_on_timer, &core->tidv);
|
||
|
||
core->itr.timer = timer_new_ns(QEMU_CLOCK_VIRTUAL,
|
||
e1000e_intrmgr_on_throttling_timer,
|
||
&core->itr);
|
||
|
||
for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) {
|
||
core->eitr[i].timer =
|
||
timer_new_ns(QEMU_CLOCK_VIRTUAL,
|
||
e1000e_intrmgr_on_msix_throttling_timer,
|
||
&core->eitr[i]);
|
||
}
|
||
}
|
||
|
||
static inline void
|
||
e1000e_intrmgr_stop_delay_timers(E1000ECore *core)
|
||
{
|
||
e1000e_intrmgr_stop_timer(&core->radv);
|
||
e1000e_intrmgr_stop_timer(&core->rdtr);
|
||
e1000e_intrmgr_stop_timer(&core->raid);
|
||
e1000e_intrmgr_stop_timer(&core->tidv);
|
||
e1000e_intrmgr_stop_timer(&core->tadv);
|
||
}
|
||
|
||
static bool
|
||
e1000e_intrmgr_delay_rx_causes(E1000ECore *core, uint32_t *causes)
|
||
{
|
||
uint32_t delayable_causes;
|
||
uint32_t rdtr = core->mac[RDTR];
|
||
uint32_t radv = core->mac[RADV];
|
||
uint32_t raid = core->mac[RAID];
|
||
|
||
if (msix_enabled(core->owner)) {
|
||
return false;
|
||
}
|
||
|
||
delayable_causes = E1000_ICR_RXQ0 |
|
||
E1000_ICR_RXQ1 |
|
||
E1000_ICR_RXT0;
|
||
|
||
if (!(core->mac[RFCTL] & E1000_RFCTL_ACK_DIS)) {
|
||
delayable_causes |= E1000_ICR_ACK;
|
||
}
|
||
|
||
/* Clean up all causes that may be delayed */
|
||
core->delayed_causes |= *causes & delayable_causes;
|
||
*causes &= ~delayable_causes;
|
||
|
||
/*
|
||
* Check if delayed RX interrupts disabled by client
|
||
* or if there are causes that cannot be delayed
|
||
*/
|
||
if ((rdtr == 0) || (*causes != 0)) {
|
||
return false;
|
||
}
|
||
|
||
/*
|
||
* Check if delayed RX ACK interrupts disabled by client
|
||
* and there is an ACK packet received
|
||
*/
|
||
if ((raid == 0) && (core->delayed_causes & E1000_ICR_ACK)) {
|
||
return false;
|
||
}
|
||
|
||
/* All causes delayed */
|
||
e1000e_intrmgr_rearm_timer(&core->rdtr);
|
||
|
||
if (!core->radv.running && (radv != 0)) {
|
||
e1000e_intrmgr_rearm_timer(&core->radv);
|
||
}
|
||
|
||
if (!core->raid.running && (core->delayed_causes & E1000_ICR_ACK)) {
|
||
e1000e_intrmgr_rearm_timer(&core->raid);
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
static bool
|
||
e1000e_intrmgr_delay_tx_causes(E1000ECore *core, uint32_t *causes)
|
||
{
|
||
static const uint32_t delayable_causes = E1000_ICR_TXQ0 |
|
||
E1000_ICR_TXQ1 |
|
||
E1000_ICR_TXQE |
|
||
E1000_ICR_TXDW;
|
||
|
||
if (msix_enabled(core->owner)) {
|
||
return false;
|
||
}
|
||
|
||
/* Clean up all causes that may be delayed */
|
||
core->delayed_causes |= *causes & delayable_causes;
|
||
*causes &= ~delayable_causes;
|
||
|
||
/* If there are causes that cannot be delayed */
|
||
if (*causes != 0) {
|
||
return false;
|
||
}
|
||
|
||
/* All causes delayed */
|
||
e1000e_intrmgr_rearm_timer(&core->tidv);
|
||
|
||
if (!core->tadv.running && (core->mac[TADV] != 0)) {
|
||
e1000e_intrmgr_rearm_timer(&core->tadv);
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
static uint32_t
|
||
e1000e_intmgr_collect_delayed_causes(E1000ECore *core)
|
||
{
|
||
uint32_t res;
|
||
|
||
if (msix_enabled(core->owner)) {
|
||
assert(core->delayed_causes == 0);
|
||
return 0;
|
||
}
|
||
|
||
res = core->delayed_causes;
|
||
core->delayed_causes = 0;
|
||
|
||
e1000e_intrmgr_stop_delay_timers(core);
|
||
|
||
return res;
|
||
}
|
||
|
||
static void
|
||
e1000e_intrmgr_fire_all_timers(E1000ECore *core)
|
||
{
|
||
int i;
|
||
|
||
if (core->itr.running) {
|
||
timer_del(core->itr.timer);
|
||
e1000e_intrmgr_on_throttling_timer(&core->itr);
|
||
}
|
||
|
||
for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) {
|
||
if (core->eitr[i].running) {
|
||
timer_del(core->eitr[i].timer);
|
||
e1000e_intrmgr_on_msix_throttling_timer(&core->eitr[i]);
|
||
}
|
||
}
|
||
}
|
||
|
||
static void
|
||
e1000e_intrmgr_resume(E1000ECore *core)
|
||
{
|
||
int i;
|
||
|
||
e1000e_intmgr_timer_resume(&core->radv);
|
||
e1000e_intmgr_timer_resume(&core->rdtr);
|
||
e1000e_intmgr_timer_resume(&core->raid);
|
||
e1000e_intmgr_timer_resume(&core->tidv);
|
||
e1000e_intmgr_timer_resume(&core->tadv);
|
||
|
||
e1000e_intmgr_timer_resume(&core->itr);
|
||
|
||
for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) {
|
||
e1000e_intmgr_timer_resume(&core->eitr[i]);
|
||
}
|
||
}
|
||
|
||
static void
|
||
e1000e_intrmgr_pause(E1000ECore *core)
|
||
{
|
||
int i;
|
||
|
||
e1000e_intmgr_timer_pause(&core->radv);
|
||
e1000e_intmgr_timer_pause(&core->rdtr);
|
||
e1000e_intmgr_timer_pause(&core->raid);
|
||
e1000e_intmgr_timer_pause(&core->tidv);
|
||
e1000e_intmgr_timer_pause(&core->tadv);
|
||
|
||
e1000e_intmgr_timer_pause(&core->itr);
|
||
|
||
for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) {
|
||
e1000e_intmgr_timer_pause(&core->eitr[i]);
|
||
}
|
||
}
|
||
|
||
static void
|
||
e1000e_intrmgr_reset(E1000ECore *core)
|
||
{
|
||
int i;
|
||
|
||
core->delayed_causes = 0;
|
||
|
||
e1000e_intrmgr_stop_delay_timers(core);
|
||
|
||
e1000e_intrmgr_stop_timer(&core->itr);
|
||
|
||
for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) {
|
||
e1000e_intrmgr_stop_timer(&core->eitr[i]);
|
||
}
|
||
}
|
||
|
||
static void
|
||
e1000e_intrmgr_pci_unint(E1000ECore *core)
|
||
{
|
||
int i;
|
||
|
||
timer_free(core->radv.timer);
|
||
timer_free(core->rdtr.timer);
|
||
timer_free(core->raid.timer);
|
||
|
||
timer_free(core->tadv.timer);
|
||
timer_free(core->tidv.timer);
|
||
|
||
timer_free(core->itr.timer);
|
||
|
||
for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) {
|
||
timer_free(core->eitr[i].timer);
|
||
}
|
||
}
|
||
|
||
static void
|
||
e1000e_intrmgr_pci_realize(E1000ECore *core)
|
||
{
|
||
e1000e_intrmgr_initialize_all_timers(core, true);
|
||
}
|
||
|
||
static inline bool
|
||
e1000e_rx_csum_enabled(E1000ECore *core)
|
||
{
|
||
return (core->mac[RXCSUM] & E1000_RXCSUM_PCSD) ? false : true;
|
||
}
|
||
|
||
static inline bool
|
||
e1000e_rx_use_legacy_descriptor(E1000ECore *core)
|
||
{
|
||
return (core->mac[RFCTL] & E1000_RFCTL_EXTEN) ? false : true;
|
||
}
|
||
|
||
static inline bool
|
||
e1000e_rx_use_ps_descriptor(E1000ECore *core)
|
||
{
|
||
return !e1000e_rx_use_legacy_descriptor(core) &&
|
||
(core->mac[RCTL] & E1000_RCTL_DTYP_PS);
|
||
}
|
||
|
||
static inline bool
|
||
e1000e_rss_enabled(E1000ECore *core)
|
||
{
|
||
return E1000_MRQC_ENABLED(core->mac[MRQC]) &&
|
||
!e1000e_rx_csum_enabled(core) &&
|
||
!e1000e_rx_use_legacy_descriptor(core);
|
||
}
|
||
|
||
typedef struct E1000E_RSSInfo_st {
|
||
bool enabled;
|
||
uint32_t hash;
|
||
uint32_t queue;
|
||
uint32_t type;
|
||
} E1000E_RSSInfo;
|
||
|
||
static uint32_t
|
||
e1000e_rss_get_hash_type(E1000ECore *core, struct NetRxPkt *pkt)
|
||
{
|
||
bool hasip4, hasip6;
|
||
EthL4HdrProto l4hdr_proto;
|
||
|
||
assert(e1000e_rss_enabled(core));
|
||
|
||
net_rx_pkt_get_protocols(pkt, &hasip4, &hasip6, &l4hdr_proto);
|
||
|
||
if (hasip4) {
|
||
trace_e1000e_rx_rss_ip4(l4hdr_proto, core->mac[MRQC],
|
||
E1000_MRQC_EN_TCPIPV4(core->mac[MRQC]),
|
||
E1000_MRQC_EN_IPV4(core->mac[MRQC]));
|
||
|
||
if (l4hdr_proto == ETH_L4_HDR_PROTO_TCP &&
|
||
E1000_MRQC_EN_TCPIPV4(core->mac[MRQC])) {
|
||
return E1000_MRQ_RSS_TYPE_IPV4TCP;
|
||
}
|
||
|
||
if (E1000_MRQC_EN_IPV4(core->mac[MRQC])) {
|
||
return E1000_MRQ_RSS_TYPE_IPV4;
|
||
}
|
||
} else if (hasip6) {
|
||
eth_ip6_hdr_info *ip6info = net_rx_pkt_get_ip6_info(pkt);
|
||
|
||
bool ex_dis = core->mac[RFCTL] & E1000_RFCTL_IPV6_EX_DIS;
|
||
bool new_ex_dis = core->mac[RFCTL] & E1000_RFCTL_NEW_IPV6_EXT_DIS;
|
||
|
||
/*
|
||
* Following two traces must not be combined because resulting
|
||
* event will have 11 arguments totally and some trace backends
|
||
* (at least "ust") have limitation of maximum 10 arguments per
|
||
* event. Events with more arguments fail to compile for
|
||
* backends like these.
|
||
*/
|
||
trace_e1000e_rx_rss_ip6_rfctl(core->mac[RFCTL]);
|
||
trace_e1000e_rx_rss_ip6(ex_dis, new_ex_dis, l4hdr_proto,
|
||
ip6info->has_ext_hdrs,
|
||
ip6info->rss_ex_dst_valid,
|
||
ip6info->rss_ex_src_valid,
|
||
core->mac[MRQC],
|
||
E1000_MRQC_EN_TCPIPV6EX(core->mac[MRQC]),
|
||
E1000_MRQC_EN_IPV6EX(core->mac[MRQC]),
|
||
E1000_MRQC_EN_IPV6(core->mac[MRQC]));
|
||
|
||
if ((!ex_dis || !ip6info->has_ext_hdrs) &&
|
||
(!new_ex_dis || !(ip6info->rss_ex_dst_valid ||
|
||
ip6info->rss_ex_src_valid))) {
|
||
|
||
if (l4hdr_proto == ETH_L4_HDR_PROTO_TCP &&
|
||
E1000_MRQC_EN_TCPIPV6EX(core->mac[MRQC])) {
|
||
return E1000_MRQ_RSS_TYPE_IPV6TCPEX;
|
||
}
|
||
|
||
if (E1000_MRQC_EN_IPV6EX(core->mac[MRQC])) {
|
||
return E1000_MRQ_RSS_TYPE_IPV6EX;
|
||
}
|
||
|
||
}
|
||
|
||
if (E1000_MRQC_EN_IPV6(core->mac[MRQC])) {
|
||
return E1000_MRQ_RSS_TYPE_IPV6;
|
||
}
|
||
|
||
}
|
||
|
||
return E1000_MRQ_RSS_TYPE_NONE;
|
||
}
|
||
|
||
static uint32_t
|
||
e1000e_rss_calc_hash(E1000ECore *core,
|
||
struct NetRxPkt *pkt,
|
||
E1000E_RSSInfo *info)
|
||
{
|
||
NetRxPktRssType type;
|
||
|
||
assert(e1000e_rss_enabled(core));
|
||
|
||
switch (info->type) {
|
||
case E1000_MRQ_RSS_TYPE_IPV4:
|
||
type = NetPktRssIpV4;
|
||
break;
|
||
case E1000_MRQ_RSS_TYPE_IPV4TCP:
|
||
type = NetPktRssIpV4Tcp;
|
||
break;
|
||
case E1000_MRQ_RSS_TYPE_IPV6TCPEX:
|
||
type = NetPktRssIpV6TcpEx;
|
||
break;
|
||
case E1000_MRQ_RSS_TYPE_IPV6:
|
||
type = NetPktRssIpV6;
|
||
break;
|
||
case E1000_MRQ_RSS_TYPE_IPV6EX:
|
||
type = NetPktRssIpV6Ex;
|
||
break;
|
||
default:
|
||
assert(false);
|
||
return 0;
|
||
}
|
||
|
||
return net_rx_pkt_calc_rss_hash(pkt, type, (uint8_t *) &core->mac[RSSRK]);
|
||
}
|
||
|
||
static void
|
||
e1000e_rss_parse_packet(E1000ECore *core,
|
||
struct NetRxPkt *pkt,
|
||
E1000E_RSSInfo *info)
|
||
{
|
||
trace_e1000e_rx_rss_started();
|
||
|
||
if (!e1000e_rss_enabled(core)) {
|
||
info->enabled = false;
|
||
info->hash = 0;
|
||
info->queue = 0;
|
||
info->type = 0;
|
||
trace_e1000e_rx_rss_disabled();
|
||
return;
|
||
}
|
||
|
||
info->enabled = true;
|
||
|
||
info->type = e1000e_rss_get_hash_type(core, pkt);
|
||
|
||
trace_e1000e_rx_rss_type(info->type);
|
||
|
||
if (info->type == E1000_MRQ_RSS_TYPE_NONE) {
|
||
info->hash = 0;
|
||
info->queue = 0;
|
||
return;
|
||
}
|
||
|
||
info->hash = e1000e_rss_calc_hash(core, pkt, info);
|
||
info->queue = E1000_RSS_QUEUE(&core->mac[RETA], info->hash);
|
||
}
|
||
|
||
static bool
|
||
e1000e_setup_tx_offloads(E1000ECore *core, struct e1000e_tx *tx)
|
||
{
|
||
if (tx->props.tse && tx->cptse) {
|
||
if (!net_tx_pkt_build_vheader(tx->tx_pkt, true, true, tx->props.mss)) {
|
||
return false;
|
||
}
|
||
|
||
net_tx_pkt_update_ip_checksums(tx->tx_pkt);
|
||
e1000x_inc_reg_if_not_full(core->mac, TSCTC);
|
||
return true;
|
||
}
|
||
|
||
if (tx->sum_needed & E1000_TXD_POPTS_TXSM) {
|
||
if (!net_tx_pkt_build_vheader(tx->tx_pkt, false, true, 0)) {
|
||
return false;
|
||
}
|
||
}
|
||
|
||
if (tx->sum_needed & E1000_TXD_POPTS_IXSM) {
|
||
net_tx_pkt_update_ip_hdr_checksum(tx->tx_pkt);
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
static void e1000e_tx_pkt_callback(void *core,
|
||
const struct iovec *iov,
|
||
int iovcnt,
|
||
const struct iovec *virt_iov,
|
||
int virt_iovcnt)
|
||
{
|
||
e1000e_receive_internal(core, virt_iov, virt_iovcnt, true);
|
||
}
|
||
|
||
static bool
|
||
e1000e_tx_pkt_send(E1000ECore *core, struct e1000e_tx *tx, int queue_index)
|
||
{
|
||
int target_queue = MIN(core->max_queue_num, queue_index);
|
||
NetClientState *queue = qemu_get_subqueue(core->owner_nic, target_queue);
|
||
|
||
if (!e1000e_setup_tx_offloads(core, tx)) {
|
||
return false;
|
||
}
|
||
|
||
net_tx_pkt_dump(tx->tx_pkt);
|
||
|
||
if ((core->phy[0][MII_BMCR] & MII_BMCR_LOOPBACK) ||
|
||
((core->mac[RCTL] & E1000_RCTL_LBM_MAC) == E1000_RCTL_LBM_MAC)) {
|
||
return net_tx_pkt_send_custom(tx->tx_pkt, false,
|
||
e1000e_tx_pkt_callback, core);
|
||
} else {
|
||
return net_tx_pkt_send(tx->tx_pkt, queue);
|
||
}
|
||
}
|
||
|
||
static void
|
||
e1000e_on_tx_done_update_stats(E1000ECore *core, struct NetTxPkt *tx_pkt)
|
||
{
|
||
static const int PTCregs[6] = { PTC64, PTC127, PTC255, PTC511,
|
||
PTC1023, PTC1522 };
|
||
|
||
size_t tot_len = net_tx_pkt_get_total_len(tx_pkt) + 4;
|
||
|
||
e1000x_increase_size_stats(core->mac, PTCregs, tot_len);
|
||
e1000x_inc_reg_if_not_full(core->mac, TPT);
|
||
e1000x_grow_8reg_if_not_full(core->mac, TOTL, tot_len);
|
||
|
||
switch (net_tx_pkt_get_packet_type(tx_pkt)) {
|
||
case ETH_PKT_BCAST:
|
||
e1000x_inc_reg_if_not_full(core->mac, BPTC);
|
||
break;
|
||
case ETH_PKT_MCAST:
|
||
e1000x_inc_reg_if_not_full(core->mac, MPTC);
|
||
break;
|
||
case ETH_PKT_UCAST:
|
||
break;
|
||
default:
|
||
g_assert_not_reached();
|
||
}
|
||
|
||
e1000x_inc_reg_if_not_full(core->mac, GPTC);
|
||
e1000x_grow_8reg_if_not_full(core->mac, GOTCL, tot_len);
|
||
}
|
||
|
||
static void
|
||
e1000e_process_tx_desc(E1000ECore *core,
|
||
struct e1000e_tx *tx,
|
||
struct e1000_tx_desc *dp,
|
||
int queue_index)
|
||
{
|
||
uint32_t txd_lower = le32_to_cpu(dp->lower.data);
|
||
uint32_t dtype = txd_lower & (E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D);
|
||
unsigned int split_size = txd_lower & 0xffff;
|
||
uint64_t addr;
|
||
struct e1000_context_desc *xp = (struct e1000_context_desc *)dp;
|
||
bool eop = txd_lower & E1000_TXD_CMD_EOP;
|
||
|
||
if (dtype == E1000_TXD_CMD_DEXT) { /* context descriptor */
|
||
e1000x_read_tx_ctx_descr(xp, &tx->props);
|
||
e1000e_process_snap_option(core, le32_to_cpu(xp->cmd_and_length));
|
||
return;
|
||
} else if (dtype == (E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D)) {
|
||
/* data descriptor */
|
||
tx->sum_needed = le32_to_cpu(dp->upper.data) >> 8;
|
||
tx->cptse = (txd_lower & E1000_TXD_CMD_TSE) ? 1 : 0;
|
||
e1000e_process_ts_option(core, dp);
|
||
} else {
|
||
/* legacy descriptor */
|
||
e1000e_process_ts_option(core, dp);
|
||
tx->cptse = 0;
|
||
}
|
||
|
||
addr = le64_to_cpu(dp->buffer_addr);
|
||
|
||
if (!tx->skip_cp) {
|
||
if (!net_tx_pkt_add_raw_fragment_pci(tx->tx_pkt, core->owner,
|
||
addr, split_size)) {
|
||
tx->skip_cp = true;
|
||
}
|
||
}
|
||
|
||
if (eop) {
|
||
if (!tx->skip_cp && net_tx_pkt_parse(tx->tx_pkt)) {
|
||
if (e1000x_vlan_enabled(core->mac) &&
|
||
e1000x_is_vlan_txd(txd_lower)) {
|
||
net_tx_pkt_setup_vlan_header_ex(tx->tx_pkt,
|
||
le16_to_cpu(dp->upper.fields.special), core->mac[VET]);
|
||
}
|
||
if (e1000e_tx_pkt_send(core, tx, queue_index)) {
|
||
e1000e_on_tx_done_update_stats(core, tx->tx_pkt);
|
||
}
|
||
}
|
||
|
||
tx->skip_cp = false;
|
||
net_tx_pkt_reset(tx->tx_pkt, net_tx_pkt_unmap_frag_pci, core->owner);
|
||
|
||
tx->sum_needed = 0;
|
||
tx->cptse = 0;
|
||
}
|
||
}
|
||
|
||
static inline uint32_t
|
||
e1000e_tx_wb_interrupt_cause(E1000ECore *core, int queue_idx)
|
||
{
|
||
if (!msix_enabled(core->owner)) {
|
||
return E1000_ICR_TXDW;
|
||
}
|
||
|
||
return (queue_idx == 0) ? E1000_ICR_TXQ0 : E1000_ICR_TXQ1;
|
||
}
|
||
|
||
static inline uint32_t
|
||
e1000e_rx_wb_interrupt_cause(E1000ECore *core, int queue_idx,
|
||
bool min_threshold_hit)
|
||
{
|
||
if (!msix_enabled(core->owner)) {
|
||
return E1000_ICS_RXT0 | (min_threshold_hit ? E1000_ICS_RXDMT0 : 0);
|
||
}
|
||
|
||
return (queue_idx == 0) ? E1000_ICR_RXQ0 : E1000_ICR_RXQ1;
|
||
}
|
||
|
||
static uint32_t
|
||
e1000e_txdesc_writeback(E1000ECore *core, dma_addr_t base,
|
||
struct e1000_tx_desc *dp, bool *ide, int queue_idx)
|
||
{
|
||
uint32_t txd_upper, txd_lower = le32_to_cpu(dp->lower.data);
|
||
|
||
if (!(txd_lower & E1000_TXD_CMD_RS) &&
|
||
!(core->mac[IVAR] & E1000_IVAR_TX_INT_EVERY_WB)) {
|
||
return 0;
|
||
}
|
||
|
||
*ide = (txd_lower & E1000_TXD_CMD_IDE) ? true : false;
|
||
|
||
txd_upper = le32_to_cpu(dp->upper.data) | E1000_TXD_STAT_DD;
|
||
|
||
dp->upper.data = cpu_to_le32(txd_upper);
|
||
pci_dma_write(core->owner, base + ((char *)&dp->upper - (char *)dp),
|
||
&dp->upper, sizeof(dp->upper));
|
||
return e1000e_tx_wb_interrupt_cause(core, queue_idx);
|
||
}
|
||
|
||
typedef struct E1000E_RingInfo_st {
|
||
int dbah;
|
||
int dbal;
|
||
int dlen;
|
||
int dh;
|
||
int dt;
|
||
int idx;
|
||
} E1000E_RingInfo;
|
||
|
||
static inline bool
|
||
e1000e_ring_empty(E1000ECore *core, const E1000E_RingInfo *r)
|
||
{
|
||
return core->mac[r->dh] == core->mac[r->dt] ||
|
||
core->mac[r->dt] >= core->mac[r->dlen] / E1000_RING_DESC_LEN;
|
||
}
|
||
|
||
static inline uint64_t
|
||
e1000e_ring_base(E1000ECore *core, const E1000E_RingInfo *r)
|
||
{
|
||
uint64_t bah = core->mac[r->dbah];
|
||
uint64_t bal = core->mac[r->dbal];
|
||
|
||
return (bah << 32) + bal;
|
||
}
|
||
|
||
static inline uint64_t
|
||
e1000e_ring_head_descr(E1000ECore *core, const E1000E_RingInfo *r)
|
||
{
|
||
return e1000e_ring_base(core, r) + E1000_RING_DESC_LEN * core->mac[r->dh];
|
||
}
|
||
|
||
static inline void
|
||
e1000e_ring_advance(E1000ECore *core, const E1000E_RingInfo *r, uint32_t count)
|
||
{
|
||
core->mac[r->dh] += count;
|
||
|
||
if (core->mac[r->dh] * E1000_RING_DESC_LEN >= core->mac[r->dlen]) {
|
||
core->mac[r->dh] = 0;
|
||
}
|
||
}
|
||
|
||
static inline uint32_t
|
||
e1000e_ring_free_descr_num(E1000ECore *core, const E1000E_RingInfo *r)
|
||
{
|
||
trace_e1000e_ring_free_space(r->idx, core->mac[r->dlen],
|
||
core->mac[r->dh], core->mac[r->dt]);
|
||
|
||
if (core->mac[r->dh] <= core->mac[r->dt]) {
|
||
return core->mac[r->dt] - core->mac[r->dh];
|
||
}
|
||
|
||
if (core->mac[r->dh] > core->mac[r->dt]) {
|
||
return core->mac[r->dlen] / E1000_RING_DESC_LEN +
|
||
core->mac[r->dt] - core->mac[r->dh];
|
||
}
|
||
|
||
g_assert_not_reached();
|
||
return 0;
|
||
}
|
||
|
||
static inline bool
|
||
e1000e_ring_enabled(E1000ECore *core, const E1000E_RingInfo *r)
|
||
{
|
||
return core->mac[r->dlen] > 0;
|
||
}
|
||
|
||
static inline uint32_t
|
||
e1000e_ring_len(E1000ECore *core, const E1000E_RingInfo *r)
|
||
{
|
||
return core->mac[r->dlen];
|
||
}
|
||
|
||
typedef struct E1000E_TxRing_st {
|
||
const E1000E_RingInfo *i;
|
||
struct e1000e_tx *tx;
|
||
} E1000E_TxRing;
|
||
|
||
static inline int
|
||
e1000e_mq_queue_idx(int base_reg_idx, int reg_idx)
|
||
{
|
||
return (reg_idx - base_reg_idx) / (0x100 >> 2);
|
||
}
|
||
|
||
static inline void
|
||
e1000e_tx_ring_init(E1000ECore *core, E1000E_TxRing *txr, int idx)
|
||
{
|
||
static const E1000E_RingInfo i[E1000E_NUM_QUEUES] = {
|
||
{ TDBAH, TDBAL, TDLEN, TDH, TDT, 0 },
|
||
{ TDBAH1, TDBAL1, TDLEN1, TDH1, TDT1, 1 }
|
||
};
|
||
|
||
assert(idx < ARRAY_SIZE(i));
|
||
|
||
txr->i = &i[idx];
|
||
txr->tx = &core->tx[idx];
|
||
}
|
||
|
||
typedef struct E1000E_RxRing_st {
|
||
const E1000E_RingInfo *i;
|
||
} E1000E_RxRing;
|
||
|
||
static inline void
|
||
e1000e_rx_ring_init(E1000ECore *core, E1000E_RxRing *rxr, int idx)
|
||
{
|
||
static const E1000E_RingInfo i[E1000E_NUM_QUEUES] = {
|
||
{ RDBAH0, RDBAL0, RDLEN0, RDH0, RDT0, 0 },
|
||
{ RDBAH1, RDBAL1, RDLEN1, RDH1, RDT1, 1 }
|
||
};
|
||
|
||
assert(idx < ARRAY_SIZE(i));
|
||
|
||
rxr->i = &i[idx];
|
||
}
|
||
|
||
static void
|
||
e1000e_start_xmit(E1000ECore *core, const E1000E_TxRing *txr)
|
||
{
|
||
dma_addr_t base;
|
||
struct e1000_tx_desc desc;
|
||
bool ide = false;
|
||
const E1000E_RingInfo *txi = txr->i;
|
||
uint32_t cause = E1000_ICS_TXQE;
|
||
|
||
if (!(core->mac[TCTL] & E1000_TCTL_EN)) {
|
||
trace_e1000e_tx_disabled();
|
||
return;
|
||
}
|
||
|
||
while (!e1000e_ring_empty(core, txi)) {
|
||
base = e1000e_ring_head_descr(core, txi);
|
||
|
||
pci_dma_read(core->owner, base, &desc, sizeof(desc));
|
||
|
||
trace_e1000e_tx_descr((void *)(intptr_t)desc.buffer_addr,
|
||
desc.lower.data, desc.upper.data);
|
||
|
||
e1000e_process_tx_desc(core, txr->tx, &desc, txi->idx);
|
||
cause |= e1000e_txdesc_writeback(core, base, &desc, &ide, txi->idx);
|
||
|
||
e1000e_ring_advance(core, txi, 1);
|
||
}
|
||
|
||
if (!ide || !e1000e_intrmgr_delay_tx_causes(core, &cause)) {
|
||
e1000e_set_interrupt_cause(core, cause);
|
||
}
|
||
|
||
net_tx_pkt_reset(txr->tx->tx_pkt, net_tx_pkt_unmap_frag_pci, core->owner);
|
||
}
|
||
|
||
static bool
|
||
e1000e_has_rxbufs(E1000ECore *core, const E1000E_RingInfo *r,
|
||
size_t total_size)
|
||
{
|
||
uint32_t bufs = e1000e_ring_free_descr_num(core, r);
|
||
|
||
trace_e1000e_rx_has_buffers(r->idx, bufs, total_size,
|
||
core->rx_desc_buf_size);
|
||
|
||
return total_size <= bufs / (core->rx_desc_len / E1000_MIN_RX_DESC_LEN) *
|
||
core->rx_desc_buf_size;
|
||
}
|
||
|
||
void
|
||
e1000e_start_recv(E1000ECore *core)
|
||
{
|
||
int i;
|
||
|
||
trace_e1000e_rx_start_recv();
|
||
|
||
for (i = 0; i <= core->max_queue_num; i++) {
|
||
qemu_flush_queued_packets(qemu_get_subqueue(core->owner_nic, i));
|
||
}
|
||
}
|
||
|
||
bool
|
||
e1000e_can_receive(E1000ECore *core)
|
||
{
|
||
int i;
|
||
|
||
if (!e1000x_rx_ready(core->owner, core->mac)) {
|
||
return false;
|
||
}
|
||
|
||
for (i = 0; i < E1000E_NUM_QUEUES; i++) {
|
||
E1000E_RxRing rxr;
|
||
|
||
e1000e_rx_ring_init(core, &rxr, i);
|
||
if (e1000e_ring_enabled(core, rxr.i) &&
|
||
e1000e_has_rxbufs(core, rxr.i, 1)) {
|
||
trace_e1000e_rx_can_recv();
|
||
return true;
|
||
}
|
||
}
|
||
|
||
trace_e1000e_rx_can_recv_rings_full();
|
||
return false;
|
||
}
|
||
|
||
ssize_t
|
||
e1000e_receive(E1000ECore *core, const uint8_t *buf, size_t size)
|
||
{
|
||
const struct iovec iov = {
|
||
.iov_base = (uint8_t *)buf,
|
||
.iov_len = size
|
||
};
|
||
|
||
return e1000e_receive_iov(core, &iov, 1);
|
||
}
|
||
|
||
static inline bool
|
||
e1000e_rx_l3_cso_enabled(E1000ECore *core)
|
||
{
|
||
return !!(core->mac[RXCSUM] & E1000_RXCSUM_IPOFLD);
|
||
}
|
||
|
||
static inline bool
|
||
e1000e_rx_l4_cso_enabled(E1000ECore *core)
|
||
{
|
||
return !!(core->mac[RXCSUM] & E1000_RXCSUM_TUOFLD);
|
||
}
|
||
|
||
static bool
|
||
e1000e_receive_filter(E1000ECore *core, const void *buf)
|
||
{
|
||
return (!e1000x_is_vlan_packet(buf, core->mac[VET]) ||
|
||
e1000x_rx_vlan_filter(core->mac, PKT_GET_VLAN_HDR(buf))) &&
|
||
e1000x_rx_group_filter(core->mac, buf);
|
||
}
|
||
|
||
static inline void
|
||
e1000e_read_lgcy_rx_descr(E1000ECore *core, struct e1000_rx_desc *desc,
|
||
hwaddr *buff_addr)
|
||
{
|
||
*buff_addr = le64_to_cpu(desc->buffer_addr);
|
||
}
|
||
|
||
static inline void
|
||
e1000e_read_ext_rx_descr(E1000ECore *core, union e1000_rx_desc_extended *desc,
|
||
hwaddr *buff_addr)
|
||
{
|
||
*buff_addr = le64_to_cpu(desc->read.buffer_addr);
|
||
}
|
||
|
||
static inline void
|
||
e1000e_read_ps_rx_descr(E1000ECore *core,
|
||
union e1000_rx_desc_packet_split *desc,
|
||
hwaddr buff_addr[MAX_PS_BUFFERS])
|
||
{
|
||
int i;
|
||
|
||
for (i = 0; i < MAX_PS_BUFFERS; i++) {
|
||
buff_addr[i] = le64_to_cpu(desc->read.buffer_addr[i]);
|
||
}
|
||
|
||
trace_e1000e_rx_desc_ps_read(buff_addr[0], buff_addr[1],
|
||
buff_addr[2], buff_addr[3]);
|
||
}
|
||
|
||
static inline void
|
||
e1000e_read_rx_descr(E1000ECore *core, union e1000_rx_desc_union *desc,
|
||
hwaddr buff_addr[MAX_PS_BUFFERS])
|
||
{
|
||
if (e1000e_rx_use_legacy_descriptor(core)) {
|
||
e1000e_read_lgcy_rx_descr(core, &desc->legacy, &buff_addr[0]);
|
||
buff_addr[1] = buff_addr[2] = buff_addr[3] = 0;
|
||
} else {
|
||
if (core->mac[RCTL] & E1000_RCTL_DTYP_PS) {
|
||
e1000e_read_ps_rx_descr(core, &desc->packet_split, buff_addr);
|
||
} else {
|
||
e1000e_read_ext_rx_descr(core, &desc->extended, &buff_addr[0]);
|
||
buff_addr[1] = buff_addr[2] = buff_addr[3] = 0;
|
||
}
|
||
}
|
||
}
|
||
|
||
static void
|
||
e1000e_verify_csum_in_sw(E1000ECore *core,
|
||
struct NetRxPkt *pkt,
|
||
uint32_t *status_flags,
|
||
EthL4HdrProto l4hdr_proto)
|
||
{
|
||
bool csum_valid;
|
||
uint32_t csum_error;
|
||
|
||
if (e1000e_rx_l3_cso_enabled(core)) {
|
||
if (!net_rx_pkt_validate_l3_csum(pkt, &csum_valid)) {
|
||
trace_e1000e_rx_metadata_l3_csum_validation_failed();
|
||
} else {
|
||
csum_error = csum_valid ? 0 : E1000_RXDEXT_STATERR_IPE;
|
||
*status_flags |= E1000_RXD_STAT_IPCS | csum_error;
|
||
}
|
||
} else {
|
||
trace_e1000e_rx_metadata_l3_cso_disabled();
|
||
}
|
||
|
||
if (!e1000e_rx_l4_cso_enabled(core)) {
|
||
trace_e1000e_rx_metadata_l4_cso_disabled();
|
||
return;
|
||
}
|
||
|
||
if (l4hdr_proto != ETH_L4_HDR_PROTO_TCP &&
|
||
l4hdr_proto != ETH_L4_HDR_PROTO_UDP) {
|
||
return;
|
||
}
|
||
|
||
if (!net_rx_pkt_validate_l4_csum(pkt, &csum_valid)) {
|
||
trace_e1000e_rx_metadata_l4_csum_validation_failed();
|
||
return;
|
||
}
|
||
|
||
csum_error = csum_valid ? 0 : E1000_RXDEXT_STATERR_TCPE;
|
||
*status_flags |= E1000_RXD_STAT_TCPCS | csum_error;
|
||
|
||
if (l4hdr_proto == ETH_L4_HDR_PROTO_UDP) {
|
||
*status_flags |= E1000_RXD_STAT_UDPCS;
|
||
}
|
||
}
|
||
|
||
static inline bool
|
||
e1000e_is_tcp_ack(E1000ECore *core, struct NetRxPkt *rx_pkt)
|
||
{
|
||
if (!net_rx_pkt_is_tcp_ack(rx_pkt)) {
|
||
return false;
|
||
}
|
||
|
||
if (core->mac[RFCTL] & E1000_RFCTL_ACK_DATA_DIS) {
|
||
return !net_rx_pkt_has_tcp_data(rx_pkt);
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
static void
|
||
e1000e_build_rx_metadata(E1000ECore *core,
|
||
struct NetRxPkt *pkt,
|
||
bool is_eop,
|
||
const E1000E_RSSInfo *rss_info,
|
||
uint32_t *rss, uint32_t *mrq,
|
||
uint32_t *status_flags,
|
||
uint16_t *ip_id,
|
||
uint16_t *vlan_tag)
|
||
{
|
||
struct virtio_net_hdr *vhdr;
|
||
bool hasip4, hasip6;
|
||
EthL4HdrProto l4hdr_proto;
|
||
uint32_t pkt_type;
|
||
|
||
*status_flags = E1000_RXD_STAT_DD;
|
||
|
||
/* No additional metadata needed for non-EOP descriptors */
|
||
if (!is_eop) {
|
||
goto func_exit;
|
||
}
|
||
|
||
*status_flags |= E1000_RXD_STAT_EOP;
|
||
|
||
net_rx_pkt_get_protocols(pkt, &hasip4, &hasip6, &l4hdr_proto);
|
||
trace_e1000e_rx_metadata_protocols(hasip4, hasip6, l4hdr_proto);
|
||
|
||
/* VLAN state */
|
||
if (net_rx_pkt_is_vlan_stripped(pkt)) {
|
||
*status_flags |= E1000_RXD_STAT_VP;
|
||
*vlan_tag = cpu_to_le16(net_rx_pkt_get_vlan_tag(pkt));
|
||
trace_e1000e_rx_metadata_vlan(*vlan_tag);
|
||
}
|
||
|
||
/* Packet parsing results */
|
||
if ((core->mac[RXCSUM] & E1000_RXCSUM_PCSD) != 0) {
|
||
if (rss_info->enabled) {
|
||
*rss = cpu_to_le32(rss_info->hash);
|
||
*mrq = cpu_to_le32(rss_info->type | (rss_info->queue << 8));
|
||
trace_e1000e_rx_metadata_rss(*rss, *mrq);
|
||
}
|
||
} else if (hasip4) {
|
||
*status_flags |= E1000_RXD_STAT_IPIDV;
|
||
*ip_id = cpu_to_le16(net_rx_pkt_get_ip_id(pkt));
|
||
trace_e1000e_rx_metadata_ip_id(*ip_id);
|
||
}
|
||
|
||
if (l4hdr_proto == ETH_L4_HDR_PROTO_TCP && e1000e_is_tcp_ack(core, pkt)) {
|
||
*status_flags |= E1000_RXD_STAT_ACK;
|
||
trace_e1000e_rx_metadata_ack();
|
||
}
|
||
|
||
if (hasip6 && (core->mac[RFCTL] & E1000_RFCTL_IPV6_DIS)) {
|
||
trace_e1000e_rx_metadata_ipv6_filtering_disabled();
|
||
pkt_type = E1000_RXD_PKT_MAC;
|
||
} else if (l4hdr_proto == ETH_L4_HDR_PROTO_TCP ||
|
||
l4hdr_proto == ETH_L4_HDR_PROTO_UDP) {
|
||
pkt_type = hasip4 ? E1000_RXD_PKT_IP4_XDP : E1000_RXD_PKT_IP6_XDP;
|
||
} else if (hasip4 || hasip6) {
|
||
pkt_type = hasip4 ? E1000_RXD_PKT_IP4 : E1000_RXD_PKT_IP6;
|
||
} else {
|
||
pkt_type = E1000_RXD_PKT_MAC;
|
||
}
|
||
|
||
*status_flags |= E1000_RXD_PKT_TYPE(pkt_type);
|
||
trace_e1000e_rx_metadata_pkt_type(pkt_type);
|
||
|
||
/* RX CSO information */
|
||
if (hasip6 && (core->mac[RFCTL] & E1000_RFCTL_IPV6_XSUM_DIS)) {
|
||
trace_e1000e_rx_metadata_ipv6_sum_disabled();
|
||
goto func_exit;
|
||
}
|
||
|
||
vhdr = net_rx_pkt_get_vhdr(pkt);
|
||
|
||
if (!(vhdr->flags & VIRTIO_NET_HDR_F_DATA_VALID) &&
|
||
!(vhdr->flags & VIRTIO_NET_HDR_F_NEEDS_CSUM)) {
|
||
trace_e1000e_rx_metadata_virthdr_no_csum_info();
|
||
e1000e_verify_csum_in_sw(core, pkt, status_flags, l4hdr_proto);
|
||
goto func_exit;
|
||
}
|
||
|
||
if (e1000e_rx_l3_cso_enabled(core)) {
|
||
*status_flags |= hasip4 ? E1000_RXD_STAT_IPCS : 0;
|
||
} else {
|
||
trace_e1000e_rx_metadata_l3_cso_disabled();
|
||
}
|
||
|
||
if (e1000e_rx_l4_cso_enabled(core)) {
|
||
switch (l4hdr_proto) {
|
||
case ETH_L4_HDR_PROTO_TCP:
|
||
*status_flags |= E1000_RXD_STAT_TCPCS;
|
||
break;
|
||
|
||
case ETH_L4_HDR_PROTO_UDP:
|
||
*status_flags |= E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS;
|
||
break;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
} else {
|
||
trace_e1000e_rx_metadata_l4_cso_disabled();
|
||
}
|
||
|
||
func_exit:
|
||
trace_e1000e_rx_metadata_status_flags(*status_flags);
|
||
*status_flags = cpu_to_le32(*status_flags);
|
||
}
|
||
|
||
static inline void
|
||
e1000e_write_lgcy_rx_descr(E1000ECore *core, struct e1000_rx_desc *desc,
|
||
struct NetRxPkt *pkt,
|
||
const E1000E_RSSInfo *rss_info,
|
||
uint16_t length)
|
||
{
|
||
uint32_t status_flags, rss, mrq;
|
||
uint16_t ip_id;
|
||
|
||
assert(!rss_info->enabled);
|
||
|
||
desc->length = cpu_to_le16(length);
|
||
desc->csum = 0;
|
||
|
||
e1000e_build_rx_metadata(core, pkt, pkt != NULL,
|
||
rss_info,
|
||
&rss, &mrq,
|
||
&status_flags, &ip_id,
|
||
&desc->special);
|
||
desc->errors = (uint8_t) (le32_to_cpu(status_flags) >> 24);
|
||
desc->status = (uint8_t) le32_to_cpu(status_flags);
|
||
}
|
||
|
||
static inline void
|
||
e1000e_write_ext_rx_descr(E1000ECore *core, union e1000_rx_desc_extended *desc,
|
||
struct NetRxPkt *pkt,
|
||
const E1000E_RSSInfo *rss_info,
|
||
uint16_t length)
|
||
{
|
||
memset(&desc->wb, 0, sizeof(desc->wb));
|
||
|
||
desc->wb.upper.length = cpu_to_le16(length);
|
||
|
||
e1000e_build_rx_metadata(core, pkt, pkt != NULL,
|
||
rss_info,
|
||
&desc->wb.lower.hi_dword.rss,
|
||
&desc->wb.lower.mrq,
|
||
&desc->wb.upper.status_error,
|
||
&desc->wb.lower.hi_dword.csum_ip.ip_id,
|
||
&desc->wb.upper.vlan);
|
||
}
|
||
|
||
static inline void
|
||
e1000e_write_ps_rx_descr(E1000ECore *core,
|
||
union e1000_rx_desc_packet_split *desc,
|
||
struct NetRxPkt *pkt,
|
||
const E1000E_RSSInfo *rss_info,
|
||
size_t ps_hdr_len,
|
||
uint16_t(*written)[MAX_PS_BUFFERS])
|
||
{
|
||
int i;
|
||
|
||
memset(&desc->wb, 0, sizeof(desc->wb));
|
||
|
||
desc->wb.middle.length0 = cpu_to_le16((*written)[0]);
|
||
|
||
for (i = 0; i < PS_PAGE_BUFFERS; i++) {
|
||
desc->wb.upper.length[i] = cpu_to_le16((*written)[i + 1]);
|
||
}
|
||
|
||
e1000e_build_rx_metadata(core, pkt, pkt != NULL,
|
||
rss_info,
|
||
&desc->wb.lower.hi_dword.rss,
|
||
&desc->wb.lower.mrq,
|
||
&desc->wb.middle.status_error,
|
||
&desc->wb.lower.hi_dword.csum_ip.ip_id,
|
||
&desc->wb.middle.vlan);
|
||
|
||
desc->wb.upper.header_status =
|
||
cpu_to_le16(ps_hdr_len | (ps_hdr_len ? E1000_RXDPS_HDRSTAT_HDRSP : 0));
|
||
|
||
trace_e1000e_rx_desc_ps_write((*written)[0], (*written)[1],
|
||
(*written)[2], (*written)[3]);
|
||
}
|
||
|
||
static inline void
|
||
e1000e_write_rx_descr(E1000ECore *core, union e1000_rx_desc_union *desc,
|
||
struct NetRxPkt *pkt, const E1000E_RSSInfo *rss_info,
|
||
size_t ps_hdr_len, uint16_t(*written)[MAX_PS_BUFFERS])
|
||
{
|
||
if (e1000e_rx_use_legacy_descriptor(core)) {
|
||
assert(ps_hdr_len == 0);
|
||
e1000e_write_lgcy_rx_descr(core, &desc->legacy, pkt, rss_info,
|
||
(*written)[0]);
|
||
} else {
|
||
if (core->mac[RCTL] & E1000_RCTL_DTYP_PS) {
|
||
e1000e_write_ps_rx_descr(core, &desc->packet_split, pkt, rss_info,
|
||
ps_hdr_len, written);
|
||
} else {
|
||
assert(ps_hdr_len == 0);
|
||
e1000e_write_ext_rx_descr(core, &desc->extended, pkt, rss_info,
|
||
(*written)[0]);
|
||
}
|
||
}
|
||
}
|
||
|
||
static inline void
|
||
e1000e_pci_dma_write_rx_desc(E1000ECore *core, dma_addr_t addr,
|
||
union e1000_rx_desc_union *desc, dma_addr_t len)
|
||
{
|
||
PCIDevice *dev = core->owner;
|
||
|
||
if (e1000e_rx_use_legacy_descriptor(core)) {
|
||
struct e1000_rx_desc *d = &desc->legacy;
|
||
size_t offset = offsetof(struct e1000_rx_desc, status);
|
||
uint8_t status = d->status;
|
||
|
||
d->status &= ~E1000_RXD_STAT_DD;
|
||
pci_dma_write(dev, addr, desc, len);
|
||
|
||
if (status & E1000_RXD_STAT_DD) {
|
||
d->status = status;
|
||
pci_dma_write(dev, addr + offset, &status, sizeof(status));
|
||
}
|
||
} else {
|
||
if (core->mac[RCTL] & E1000_RCTL_DTYP_PS) {
|
||
union e1000_rx_desc_packet_split *d = &desc->packet_split;
|
||
size_t offset = offsetof(union e1000_rx_desc_packet_split,
|
||
wb.middle.status_error);
|
||
uint32_t status = d->wb.middle.status_error;
|
||
|
||
d->wb.middle.status_error &= ~E1000_RXD_STAT_DD;
|
||
pci_dma_write(dev, addr, desc, len);
|
||
|
||
if (status & E1000_RXD_STAT_DD) {
|
||
d->wb.middle.status_error = status;
|
||
pci_dma_write(dev, addr + offset, &status, sizeof(status));
|
||
}
|
||
} else {
|
||
union e1000_rx_desc_extended *d = &desc->extended;
|
||
size_t offset = offsetof(union e1000_rx_desc_extended,
|
||
wb.upper.status_error);
|
||
uint32_t status = d->wb.upper.status_error;
|
||
|
||
d->wb.upper.status_error &= ~E1000_RXD_STAT_DD;
|
||
pci_dma_write(dev, addr, desc, len);
|
||
|
||
if (status & E1000_RXD_STAT_DD) {
|
||
d->wb.upper.status_error = status;
|
||
pci_dma_write(dev, addr + offset, &status, sizeof(status));
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
typedef struct e1000e_ba_state_st {
|
||
uint16_t written[MAX_PS_BUFFERS];
|
||
uint8_t cur_idx;
|
||
} e1000e_ba_state;
|
||
|
||
static inline void
|
||
e1000e_write_hdr_to_rx_buffers(E1000ECore *core,
|
||
hwaddr ba[MAX_PS_BUFFERS],
|
||
e1000e_ba_state *bastate,
|
||
const char *data,
|
||
dma_addr_t data_len)
|
||
{
|
||
assert(data_len <= core->rxbuf_sizes[0] - bastate->written[0]);
|
||
|
||
pci_dma_write(core->owner, ba[0] + bastate->written[0], data, data_len);
|
||
bastate->written[0] += data_len;
|
||
|
||
bastate->cur_idx = 1;
|
||
}
|
||
|
||
static void
|
||
e1000e_write_to_rx_buffers(E1000ECore *core,
|
||
hwaddr ba[MAX_PS_BUFFERS],
|
||
e1000e_ba_state *bastate,
|
||
const char *data,
|
||
dma_addr_t data_len)
|
||
{
|
||
while (data_len > 0) {
|
||
uint32_t cur_buf_len = core->rxbuf_sizes[bastate->cur_idx];
|
||
uint32_t cur_buf_bytes_left = cur_buf_len -
|
||
bastate->written[bastate->cur_idx];
|
||
uint32_t bytes_to_write = MIN(data_len, cur_buf_bytes_left);
|
||
|
||
trace_e1000e_rx_desc_buff_write(bastate->cur_idx,
|
||
ba[bastate->cur_idx],
|
||
bastate->written[bastate->cur_idx],
|
||
data,
|
||
bytes_to_write);
|
||
|
||
pci_dma_write(core->owner,
|
||
ba[bastate->cur_idx] + bastate->written[bastate->cur_idx],
|
||
data, bytes_to_write);
|
||
|
||
bastate->written[bastate->cur_idx] += bytes_to_write;
|
||
data += bytes_to_write;
|
||
data_len -= bytes_to_write;
|
||
|
||
if (bastate->written[bastate->cur_idx] == cur_buf_len) {
|
||
bastate->cur_idx++;
|
||
}
|
||
|
||
assert(bastate->cur_idx < MAX_PS_BUFFERS);
|
||
}
|
||
}
|
||
|
||
static void
|
||
e1000e_update_rx_stats(E1000ECore *core, size_t pkt_size, size_t pkt_fcs_size)
|
||
{
|
||
eth_pkt_types_e pkt_type = net_rx_pkt_get_packet_type(core->rx_pkt);
|
||
e1000x_update_rx_total_stats(core->mac, pkt_type, pkt_size, pkt_fcs_size);
|
||
}
|
||
|
||
static inline bool
|
||
e1000e_rx_descr_threshold_hit(E1000ECore *core, const E1000E_RingInfo *rxi)
|
||
{
|
||
return e1000e_ring_free_descr_num(core, rxi) ==
|
||
e1000e_ring_len(core, rxi) >> core->rxbuf_min_shift;
|
||
}
|
||
|
||
static bool
|
||
e1000e_do_ps(E1000ECore *core, struct NetRxPkt *pkt, size_t *hdr_len)
|
||
{
|
||
bool hasip4, hasip6;
|
||
EthL4HdrProto l4hdr_proto;
|
||
bool fragment;
|
||
|
||
if (!e1000e_rx_use_ps_descriptor(core)) {
|
||
return false;
|
||
}
|
||
|
||
net_rx_pkt_get_protocols(pkt, &hasip4, &hasip6, &l4hdr_proto);
|
||
|
||
if (hasip4) {
|
||
fragment = net_rx_pkt_get_ip4_info(pkt)->fragment;
|
||
} else if (hasip6) {
|
||
fragment = net_rx_pkt_get_ip6_info(pkt)->fragment;
|
||
} else {
|
||
return false;
|
||
}
|
||
|
||
if (fragment && (core->mac[RFCTL] & E1000_RFCTL_IPFRSP_DIS)) {
|
||
return false;
|
||
}
|
||
|
||
if (l4hdr_proto == ETH_L4_HDR_PROTO_TCP ||
|
||
l4hdr_proto == ETH_L4_HDR_PROTO_UDP) {
|
||
*hdr_len = net_rx_pkt_get_l5_hdr_offset(pkt);
|
||
} else {
|
||
*hdr_len = net_rx_pkt_get_l4_hdr_offset(pkt);
|
||
}
|
||
|
||
if ((*hdr_len > core->rxbuf_sizes[0]) ||
|
||
(*hdr_len > net_rx_pkt_get_total_len(pkt))) {
|
||
return false;
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
static void
|
||
e1000e_write_packet_to_guest(E1000ECore *core, struct NetRxPkt *pkt,
|
||
const E1000E_RxRing *rxr,
|
||
const E1000E_RSSInfo *rss_info)
|
||
{
|
||
PCIDevice *d = core->owner;
|
||
dma_addr_t base;
|
||
union e1000_rx_desc_union desc;
|
||
size_t desc_size;
|
||
size_t desc_offset = 0;
|
||
size_t iov_ofs = 0;
|
||
|
||
struct iovec *iov = net_rx_pkt_get_iovec(pkt);
|
||
size_t size = net_rx_pkt_get_total_len(pkt);
|
||
size_t total_size = size + e1000x_fcs_len(core->mac);
|
||
const E1000E_RingInfo *rxi;
|
||
size_t ps_hdr_len = 0;
|
||
bool do_ps = e1000e_do_ps(core, pkt, &ps_hdr_len);
|
||
bool is_first = true;
|
||
|
||
rxi = rxr->i;
|
||
|
||
do {
|
||
hwaddr ba[MAX_PS_BUFFERS];
|
||
e1000e_ba_state bastate = { { 0 } };
|
||
bool is_last = false;
|
||
|
||
desc_size = total_size - desc_offset;
|
||
|
||
if (desc_size > core->rx_desc_buf_size) {
|
||
desc_size = core->rx_desc_buf_size;
|
||
}
|
||
|
||
if (e1000e_ring_empty(core, rxi)) {
|
||
return;
|
||
}
|
||
|
||
base = e1000e_ring_head_descr(core, rxi);
|
||
|
||
pci_dma_read(d, base, &desc, core->rx_desc_len);
|
||
|
||
trace_e1000e_rx_descr(rxi->idx, base, core->rx_desc_len);
|
||
|
||
e1000e_read_rx_descr(core, &desc, ba);
|
||
|
||
if (ba[0]) {
|
||
if (desc_offset < size) {
|
||
static const uint32_t fcs_pad;
|
||
size_t iov_copy;
|
||
size_t copy_size = size - desc_offset;
|
||
if (copy_size > core->rx_desc_buf_size) {
|
||
copy_size = core->rx_desc_buf_size;
|
||
}
|
||
|
||
/* For PS mode copy the packet header first */
|
||
if (do_ps) {
|
||
if (is_first) {
|
||
size_t ps_hdr_copied = 0;
|
||
do {
|
||
iov_copy = MIN(ps_hdr_len - ps_hdr_copied,
|
||
iov->iov_len - iov_ofs);
|
||
|
||
e1000e_write_hdr_to_rx_buffers(core, ba, &bastate,
|
||
iov->iov_base, iov_copy);
|
||
|
||
copy_size -= iov_copy;
|
||
ps_hdr_copied += iov_copy;
|
||
|
||
iov_ofs += iov_copy;
|
||
if (iov_ofs == iov->iov_len) {
|
||
iov++;
|
||
iov_ofs = 0;
|
||
}
|
||
} while (ps_hdr_copied < ps_hdr_len);
|
||
|
||
is_first = false;
|
||
} else {
|
||
/* Leave buffer 0 of each descriptor except first */
|
||
/* empty as per spec 7.1.5.1 */
|
||
e1000e_write_hdr_to_rx_buffers(core, ba, &bastate,
|
||
NULL, 0);
|
||
}
|
||
}
|
||
|
||
/* Copy packet payload */
|
||
while (copy_size) {
|
||
iov_copy = MIN(copy_size, iov->iov_len - iov_ofs);
|
||
|
||
e1000e_write_to_rx_buffers(core, ba, &bastate,
|
||
iov->iov_base + iov_ofs, iov_copy);
|
||
|
||
copy_size -= iov_copy;
|
||
iov_ofs += iov_copy;
|
||
if (iov_ofs == iov->iov_len) {
|
||
iov++;
|
||
iov_ofs = 0;
|
||
}
|
||
}
|
||
|
||
if (desc_offset + desc_size >= total_size) {
|
||
/* Simulate FCS checksum presence in the last descriptor */
|
||
e1000e_write_to_rx_buffers(core, ba, &bastate,
|
||
(const char *) &fcs_pad, e1000x_fcs_len(core->mac));
|
||
}
|
||
}
|
||
} else { /* as per intel docs; skip descriptors with null buf addr */
|
||
trace_e1000e_rx_null_descriptor();
|
||
}
|
||
desc_offset += desc_size;
|
||
if (desc_offset >= total_size) {
|
||
is_last = true;
|
||
}
|
||
|
||
e1000e_write_rx_descr(core, &desc, is_last ? core->rx_pkt : NULL,
|
||
rss_info, do_ps ? ps_hdr_len : 0, &bastate.written);
|
||
e1000e_pci_dma_write_rx_desc(core, base, &desc, core->rx_desc_len);
|
||
|
||
e1000e_ring_advance(core, rxi,
|
||
core->rx_desc_len / E1000_MIN_RX_DESC_LEN);
|
||
|
||
} while (desc_offset < total_size);
|
||
|
||
e1000e_update_rx_stats(core, size, total_size);
|
||
}
|
||
|
||
static inline void
|
||
e1000e_rx_fix_l4_csum(E1000ECore *core, struct NetRxPkt *pkt)
|
||
{
|
||
struct virtio_net_hdr *vhdr = net_rx_pkt_get_vhdr(pkt);
|
||
|
||
if (vhdr->flags & VIRTIO_NET_HDR_F_NEEDS_CSUM) {
|
||
net_rx_pkt_fix_l4_csum(pkt);
|
||
}
|
||
}
|
||
|
||
ssize_t
|
||
e1000e_receive_iov(E1000ECore *core, const struct iovec *iov, int iovcnt)
|
||
{
|
||
return e1000e_receive_internal(core, iov, iovcnt, core->has_vnet);
|
||
}
|
||
|
||
static ssize_t
|
||
e1000e_receive_internal(E1000ECore *core, const struct iovec *iov, int iovcnt,
|
||
bool has_vnet)
|
||
{
|
||
uint32_t causes = 0;
|
||
uint8_t buf[ETH_ZLEN];
|
||
struct iovec min_iov;
|
||
size_t size, orig_size;
|
||
size_t iov_ofs = 0;
|
||
E1000E_RxRing rxr;
|
||
E1000E_RSSInfo rss_info;
|
||
size_t total_size;
|
||
ssize_t retval;
|
||
bool rdmts_hit;
|
||
|
||
trace_e1000e_rx_receive_iov(iovcnt);
|
||
|
||
if (!e1000x_hw_rx_enabled(core->mac)) {
|
||
return -1;
|
||
}
|
||
|
||
/* Pull virtio header in */
|
||
if (has_vnet) {
|
||
net_rx_pkt_set_vhdr_iovec(core->rx_pkt, iov, iovcnt);
|
||
iov_ofs = sizeof(struct virtio_net_hdr);
|
||
} else {
|
||
net_rx_pkt_unset_vhdr(core->rx_pkt);
|
||
}
|
||
|
||
orig_size = iov_size(iov, iovcnt);
|
||
size = orig_size - iov_ofs;
|
||
|
||
/* Pad to minimum Ethernet frame length */
|
||
if (size < sizeof(buf)) {
|
||
iov_to_buf(iov, iovcnt, iov_ofs, buf, size);
|
||
memset(&buf[size], 0, sizeof(buf) - size);
|
||
e1000x_inc_reg_if_not_full(core->mac, RUC);
|
||
min_iov.iov_base = buf;
|
||
min_iov.iov_len = size = sizeof(buf);
|
||
iovcnt = 1;
|
||
iov = &min_iov;
|
||
iov_ofs = 0;
|
||
} else {
|
||
iov_to_buf(iov, iovcnt, iov_ofs, buf, ETH_HLEN + 4);
|
||
}
|
||
|
||
/* Discard oversized packets if !LPE and !SBP. */
|
||
if (e1000x_is_oversized(core->mac, size)) {
|
||
return orig_size;
|
||
}
|
||
|
||
net_rx_pkt_set_packet_type(core->rx_pkt,
|
||
get_eth_packet_type(PKT_GET_ETH_HDR(buf)));
|
||
|
||
if (!e1000e_receive_filter(core, buf)) {
|
||
trace_e1000e_rx_flt_dropped();
|
||
return orig_size;
|
||
}
|
||
|
||
net_rx_pkt_attach_iovec_ex(core->rx_pkt, iov, iovcnt, iov_ofs,
|
||
e1000x_vlan_enabled(core->mac) ? 0 : -1,
|
||
core->mac[VET], 0);
|
||
|
||
e1000e_rss_parse_packet(core, core->rx_pkt, &rss_info);
|
||
e1000e_rx_ring_init(core, &rxr, rss_info.queue);
|
||
|
||
total_size = net_rx_pkt_get_total_len(core->rx_pkt) +
|
||
e1000x_fcs_len(core->mac);
|
||
|
||
if (e1000e_has_rxbufs(core, rxr.i, total_size)) {
|
||
e1000e_rx_fix_l4_csum(core, core->rx_pkt);
|
||
|
||
e1000e_write_packet_to_guest(core, core->rx_pkt, &rxr, &rss_info);
|
||
|
||
retval = orig_size;
|
||
|
||
/* Perform small receive detection (RSRPD) */
|
||
if (total_size < core->mac[RSRPD]) {
|
||
causes |= E1000_ICS_SRPD;
|
||
}
|
||
|
||
/* Perform ACK receive detection */
|
||
if (!(core->mac[RFCTL] & E1000_RFCTL_ACK_DIS) &&
|
||
(e1000e_is_tcp_ack(core, core->rx_pkt))) {
|
||
causes |= E1000_ICS_ACK;
|
||
}
|
||
|
||
/* Check if receive descriptor minimum threshold hit */
|
||
rdmts_hit = e1000e_rx_descr_threshold_hit(core, rxr.i);
|
||
causes |= e1000e_rx_wb_interrupt_cause(core, rxr.i->idx, rdmts_hit);
|
||
|
||
trace_e1000e_rx_written_to_guest(rxr.i->idx);
|
||
} else {
|
||
causes |= E1000_ICS_RXO;
|
||
retval = 0;
|
||
|
||
trace_e1000e_rx_not_written_to_guest(rxr.i->idx);
|
||
}
|
||
|
||
if (!e1000e_intrmgr_delay_rx_causes(core, &causes)) {
|
||
trace_e1000e_rx_interrupt_set(causes);
|
||
e1000e_set_interrupt_cause(core, causes);
|
||
} else {
|
||
trace_e1000e_rx_interrupt_delayed(causes);
|
||
}
|
||
|
||
return retval;
|
||
}
|
||
|
||
static inline bool
|
||
e1000e_have_autoneg(E1000ECore *core)
|
||
{
|
||
return core->phy[0][MII_BMCR] & MII_BMCR_AUTOEN;
|
||
}
|
||
|
||
static void e1000e_update_flowctl_status(E1000ECore *core)
|
||
{
|
||
if (e1000e_have_autoneg(core) &&
|
||
core->phy[0][MII_BMSR] & MII_BMSR_AN_COMP) {
|
||
trace_e1000e_link_autoneg_flowctl(true);
|
||
core->mac[CTRL] |= E1000_CTRL_TFCE | E1000_CTRL_RFCE;
|
||
} else {
|
||
trace_e1000e_link_autoneg_flowctl(false);
|
||
}
|
||
}
|
||
|
||
static inline void
|
||
e1000e_link_down(E1000ECore *core)
|
||
{
|
||
e1000x_update_regs_on_link_down(core->mac, core->phy[0]);
|
||
e1000e_update_flowctl_status(core);
|
||
}
|
||
|
||
static inline void
|
||
e1000e_set_phy_ctrl(E1000ECore *core, int index, uint16_t val)
|
||
{
|
||
/* bits 0-5 reserved; MII_BMCR_[ANRESTART,RESET] are self clearing */
|
||
core->phy[0][MII_BMCR] = val & ~(0x3f |
|
||
MII_BMCR_RESET |
|
||
MII_BMCR_ANRESTART);
|
||
|
||
if ((val & MII_BMCR_ANRESTART) &&
|
||
e1000e_have_autoneg(core)) {
|
||
e1000x_restart_autoneg(core->mac, core->phy[0], core->autoneg_timer);
|
||
}
|
||
}
|
||
|
||
static void
|
||
e1000e_set_phy_oem_bits(E1000ECore *core, int index, uint16_t val)
|
||
{
|
||
core->phy[0][PHY_OEM_BITS] = val & ~BIT(10);
|
||
|
||
if (val & BIT(10)) {
|
||
e1000x_restart_autoneg(core->mac, core->phy[0], core->autoneg_timer);
|
||
}
|
||
}
|
||
|
||
static void
|
||
e1000e_set_phy_page(E1000ECore *core, int index, uint16_t val)
|
||
{
|
||
core->phy[0][PHY_PAGE] = val & PHY_PAGE_RW_MASK;
|
||
}
|
||
|
||
void
|
||
e1000e_core_set_link_status(E1000ECore *core)
|
||
{
|
||
NetClientState *nc = qemu_get_queue(core->owner_nic);
|
||
uint32_t old_status = core->mac[STATUS];
|
||
|
||
trace_e1000e_link_status_changed(nc->link_down ? false : true);
|
||
|
||
if (nc->link_down) {
|
||
e1000x_update_regs_on_link_down(core->mac, core->phy[0]);
|
||
} else {
|
||
if (e1000e_have_autoneg(core) &&
|
||
!(core->phy[0][MII_BMSR] & MII_BMSR_AN_COMP)) {
|
||
e1000x_restart_autoneg(core->mac, core->phy[0],
|
||
core->autoneg_timer);
|
||
} else {
|
||
e1000x_update_regs_on_link_up(core->mac, core->phy[0]);
|
||
e1000e_start_recv(core);
|
||
}
|
||
}
|
||
|
||
if (core->mac[STATUS] != old_status) {
|
||
e1000e_set_interrupt_cause(core, E1000_ICR_LSC);
|
||
}
|
||
}
|
||
|
||
static void
|
||
e1000e_set_ctrl(E1000ECore *core, int index, uint32_t val)
|
||
{
|
||
trace_e1000e_core_ctrl_write(index, val);
|
||
|
||
/* RST is self clearing */
|
||
core->mac[CTRL] = val & ~E1000_CTRL_RST;
|
||
core->mac[CTRL_DUP] = core->mac[CTRL];
|
||
|
||
trace_e1000e_link_set_params(
|
||
!!(val & E1000_CTRL_ASDE),
|
||
(val & E1000_CTRL_SPD_SEL) >> E1000_CTRL_SPD_SHIFT,
|
||
!!(val & E1000_CTRL_FRCSPD),
|
||
!!(val & E1000_CTRL_FRCDPX),
|
||
!!(val & E1000_CTRL_RFCE),
|
||
!!(val & E1000_CTRL_TFCE));
|
||
|
||
if (val & E1000_CTRL_RST) {
|
||
trace_e1000e_core_ctrl_sw_reset();
|
||
e1000e_reset(core, true);
|
||
}
|
||
|
||
if (val & E1000_CTRL_PHY_RST) {
|
||
trace_e1000e_core_ctrl_phy_reset();
|
||
core->mac[STATUS] |= E1000_STATUS_PHYRA;
|
||
}
|
||
}
|
||
|
||
static void
|
||
e1000e_set_rfctl(E1000ECore *core, int index, uint32_t val)
|
||
{
|
||
trace_e1000e_rx_set_rfctl(val);
|
||
|
||
if (!(val & E1000_RFCTL_ISCSI_DIS)) {
|
||
trace_e1000e_wrn_iscsi_filtering_not_supported();
|
||
}
|
||
|
||
if (!(val & E1000_RFCTL_NFSW_DIS)) {
|
||
trace_e1000e_wrn_nfsw_filtering_not_supported();
|
||
}
|
||
|
||
if (!(val & E1000_RFCTL_NFSR_DIS)) {
|
||
trace_e1000e_wrn_nfsr_filtering_not_supported();
|
||
}
|
||
|
||
core->mac[RFCTL] = val;
|
||
}
|
||
|
||
static void
|
||
e1000e_calc_per_desc_buf_size(E1000ECore *core)
|
||
{
|
||
int i;
|
||
core->rx_desc_buf_size = 0;
|
||
|
||
for (i = 0; i < ARRAY_SIZE(core->rxbuf_sizes); i++) {
|
||
core->rx_desc_buf_size += core->rxbuf_sizes[i];
|
||
}
|
||
}
|
||
|
||
static void
|
||
e1000e_parse_rxbufsize(E1000ECore *core)
|
||
{
|
||
uint32_t rctl = core->mac[RCTL];
|
||
|
||
memset(core->rxbuf_sizes, 0, sizeof(core->rxbuf_sizes));
|
||
|
||
if (rctl & E1000_RCTL_DTYP_MASK) {
|
||
uint32_t bsize;
|
||
|
||
bsize = core->mac[PSRCTL] & E1000_PSRCTL_BSIZE0_MASK;
|
||
core->rxbuf_sizes[0] = (bsize >> E1000_PSRCTL_BSIZE0_SHIFT) * 128;
|
||
|
||
bsize = core->mac[PSRCTL] & E1000_PSRCTL_BSIZE1_MASK;
|
||
core->rxbuf_sizes[1] = (bsize >> E1000_PSRCTL_BSIZE1_SHIFT) * 1024;
|
||
|
||
bsize = core->mac[PSRCTL] & E1000_PSRCTL_BSIZE2_MASK;
|
||
core->rxbuf_sizes[2] = (bsize >> E1000_PSRCTL_BSIZE2_SHIFT) * 1024;
|
||
|
||
bsize = core->mac[PSRCTL] & E1000_PSRCTL_BSIZE3_MASK;
|
||
core->rxbuf_sizes[3] = (bsize >> E1000_PSRCTL_BSIZE3_SHIFT) * 1024;
|
||
} else if (rctl & E1000_RCTL_FLXBUF_MASK) {
|
||
int flxbuf = rctl & E1000_RCTL_FLXBUF_MASK;
|
||
core->rxbuf_sizes[0] = (flxbuf >> E1000_RCTL_FLXBUF_SHIFT) * 1024;
|
||
} else {
|
||
core->rxbuf_sizes[0] = e1000x_rxbufsize(rctl);
|
||
}
|
||
|
||
trace_e1000e_rx_desc_buff_sizes(core->rxbuf_sizes[0], core->rxbuf_sizes[1],
|
||
core->rxbuf_sizes[2], core->rxbuf_sizes[3]);
|
||
|
||
e1000e_calc_per_desc_buf_size(core);
|
||
}
|
||
|
||
static void
|
||
e1000e_calc_rxdesclen(E1000ECore *core)
|
||
{
|
||
if (e1000e_rx_use_legacy_descriptor(core)) {
|
||
core->rx_desc_len = sizeof(struct e1000_rx_desc);
|
||
} else {
|
||
if (core->mac[RCTL] & E1000_RCTL_DTYP_PS) {
|
||
core->rx_desc_len = sizeof(union e1000_rx_desc_packet_split);
|
||
} else {
|
||
core->rx_desc_len = sizeof(union e1000_rx_desc_extended);
|
||
}
|
||
}
|
||
trace_e1000e_rx_desc_len(core->rx_desc_len);
|
||
}
|
||
|
||
static void
|
||
e1000e_set_rx_control(E1000ECore *core, int index, uint32_t val)
|
||
{
|
||
core->mac[RCTL] = val;
|
||
trace_e1000e_rx_set_rctl(core->mac[RCTL]);
|
||
|
||
if (val & E1000_RCTL_EN) {
|
||
e1000e_parse_rxbufsize(core);
|
||
e1000e_calc_rxdesclen(core);
|
||
core->rxbuf_min_shift = ((val / E1000_RCTL_RDMTS_QUAT) & 3) + 1 +
|
||
E1000_RING_DESC_LEN_SHIFT;
|
||
|
||
e1000e_start_recv(core);
|
||
}
|
||
}
|
||
|
||
static
|
||
void(*e1000e_phyreg_writeops[E1000E_PHY_PAGES][E1000E_PHY_PAGE_SIZE])
|
||
(E1000ECore *, int, uint16_t) = {
|
||
[0] = {
|
||
[MII_BMCR] = e1000e_set_phy_ctrl,
|
||
[PHY_PAGE] = e1000e_set_phy_page,
|
||
[PHY_OEM_BITS] = e1000e_set_phy_oem_bits
|
||
}
|
||
};
|
||
|
||
static inline bool
|
||
e1000e_postpone_interrupt(E1000IntrDelayTimer *timer)
|
||
{
|
||
if (timer->running) {
|
||
trace_e1000e_irq_postponed_by_xitr(timer->delay_reg << 2);
|
||
|
||
return true;
|
||
}
|
||
|
||
if (timer->core->mac[timer->delay_reg] != 0) {
|
||
e1000e_intrmgr_rearm_timer(timer);
|
||
}
|
||
|
||
return false;
|
||
}
|
||
|
||
static inline bool
|
||
e1000e_itr_should_postpone(E1000ECore *core)
|
||
{
|
||
return e1000e_postpone_interrupt(&core->itr);
|
||
}
|
||
|
||
static inline bool
|
||
e1000e_eitr_should_postpone(E1000ECore *core, int idx)
|
||
{
|
||
return e1000e_postpone_interrupt(&core->eitr[idx]);
|
||
}
|
||
|
||
static void
|
||
e1000e_msix_notify_one(E1000ECore *core, uint32_t cause, uint32_t int_cfg)
|
||
{
|
||
uint32_t effective_eiac;
|
||
|
||
if (E1000_IVAR_ENTRY_VALID(int_cfg)) {
|
||
uint32_t vec = E1000_IVAR_ENTRY_VEC(int_cfg);
|
||
if (vec < E1000E_MSIX_VEC_NUM) {
|
||
if (!e1000e_eitr_should_postpone(core, vec)) {
|
||
trace_e1000e_irq_msix_notify_vec(vec);
|
||
msix_notify(core->owner, vec);
|
||
}
|
||
} else {
|
||
trace_e1000e_wrn_msix_vec_wrong(cause, int_cfg);
|
||
}
|
||
} else {
|
||
trace_e1000e_wrn_msix_invalid(cause, int_cfg);
|
||
}
|
||
|
||
if (core->mac[CTRL_EXT] & E1000_CTRL_EXT_EIAME) {
|
||
trace_e1000e_irq_iam_clear_eiame(core->mac[IAM], cause);
|
||
core->mac[IAM] &= ~cause;
|
||
}
|
||
|
||
trace_e1000e_irq_icr_clear_eiac(core->mac[ICR], core->mac[EIAC]);
|
||
|
||
effective_eiac = core->mac[EIAC] & cause;
|
||
|
||
core->mac[ICR] &= ~effective_eiac;
|
||
|
||
if (!(core->mac[CTRL_EXT] & E1000_CTRL_EXT_IAME)) {
|
||
core->mac[IMS] &= ~effective_eiac;
|
||
}
|
||
}
|
||
|
||
static void
|
||
e1000e_msix_notify(E1000ECore *core, uint32_t causes)
|
||
{
|
||
if (causes & E1000_ICR_RXQ0) {
|
||
e1000e_msix_notify_one(core, E1000_ICR_RXQ0,
|
||
E1000_IVAR_RXQ0(core->mac[IVAR]));
|
||
}
|
||
|
||
if (causes & E1000_ICR_RXQ1) {
|
||
e1000e_msix_notify_one(core, E1000_ICR_RXQ1,
|
||
E1000_IVAR_RXQ1(core->mac[IVAR]));
|
||
}
|
||
|
||
if (causes & E1000_ICR_TXQ0) {
|
||
e1000e_msix_notify_one(core, E1000_ICR_TXQ0,
|
||
E1000_IVAR_TXQ0(core->mac[IVAR]));
|
||
}
|
||
|
||
if (causes & E1000_ICR_TXQ1) {
|
||
e1000e_msix_notify_one(core, E1000_ICR_TXQ1,
|
||
E1000_IVAR_TXQ1(core->mac[IVAR]));
|
||
}
|
||
|
||
if (causes & E1000_ICR_OTHER) {
|
||
e1000e_msix_notify_one(core, E1000_ICR_OTHER,
|
||
E1000_IVAR_OTHER(core->mac[IVAR]));
|
||
}
|
||
}
|
||
|
||
static void
|
||
e1000e_msix_clear_one(E1000ECore *core, uint32_t cause, uint32_t int_cfg)
|
||
{
|
||
if (E1000_IVAR_ENTRY_VALID(int_cfg)) {
|
||
uint32_t vec = E1000_IVAR_ENTRY_VEC(int_cfg);
|
||
if (vec < E1000E_MSIX_VEC_NUM) {
|
||
trace_e1000e_irq_msix_pending_clearing(cause, int_cfg, vec);
|
||
msix_clr_pending(core->owner, vec);
|
||
} else {
|
||
trace_e1000e_wrn_msix_vec_wrong(cause, int_cfg);
|
||
}
|
||
} else {
|
||
trace_e1000e_wrn_msix_invalid(cause, int_cfg);
|
||
}
|
||
}
|
||
|
||
static void
|
||
e1000e_msix_clear(E1000ECore *core, uint32_t causes)
|
||
{
|
||
if (causes & E1000_ICR_RXQ0) {
|
||
e1000e_msix_clear_one(core, E1000_ICR_RXQ0,
|
||
E1000_IVAR_RXQ0(core->mac[IVAR]));
|
||
}
|
||
|
||
if (causes & E1000_ICR_RXQ1) {
|
||
e1000e_msix_clear_one(core, E1000_ICR_RXQ1,
|
||
E1000_IVAR_RXQ1(core->mac[IVAR]));
|
||
}
|
||
|
||
if (causes & E1000_ICR_TXQ0) {
|
||
e1000e_msix_clear_one(core, E1000_ICR_TXQ0,
|
||
E1000_IVAR_TXQ0(core->mac[IVAR]));
|
||
}
|
||
|
||
if (causes & E1000_ICR_TXQ1) {
|
||
e1000e_msix_clear_one(core, E1000_ICR_TXQ1,
|
||
E1000_IVAR_TXQ1(core->mac[IVAR]));
|
||
}
|
||
|
||
if (causes & E1000_ICR_OTHER) {
|
||
e1000e_msix_clear_one(core, E1000_ICR_OTHER,
|
||
E1000_IVAR_OTHER(core->mac[IVAR]));
|
||
}
|
||
}
|
||
|
||
static inline void
|
||
e1000e_fix_icr_asserted(E1000ECore *core)
|
||
{
|
||
core->mac[ICR] &= ~E1000_ICR_ASSERTED;
|
||
if (core->mac[ICR]) {
|
||
core->mac[ICR] |= E1000_ICR_ASSERTED;
|
||
}
|
||
|
||
trace_e1000e_irq_fix_icr_asserted(core->mac[ICR]);
|
||
}
|
||
|
||
static void e1000e_raise_interrupts(E1000ECore *core,
|
||
size_t index, uint32_t causes)
|
||
{
|
||
bool is_msix = msix_enabled(core->owner);
|
||
uint32_t old_causes = core->mac[IMS] & core->mac[ICR];
|
||
uint32_t raised_causes;
|
||
|
||
trace_e1000e_irq_set(index << 2,
|
||
core->mac[index], core->mac[index] | causes);
|
||
|
||
core->mac[index] |= causes;
|
||
|
||
/* Set ICR[OTHER] for MSI-X */
|
||
if (is_msix) {
|
||
if (core->mac[ICR] & E1000_ICR_OTHER_CAUSES) {
|
||
core->mac[ICR] |= E1000_ICR_OTHER;
|
||
trace_e1000e_irq_add_msi_other(core->mac[ICR]);
|
||
}
|
||
}
|
||
|
||
e1000e_fix_icr_asserted(core);
|
||
|
||
/*
|
||
* Make sure ICR and ICS registers have the same value.
|
||
* The spec says that the ICS register is write-only. However in practice,
|
||
* on real hardware ICS is readable, and for reads it has the same value as
|
||
* ICR (except that ICS does not have the clear on read behaviour of ICR).
|
||
*
|
||
* The VxWorks PRO/1000 driver uses this behaviour.
|
||
*/
|
||
core->mac[ICS] = core->mac[ICR];
|
||
|
||
trace_e1000e_irq_pending_interrupts(core->mac[ICR] & core->mac[IMS],
|
||
core->mac[ICR], core->mac[IMS]);
|
||
|
||
raised_causes = core->mac[IMS] & core->mac[ICR] & ~old_causes;
|
||
if (!raised_causes) {
|
||
return;
|
||
}
|
||
|
||
if (is_msix) {
|
||
e1000e_msix_notify(core, raised_causes & ~E1000_ICR_ASSERTED);
|
||
} else if (!e1000e_itr_should_postpone(core)) {
|
||
if (msi_enabled(core->owner)) {
|
||
trace_e1000e_irq_msi_notify(raised_causes);
|
||
msi_notify(core->owner, 0);
|
||
} else {
|
||
e1000e_raise_legacy_irq(core);
|
||
}
|
||
}
|
||
}
|
||
|
||
static void e1000e_lower_interrupts(E1000ECore *core,
|
||
size_t index, uint32_t causes)
|
||
{
|
||
trace_e1000e_irq_clear(index << 2,
|
||
core->mac[index], core->mac[index] & ~causes);
|
||
|
||
core->mac[index] &= ~causes;
|
||
|
||
/*
|
||
* Make sure ICR and ICS registers have the same value.
|
||
* The spec says that the ICS register is write-only. However in practice,
|
||
* on real hardware ICS is readable, and for reads it has the same value as
|
||
* ICR (except that ICS does not have the clear on read behaviour of ICR).
|
||
*
|
||
* The VxWorks PRO/1000 driver uses this behaviour.
|
||
*/
|
||
core->mac[ICS] = core->mac[ICR];
|
||
|
||
trace_e1000e_irq_pending_interrupts(core->mac[ICR] & core->mac[IMS],
|
||
core->mac[ICR], core->mac[IMS]);
|
||
|
||
if (!(core->mac[IMS] & core->mac[ICR]) &&
|
||
!msix_enabled(core->owner) && !msi_enabled(core->owner)) {
|
||
e1000e_lower_legacy_irq(core);
|
||
}
|
||
}
|
||
|
||
static void
|
||
e1000e_set_interrupt_cause(E1000ECore *core, uint32_t val)
|
||
{
|
||
val |= e1000e_intmgr_collect_delayed_causes(core);
|
||
e1000e_raise_interrupts(core, ICR, val);
|
||
}
|
||
|
||
static inline void
|
||
e1000e_autoneg_timer(void *opaque)
|
||
{
|
||
E1000ECore *core = opaque;
|
||
if (!qemu_get_queue(core->owner_nic)->link_down) {
|
||
e1000x_update_regs_on_autoneg_done(core->mac, core->phy[0]);
|
||
e1000e_start_recv(core);
|
||
|
||
e1000e_update_flowctl_status(core);
|
||
/* signal link status change to the guest */
|
||
e1000e_set_interrupt_cause(core, E1000_ICR_LSC);
|
||
}
|
||
}
|
||
|
||
static inline uint16_t
|
||
e1000e_get_reg_index_with_offset(const uint16_t *mac_reg_access, hwaddr addr)
|
||
{
|
||
uint16_t index = (addr & 0x1ffff) >> 2;
|
||
return index + (mac_reg_access[index] & 0xfffe);
|
||
}
|
||
|
||
static const char e1000e_phy_regcap[E1000E_PHY_PAGES][0x20] = {
|
||
[0] = {
|
||
[MII_BMCR] = PHY_ANYPAGE | PHY_RW,
|
||
[MII_BMSR] = PHY_ANYPAGE | PHY_R,
|
||
[MII_PHYID1] = PHY_ANYPAGE | PHY_R,
|
||
[MII_PHYID2] = PHY_ANYPAGE | PHY_R,
|
||
[MII_ANAR] = PHY_ANYPAGE | PHY_RW,
|
||
[MII_ANLPAR] = PHY_ANYPAGE | PHY_R,
|
||
[MII_ANER] = PHY_ANYPAGE | PHY_R,
|
||
[MII_ANNP] = PHY_ANYPAGE | PHY_RW,
|
||
[MII_ANLPRNP] = PHY_ANYPAGE | PHY_R,
|
||
[MII_CTRL1000] = PHY_ANYPAGE | PHY_RW,
|
||
[MII_STAT1000] = PHY_ANYPAGE | PHY_R,
|
||
[MII_EXTSTAT] = PHY_ANYPAGE | PHY_R,
|
||
[PHY_PAGE] = PHY_ANYPAGE | PHY_RW,
|
||
|
||
[PHY_COPPER_CTRL1] = PHY_RW,
|
||
[PHY_COPPER_STAT1] = PHY_R,
|
||
[PHY_COPPER_CTRL3] = PHY_RW,
|
||
[PHY_RX_ERR_CNTR] = PHY_R,
|
||
[PHY_OEM_BITS] = PHY_RW,
|
||
[PHY_BIAS_1] = PHY_RW,
|
||
[PHY_BIAS_2] = PHY_RW,
|
||
[PHY_COPPER_INT_ENABLE] = PHY_RW,
|
||
[PHY_COPPER_STAT2] = PHY_R,
|
||
[PHY_COPPER_CTRL2] = PHY_RW
|
||
},
|
||
[2] = {
|
||
[PHY_MAC_CTRL1] = PHY_RW,
|
||
[PHY_MAC_INT_ENABLE] = PHY_RW,
|
||
[PHY_MAC_STAT] = PHY_R,
|
||
[PHY_MAC_CTRL2] = PHY_RW
|
||
},
|
||
[3] = {
|
||
[PHY_LED_03_FUNC_CTRL1] = PHY_RW,
|
||
[PHY_LED_03_POL_CTRL] = PHY_RW,
|
||
[PHY_LED_TIMER_CTRL] = PHY_RW,
|
||
[PHY_LED_45_CTRL] = PHY_RW
|
||
},
|
||
[5] = {
|
||
[PHY_1000T_SKEW] = PHY_R,
|
||
[PHY_1000T_SWAP] = PHY_R
|
||
},
|
||
[6] = {
|
||
[PHY_CRC_COUNTERS] = PHY_R
|
||
}
|
||
};
|
||
|
||
static bool
|
||
e1000e_phy_reg_check_cap(E1000ECore *core, uint32_t addr,
|
||
char cap, uint8_t *page)
|
||
{
|
||
*page =
|
||
(e1000e_phy_regcap[0][addr] & PHY_ANYPAGE) ? 0
|
||
: core->phy[0][PHY_PAGE];
|
||
|
||
if (*page >= E1000E_PHY_PAGES) {
|
||
return false;
|
||
}
|
||
|
||
return e1000e_phy_regcap[*page][addr] & cap;
|
||
}
|
||
|
||
static void
|
||
e1000e_phy_reg_write(E1000ECore *core, uint8_t page,
|
||
uint32_t addr, uint16_t data)
|
||
{
|
||
assert(page < E1000E_PHY_PAGES);
|
||
assert(addr < E1000E_PHY_PAGE_SIZE);
|
||
|
||
if (e1000e_phyreg_writeops[page][addr]) {
|
||
e1000e_phyreg_writeops[page][addr](core, addr, data);
|
||
} else {
|
||
core->phy[page][addr] = data;
|
||
}
|
||
}
|
||
|
||
static void
|
||
e1000e_set_mdic(E1000ECore *core, int index, uint32_t val)
|
||
{
|
||
uint32_t data = val & E1000_MDIC_DATA_MASK;
|
||
uint32_t addr = ((val & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT);
|
||
uint8_t page;
|
||
|
||
if ((val & E1000_MDIC_PHY_MASK) >> E1000_MDIC_PHY_SHIFT != 1) { /* phy # */
|
||
val = core->mac[MDIC] | E1000_MDIC_ERROR;
|
||
} else if (val & E1000_MDIC_OP_READ) {
|
||
if (!e1000e_phy_reg_check_cap(core, addr, PHY_R, &page)) {
|
||
trace_e1000e_core_mdic_read_unhandled(page, addr);
|
||
val |= E1000_MDIC_ERROR;
|
||
} else {
|
||
val = (val ^ data) | core->phy[page][addr];
|
||
trace_e1000e_core_mdic_read(page, addr, val);
|
||
}
|
||
} else if (val & E1000_MDIC_OP_WRITE) {
|
||
if (!e1000e_phy_reg_check_cap(core, addr, PHY_W, &page)) {
|
||
trace_e1000e_core_mdic_write_unhandled(page, addr);
|
||
val |= E1000_MDIC_ERROR;
|
||
} else {
|
||
trace_e1000e_core_mdic_write(page, addr, data);
|
||
e1000e_phy_reg_write(core, page, addr, data);
|
||
}
|
||
}
|
||
core->mac[MDIC] = val | E1000_MDIC_READY;
|
||
|
||
if (val & E1000_MDIC_INT_EN) {
|
||
e1000e_set_interrupt_cause(core, E1000_ICR_MDAC);
|
||
}
|
||
}
|
||
|
||
static void
|
||
e1000e_set_rdt(E1000ECore *core, int index, uint32_t val)
|
||
{
|
||
core->mac[index] = val & 0xffff;
|
||
trace_e1000e_rx_set_rdt(e1000e_mq_queue_idx(RDT0, index), val);
|
||
e1000e_start_recv(core);
|
||
}
|
||
|
||
static void
|
||
e1000e_set_status(E1000ECore *core, int index, uint32_t val)
|
||
{
|
||
if ((val & E1000_STATUS_PHYRA) == 0) {
|
||
core->mac[index] &= ~E1000_STATUS_PHYRA;
|
||
}
|
||
}
|
||
|
||
static void
|
||
e1000e_set_ctrlext(E1000ECore *core, int index, uint32_t val)
|
||
{
|
||
trace_e1000e_link_set_ext_params(!!(val & E1000_CTRL_EXT_ASDCHK),
|
||
!!(val & E1000_CTRL_EXT_SPD_BYPS));
|
||
|
||
/* Zero self-clearing bits */
|
||
val &= ~(E1000_CTRL_EXT_ASDCHK | E1000_CTRL_EXT_EE_RST);
|
||
core->mac[CTRL_EXT] = val;
|
||
}
|
||
|
||
static void
|
||
e1000e_set_pbaclr(E1000ECore *core, int index, uint32_t val)
|
||
{
|
||
int i;
|
||
|
||
core->mac[PBACLR] = val & E1000_PBACLR_VALID_MASK;
|
||
|
||
if (!msix_enabled(core->owner)) {
|
||
return;
|
||
}
|
||
|
||
for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) {
|
||
if (core->mac[PBACLR] & BIT(i)) {
|
||
msix_clr_pending(core->owner, i);
|
||
}
|
||
}
|
||
}
|
||
|
||
static void
|
||
e1000e_set_fcrth(E1000ECore *core, int index, uint32_t val)
|
||
{
|
||
core->mac[FCRTH] = val & 0xFFF8;
|
||
}
|
||
|
||
static void
|
||
e1000e_set_fcrtl(E1000ECore *core, int index, uint32_t val)
|
||
{
|
||
core->mac[FCRTL] = val & 0x8000FFF8;
|
||
}
|
||
|
||
#define E1000E_LOW_BITS_SET_FUNC(num) \
|
||
static void \
|
||
e1000e_set_##num##bit(E1000ECore *core, int index, uint32_t val) \
|
||
{ \
|
||
core->mac[index] = val & (BIT(num) - 1); \
|
||
}
|
||
|
||
E1000E_LOW_BITS_SET_FUNC(4)
|
||
E1000E_LOW_BITS_SET_FUNC(6)
|
||
E1000E_LOW_BITS_SET_FUNC(11)
|
||
E1000E_LOW_BITS_SET_FUNC(12)
|
||
E1000E_LOW_BITS_SET_FUNC(13)
|
||
E1000E_LOW_BITS_SET_FUNC(16)
|
||
|
||
static void
|
||
e1000e_set_vet(E1000ECore *core, int index, uint32_t val)
|
||
{
|
||
core->mac[VET] = val & 0xffff;
|
||
trace_e1000e_vlan_vet(core->mac[VET]);
|
||
}
|
||
|
||
static void
|
||
e1000e_set_dlen(E1000ECore *core, int index, uint32_t val)
|
||
{
|
||
core->mac[index] = val & E1000_XDLEN_MASK;
|
||
}
|
||
|
||
static void
|
||
e1000e_set_dbal(E1000ECore *core, int index, uint32_t val)
|
||
{
|
||
core->mac[index] = val & E1000_XDBAL_MASK;
|
||
}
|
||
|
||
static void
|
||
e1000e_set_tctl(E1000ECore *core, int index, uint32_t val)
|
||
{
|
||
E1000E_TxRing txr;
|
||
core->mac[index] = val;
|
||
|
||
if (core->mac[TARC0] & E1000_TARC_ENABLE) {
|
||
e1000e_tx_ring_init(core, &txr, 0);
|
||
e1000e_start_xmit(core, &txr);
|
||
}
|
||
|
||
if (core->mac[TARC1] & E1000_TARC_ENABLE) {
|
||
e1000e_tx_ring_init(core, &txr, 1);
|
||
e1000e_start_xmit(core, &txr);
|
||
}
|
||
}
|
||
|
||
static void
|
||
e1000e_set_tdt(E1000ECore *core, int index, uint32_t val)
|
||
{
|
||
E1000E_TxRing txr;
|
||
int qidx = e1000e_mq_queue_idx(TDT, index);
|
||
uint32_t tarc_reg = (qidx == 0) ? TARC0 : TARC1;
|
||
|
||
core->mac[index] = val & 0xffff;
|
||
|
||
if (core->mac[tarc_reg] & E1000_TARC_ENABLE) {
|
||
e1000e_tx_ring_init(core, &txr, qidx);
|
||
e1000e_start_xmit(core, &txr);
|
||
}
|
||
}
|
||
|
||
static void
|
||
e1000e_set_ics(E1000ECore *core, int index, uint32_t val)
|
||
{
|
||
trace_e1000e_irq_write_ics(val);
|
||
e1000e_set_interrupt_cause(core, val);
|
||
}
|
||
|
||
static void
|
||
e1000e_set_icr(E1000ECore *core, int index, uint32_t val)
|
||
{
|
||
if ((core->mac[ICR] & E1000_ICR_ASSERTED) &&
|
||
(core->mac[CTRL_EXT] & E1000_CTRL_EXT_IAME)) {
|
||
trace_e1000e_irq_icr_process_iame();
|
||
e1000e_lower_interrupts(core, IMS, core->mac[IAM]);
|
||
}
|
||
|
||
/*
|
||
* Windows driver expects that the "receive overrun" bit and other
|
||
* ones to be cleared when the "Other" bit (#24) is cleared.
|
||
*/
|
||
if (val & E1000_ICR_OTHER) {
|
||
val |= E1000_ICR_OTHER_CAUSES;
|
||
}
|
||
e1000e_lower_interrupts(core, ICR, val);
|
||
}
|
||
|
||
static void
|
||
e1000e_set_imc(E1000ECore *core, int index, uint32_t val)
|
||
{
|
||
trace_e1000e_irq_ims_clear_set_imc(val);
|
||
e1000e_lower_interrupts(core, IMS, val);
|
||
}
|
||
|
||
static void
|
||
e1000e_set_ims(E1000ECore *core, int index, uint32_t val)
|
||
{
|
||
static const uint32_t ims_ext_mask =
|
||
E1000_IMS_RXQ0 | E1000_IMS_RXQ1 |
|
||
E1000_IMS_TXQ0 | E1000_IMS_TXQ1 |
|
||
E1000_IMS_OTHER;
|
||
|
||
static const uint32_t ims_valid_mask =
|
||
E1000_IMS_TXDW | E1000_IMS_TXQE | E1000_IMS_LSC |
|
||
E1000_IMS_RXDMT0 | E1000_IMS_RXO | E1000_IMS_RXT0 |
|
||
E1000_IMS_MDAC | E1000_IMS_TXD_LOW | E1000_IMS_SRPD |
|
||
E1000_IMS_ACK | E1000_IMS_MNG | E1000_IMS_RXQ0 |
|
||
E1000_IMS_RXQ1 | E1000_IMS_TXQ0 | E1000_IMS_TXQ1 |
|
||
E1000_IMS_OTHER;
|
||
|
||
uint32_t valid_val = val & ims_valid_mask;
|
||
|
||
if ((valid_val & ims_ext_mask) &&
|
||
(core->mac[CTRL_EXT] & E1000_CTRL_EXT_PBA_CLR) &&
|
||
msix_enabled(core->owner)) {
|
||
e1000e_msix_clear(core, valid_val);
|
||
}
|
||
|
||
if ((valid_val == ims_valid_mask) &&
|
||
(core->mac[CTRL_EXT] & E1000_CTRL_EXT_INT_TIMERS_CLEAR_ENA)) {
|
||
trace_e1000e_irq_fire_all_timers(val);
|
||
e1000e_intrmgr_fire_all_timers(core);
|
||
}
|
||
|
||
e1000e_raise_interrupts(core, IMS, valid_val);
|
||
}
|
||
|
||
static void
|
||
e1000e_set_rdtr(E1000ECore *core, int index, uint32_t val)
|
||
{
|
||
e1000e_set_16bit(core, index, val);
|
||
|
||
if ((val & E1000_RDTR_FPD) && (core->rdtr.running)) {
|
||
trace_e1000e_irq_rdtr_fpd_running();
|
||
e1000e_intrmgr_fire_delayed_interrupts(core);
|
||
} else {
|
||
trace_e1000e_irq_rdtr_fpd_not_running();
|
||
}
|
||
}
|
||
|
||
static void
|
||
e1000e_set_tidv(E1000ECore *core, int index, uint32_t val)
|
||
{
|
||
e1000e_set_16bit(core, index, val);
|
||
|
||
if ((val & E1000_TIDV_FPD) && (core->tidv.running)) {
|
||
trace_e1000e_irq_tidv_fpd_running();
|
||
e1000e_intrmgr_fire_delayed_interrupts(core);
|
||
} else {
|
||
trace_e1000e_irq_tidv_fpd_not_running();
|
||
}
|
||
}
|
||
|
||
static uint32_t
|
||
e1000e_mac_readreg(E1000ECore *core, int index)
|
||
{
|
||
return core->mac[index];
|
||
}
|
||
|
||
static uint32_t
|
||
e1000e_mac_ics_read(E1000ECore *core, int index)
|
||
{
|
||
trace_e1000e_irq_read_ics(core->mac[ICS]);
|
||
return core->mac[ICS];
|
||
}
|
||
|
||
static uint32_t
|
||
e1000e_mac_ims_read(E1000ECore *core, int index)
|
||
{
|
||
trace_e1000e_irq_read_ims(core->mac[IMS]);
|
||
return core->mac[IMS];
|
||
}
|
||
|
||
static uint32_t
|
||
e1000e_mac_swsm_read(E1000ECore *core, int index)
|
||
{
|
||
uint32_t val = core->mac[SWSM];
|
||
core->mac[SWSM] = val | E1000_SWSM_SMBI;
|
||
return val;
|
||
}
|
||
|
||
static uint32_t
|
||
e1000e_mac_itr_read(E1000ECore *core, int index)
|
||
{
|
||
return core->itr_guest_value;
|
||
}
|
||
|
||
static uint32_t
|
||
e1000e_mac_eitr_read(E1000ECore *core, int index)
|
||
{
|
||
return core->eitr_guest_value[index - EITR];
|
||
}
|
||
|
||
static uint32_t
|
||
e1000e_mac_icr_read(E1000ECore *core, int index)
|
||
{
|
||
uint32_t ret = core->mac[ICR];
|
||
|
||
if (core->mac[IMS] == 0) {
|
||
trace_e1000e_irq_icr_clear_zero_ims();
|
||
e1000e_lower_interrupts(core, ICR, 0xffffffff);
|
||
}
|
||
|
||
if (!msix_enabled(core->owner)) {
|
||
trace_e1000e_irq_icr_clear_nonmsix_icr_read();
|
||
e1000e_lower_interrupts(core, ICR, 0xffffffff);
|
||
}
|
||
|
||
if (core->mac[ICR] & E1000_ICR_ASSERTED) {
|
||
if (core->mac[CTRL_EXT] & E1000_CTRL_EXT_IAME) {
|
||
trace_e1000e_irq_icr_clear_iame();
|
||
e1000e_lower_interrupts(core, ICR, 0xffffffff);
|
||
trace_e1000e_irq_icr_process_iame();
|
||
e1000e_lower_interrupts(core, IMS, core->mac[IAM]);
|
||
}
|
||
|
||
/*
|
||
* The datasheet does not say what happens when interrupt was asserted
|
||
* (ICR.INT_ASSERT=1) and auto mask is *not* active.
|
||
* However, section of 13.3.27 the PCIe* GbE Controllers Open Source
|
||
* Software Developer’s Manual, which were written for older devices,
|
||
* namely 631xESB/632xESB, 82563EB/82564EB, 82571EB/82572EI &
|
||
* 82573E/82573V/82573L, does say:
|
||
* > If IMS = 0b, then the ICR register is always clear-on-read. If IMS
|
||
* > is not 0b, but some ICR bit is set where the corresponding IMS bit
|
||
* > is not set, then a read does not clear the ICR register. For
|
||
* > example, if IMS = 10101010b and ICR = 01010101b, then a read to the
|
||
* > ICR register does not clear it. If IMS = 10101010b and
|
||
* > ICR = 0101011b, then a read to the ICR register clears it entirely
|
||
* > (ICR.INT_ASSERTED = 1b).
|
||
*
|
||
* Linux does no longer activate auto mask since commit
|
||
* 0a8047ac68e50e4ccbadcfc6b6b070805b976885 and the real hardware
|
||
* clears ICR even in such a case so we also should do so.
|
||
*/
|
||
if (core->mac[ICR] & core->mac[IMS]) {
|
||
trace_e1000e_irq_icr_clear_icr_bit_ims(core->mac[ICR],
|
||
core->mac[IMS]);
|
||
e1000e_lower_interrupts(core, ICR, 0xffffffff);
|
||
}
|
||
}
|
||
|
||
return ret;
|
||
}
|
||
|
||
static uint32_t
|
||
e1000e_mac_read_clr4(E1000ECore *core, int index)
|
||
{
|
||
uint32_t ret = core->mac[index];
|
||
|
||
core->mac[index] = 0;
|
||
return ret;
|
||
}
|
||
|
||
static uint32_t
|
||
e1000e_mac_read_clr8(E1000ECore *core, int index)
|
||
{
|
||
uint32_t ret = core->mac[index];
|
||
|
||
core->mac[index] = 0;
|
||
core->mac[index - 1] = 0;
|
||
return ret;
|
||
}
|
||
|
||
static uint32_t
|
||
e1000e_get_ctrl(E1000ECore *core, int index)
|
||
{
|
||
uint32_t val = core->mac[CTRL];
|
||
|
||
trace_e1000e_link_read_params(
|
||
!!(val & E1000_CTRL_ASDE),
|
||
(val & E1000_CTRL_SPD_SEL) >> E1000_CTRL_SPD_SHIFT,
|
||
!!(val & E1000_CTRL_FRCSPD),
|
||
!!(val & E1000_CTRL_FRCDPX),
|
||
!!(val & E1000_CTRL_RFCE),
|
||
!!(val & E1000_CTRL_TFCE));
|
||
|
||
return val;
|
||
}
|
||
|
||
static uint32_t
|
||
e1000e_get_status(E1000ECore *core, int index)
|
||
{
|
||
uint32_t res = core->mac[STATUS];
|
||
|
||
if (!(core->mac[CTRL] & E1000_CTRL_GIO_MASTER_DISABLE)) {
|
||
res |= E1000_STATUS_GIO_MASTER_ENABLE;
|
||
}
|
||
|
||
if (core->mac[CTRL] & E1000_CTRL_FRCDPX) {
|
||
res |= (core->mac[CTRL] & E1000_CTRL_FD) ? E1000_STATUS_FD : 0;
|
||
} else {
|
||
res |= E1000_STATUS_FD;
|
||
}
|
||
|
||
if ((core->mac[CTRL] & E1000_CTRL_FRCSPD) ||
|
||
(core->mac[CTRL_EXT] & E1000_CTRL_EXT_SPD_BYPS)) {
|
||
switch (core->mac[CTRL] & E1000_CTRL_SPD_SEL) {
|
||
case E1000_CTRL_SPD_10:
|
||
res |= E1000_STATUS_SPEED_10;
|
||
break;
|
||
case E1000_CTRL_SPD_100:
|
||
res |= E1000_STATUS_SPEED_100;
|
||
break;
|
||
case E1000_CTRL_SPD_1000:
|
||
default:
|
||
res |= E1000_STATUS_SPEED_1000;
|
||
break;
|
||
}
|
||
} else {
|
||
res |= E1000_STATUS_SPEED_1000;
|
||
}
|
||
|
||
trace_e1000e_link_status(
|
||
!!(res & E1000_STATUS_LU),
|
||
!!(res & E1000_STATUS_FD),
|
||
(res & E1000_STATUS_SPEED_MASK) >> E1000_STATUS_SPEED_SHIFT,
|
||
(res & E1000_STATUS_ASDV) >> E1000_STATUS_ASDV_SHIFT);
|
||
|
||
return res;
|
||
}
|
||
|
||
static uint32_t
|
||
e1000e_get_tarc(E1000ECore *core, int index)
|
||
{
|
||
return core->mac[index] & ((BIT(11) - 1) |
|
||
BIT(27) |
|
||
BIT(28) |
|
||
BIT(29) |
|
||
BIT(30));
|
||
}
|
||
|
||
static void
|
||
e1000e_mac_writereg(E1000ECore *core, int index, uint32_t val)
|
||
{
|
||
core->mac[index] = val;
|
||
}
|
||
|
||
static void
|
||
e1000e_mac_setmacaddr(E1000ECore *core, int index, uint32_t val)
|
||
{
|
||
uint32_t macaddr[2];
|
||
|
||
core->mac[index] = val;
|
||
|
||
macaddr[0] = cpu_to_le32(core->mac[RA]);
|
||
macaddr[1] = cpu_to_le32(core->mac[RA + 1]);
|
||
qemu_format_nic_info_str(qemu_get_queue(core->owner_nic),
|
||
(uint8_t *) macaddr);
|
||
|
||
trace_e1000e_mac_set_sw(MAC_ARG(macaddr));
|
||
}
|
||
|
||
static void
|
||
e1000e_set_eecd(E1000ECore *core, int index, uint32_t val)
|
||
{
|
||
static const uint32_t ro_bits = E1000_EECD_PRES |
|
||
E1000_EECD_AUTO_RD |
|
||
E1000_EECD_SIZE_EX_MASK;
|
||
|
||
core->mac[EECD] = (core->mac[EECD] & ro_bits) | (val & ~ro_bits);
|
||
}
|
||
|
||
static void
|
||
e1000e_set_eerd(E1000ECore *core, int index, uint32_t val)
|
||
{
|
||
uint32_t addr = (val >> E1000_EERW_ADDR_SHIFT) & E1000_EERW_ADDR_MASK;
|
||
uint32_t flags = 0;
|
||
uint32_t data = 0;
|
||
|
||
if ((addr < E1000E_EEPROM_SIZE) && (val & E1000_EERW_START)) {
|
||
data = core->eeprom[addr];
|
||
flags = E1000_EERW_DONE;
|
||
}
|
||
|
||
core->mac[EERD] = flags |
|
||
(addr << E1000_EERW_ADDR_SHIFT) |
|
||
(data << E1000_EERW_DATA_SHIFT);
|
||
}
|
||
|
||
static void
|
||
e1000e_set_eewr(E1000ECore *core, int index, uint32_t val)
|
||
{
|
||
uint32_t addr = (val >> E1000_EERW_ADDR_SHIFT) & E1000_EERW_ADDR_MASK;
|
||
uint32_t data = (val >> E1000_EERW_DATA_SHIFT) & E1000_EERW_DATA_MASK;
|
||
uint32_t flags = 0;
|
||
|
||
if ((addr < E1000E_EEPROM_SIZE) && (val & E1000_EERW_START)) {
|
||
core->eeprom[addr] = data;
|
||
flags = E1000_EERW_DONE;
|
||
}
|
||
|
||
core->mac[EERD] = flags |
|
||
(addr << E1000_EERW_ADDR_SHIFT) |
|
||
(data << E1000_EERW_DATA_SHIFT);
|
||
}
|
||
|
||
static void
|
||
e1000e_set_rxdctl(E1000ECore *core, int index, uint32_t val)
|
||
{
|
||
core->mac[RXDCTL] = core->mac[RXDCTL1] = val;
|
||
}
|
||
|
||
static void
|
||
e1000e_set_itr(E1000ECore *core, int index, uint32_t val)
|
||
{
|
||
uint32_t interval = val & 0xffff;
|
||
|
||
trace_e1000e_irq_itr_set(val);
|
||
|
||
core->itr_guest_value = interval;
|
||
core->mac[index] = MAX(interval, E1000E_MIN_XITR);
|
||
}
|
||
|
||
static void
|
||
e1000e_set_eitr(E1000ECore *core, int index, uint32_t val)
|
||
{
|
||
uint32_t interval = val & 0xffff;
|
||
uint32_t eitr_num = index - EITR;
|
||
|
||
trace_e1000e_irq_eitr_set(eitr_num, val);
|
||
|
||
core->eitr_guest_value[eitr_num] = interval;
|
||
core->mac[index] = MAX(interval, E1000E_MIN_XITR);
|
||
}
|
||
|
||
static void
|
||
e1000e_set_psrctl(E1000ECore *core, int index, uint32_t val)
|
||
{
|
||
if (core->mac[RCTL] & E1000_RCTL_DTYP_MASK) {
|
||
|
||
if ((val & E1000_PSRCTL_BSIZE0_MASK) == 0) {
|
||
qemu_log_mask(LOG_GUEST_ERROR,
|
||
"e1000e: PSRCTL.BSIZE0 cannot be zero");
|
||
return;
|
||
}
|
||
|
||
if ((val & E1000_PSRCTL_BSIZE1_MASK) == 0) {
|
||
qemu_log_mask(LOG_GUEST_ERROR,
|
||
"e1000e: PSRCTL.BSIZE1 cannot be zero");
|
||
return;
|
||
}
|
||
}
|
||
|
||
core->mac[PSRCTL] = val;
|
||
}
|
||
|
||
static void
|
||
e1000e_update_rx_offloads(E1000ECore *core)
|
||
{
|
||
int cso_state = e1000e_rx_l4_cso_enabled(core);
|
||
|
||
trace_e1000e_rx_set_cso(cso_state);
|
||
|
||
if (core->has_vnet) {
|
||
qemu_set_offload(qemu_get_queue(core->owner_nic)->peer,
|
||
cso_state, 0, 0, 0, 0);
|
||
}
|
||
}
|
||
|
||
static void
|
||
e1000e_set_rxcsum(E1000ECore *core, int index, uint32_t val)
|
||
{
|
||
core->mac[RXCSUM] = val;
|
||
e1000e_update_rx_offloads(core);
|
||
}
|
||
|
||
static void
|
||
e1000e_set_gcr(E1000ECore *core, int index, uint32_t val)
|
||
{
|
||
uint32_t ro_bits = core->mac[GCR] & E1000_GCR_RO_BITS;
|
||
core->mac[GCR] = (val & ~E1000_GCR_RO_BITS) | ro_bits;
|
||
}
|
||
|
||
static uint32_t e1000e_get_systiml(E1000ECore *core, int index)
|
||
{
|
||
e1000x_timestamp(core->mac, core->timadj, SYSTIML, SYSTIMH);
|
||
return core->mac[SYSTIML];
|
||
}
|
||
|
||
static uint32_t e1000e_get_rxsatrh(E1000ECore *core, int index)
|
||
{
|
||
core->mac[TSYNCRXCTL] &= ~E1000_TSYNCRXCTL_VALID;
|
||
return core->mac[RXSATRH];
|
||
}
|
||
|
||
static uint32_t e1000e_get_txstmph(E1000ECore *core, int index)
|
||
{
|
||
core->mac[TSYNCTXCTL] &= ~E1000_TSYNCTXCTL_VALID;
|
||
return core->mac[TXSTMPH];
|
||
}
|
||
|
||
static void e1000e_set_timinca(E1000ECore *core, int index, uint32_t val)
|
||
{
|
||
e1000x_set_timinca(core->mac, &core->timadj, val);
|
||
}
|
||
|
||
static void e1000e_set_timadjh(E1000ECore *core, int index, uint32_t val)
|
||
{
|
||
core->mac[TIMADJH] = val;
|
||
core->timadj += core->mac[TIMADJL] | ((int64_t)core->mac[TIMADJH] << 32);
|
||
}
|
||
|
||
#define e1000e_getreg(x) [x] = e1000e_mac_readreg
|
||
typedef uint32_t (*readops)(E1000ECore *, int);
|
||
static const readops e1000e_macreg_readops[] = {
|
||
e1000e_getreg(PBA),
|
||
e1000e_getreg(WUFC),
|
||
e1000e_getreg(MANC),
|
||
e1000e_getreg(TOTL),
|
||
e1000e_getreg(RDT0),
|
||
e1000e_getreg(RDBAH0),
|
||
e1000e_getreg(TDBAL1),
|
||
e1000e_getreg(RDLEN0),
|
||
e1000e_getreg(RDH1),
|
||
e1000e_getreg(LATECOL),
|
||
e1000e_getreg(SEQEC),
|
||
e1000e_getreg(XONTXC),
|
||
e1000e_getreg(AIT),
|
||
e1000e_getreg(TDFH),
|
||
e1000e_getreg(TDFT),
|
||
e1000e_getreg(TDFHS),
|
||
e1000e_getreg(TDFTS),
|
||
e1000e_getreg(TDFPC),
|
||
e1000e_getreg(WUS),
|
||
e1000e_getreg(PBS),
|
||
e1000e_getreg(RDFH),
|
||
e1000e_getreg(RDFT),
|
||
e1000e_getreg(RDFHS),
|
||
e1000e_getreg(RDFTS),
|
||
e1000e_getreg(RDFPC),
|
||
e1000e_getreg(GORCL),
|
||
e1000e_getreg(MGTPRC),
|
||
e1000e_getreg(EERD),
|
||
e1000e_getreg(EIAC),
|
||
e1000e_getreg(PSRCTL),
|
||
e1000e_getreg(MANC2H),
|
||
e1000e_getreg(RXCSUM),
|
||
e1000e_getreg(GSCL_3),
|
||
e1000e_getreg(GSCN_2),
|
||
e1000e_getreg(RSRPD),
|
||
e1000e_getreg(RDBAL1),
|
||
e1000e_getreg(FCAH),
|
||
e1000e_getreg(FCRTH),
|
||
e1000e_getreg(FLOP),
|
||
e1000e_getreg(FLASHT),
|
||
e1000e_getreg(RXSTMPH),
|
||
e1000e_getreg(TXSTMPL),
|
||
e1000e_getreg(TIMADJL),
|
||
e1000e_getreg(TXDCTL),
|
||
e1000e_getreg(RDH0),
|
||
e1000e_getreg(TDT1),
|
||
e1000e_getreg(TNCRS),
|
||
e1000e_getreg(RJC),
|
||
e1000e_getreg(IAM),
|
||
e1000e_getreg(GSCL_2),
|
||
e1000e_getreg(RDBAH1),
|
||
e1000e_getreg(FLSWDATA),
|
||
e1000e_getreg(TIPG),
|
||
e1000e_getreg(FLMNGCTL),
|
||
e1000e_getreg(FLMNGCNT),
|
||
e1000e_getreg(TSYNCTXCTL),
|
||
e1000e_getreg(EXTCNF_SIZE),
|
||
e1000e_getreg(EXTCNF_CTRL),
|
||
e1000e_getreg(EEMNGDATA),
|
||
e1000e_getreg(CTRL_EXT),
|
||
e1000e_getreg(SYSTIMH),
|
||
e1000e_getreg(EEMNGCTL),
|
||
e1000e_getreg(FLMNGDATA),
|
||
e1000e_getreg(TSYNCRXCTL),
|
||
e1000e_getreg(TDH),
|
||
e1000e_getreg(LEDCTL),
|
||
e1000e_getreg(TCTL),
|
||
e1000e_getreg(TDBAL),
|
||
e1000e_getreg(TDLEN),
|
||
e1000e_getreg(TDH1),
|
||
e1000e_getreg(RADV),
|
||
e1000e_getreg(ECOL),
|
||
e1000e_getreg(DC),
|
||
e1000e_getreg(RLEC),
|
||
e1000e_getreg(XOFFTXC),
|
||
e1000e_getreg(RFC),
|
||
e1000e_getreg(RNBC),
|
||
e1000e_getreg(MGTPTC),
|
||
e1000e_getreg(TIMINCA),
|
||
e1000e_getreg(RXCFGL),
|
||
e1000e_getreg(MFUTP01),
|
||
e1000e_getreg(FACTPS),
|
||
e1000e_getreg(GSCL_1),
|
||
e1000e_getreg(GSCN_0),
|
||
e1000e_getreg(GCR2),
|
||
e1000e_getreg(RDT1),
|
||
e1000e_getreg(PBACLR),
|
||
e1000e_getreg(FCTTV),
|
||
e1000e_getreg(EEWR),
|
||
e1000e_getreg(FLSWCTL),
|
||
e1000e_getreg(RXDCTL1),
|
||
e1000e_getreg(RXSATRL),
|
||
e1000e_getreg(RXUDP),
|
||
e1000e_getreg(TORL),
|
||
e1000e_getreg(TDLEN1),
|
||
e1000e_getreg(MCC),
|
||
e1000e_getreg(WUC),
|
||
e1000e_getreg(EECD),
|
||
e1000e_getreg(MFUTP23),
|
||
e1000e_getreg(RAID),
|
||
e1000e_getreg(FCRTV),
|
||
e1000e_getreg(TXDCTL1),
|
||
e1000e_getreg(RCTL),
|
||
e1000e_getreg(TDT),
|
||
e1000e_getreg(MDIC),
|
||
e1000e_getreg(FCRUC),
|
||
e1000e_getreg(VET),
|
||
e1000e_getreg(RDBAL0),
|
||
e1000e_getreg(TDBAH1),
|
||
e1000e_getreg(RDTR),
|
||
e1000e_getreg(SCC),
|
||
e1000e_getreg(COLC),
|
||
e1000e_getreg(CEXTERR),
|
||
e1000e_getreg(XOFFRXC),
|
||
e1000e_getreg(IPAV),
|
||
e1000e_getreg(GOTCL),
|
||
e1000e_getreg(MGTPDC),
|
||
e1000e_getreg(GCR),
|
||
e1000e_getreg(IVAR),
|
||
e1000e_getreg(POEMB),
|
||
e1000e_getreg(MFVAL),
|
||
e1000e_getreg(FUNCTAG),
|
||
e1000e_getreg(GSCL_4),
|
||
e1000e_getreg(GSCN_3),
|
||
e1000e_getreg(MRQC),
|
||
e1000e_getreg(RDLEN1),
|
||
e1000e_getreg(FCT),
|
||
e1000e_getreg(FLA),
|
||
e1000e_getreg(FLOL),
|
||
e1000e_getreg(RXDCTL),
|
||
e1000e_getreg(RXSTMPL),
|
||
e1000e_getreg(TIMADJH),
|
||
e1000e_getreg(FCRTL),
|
||
e1000e_getreg(TDBAH),
|
||
e1000e_getreg(TADV),
|
||
e1000e_getreg(XONRXC),
|
||
e1000e_getreg(TSCTFC),
|
||
e1000e_getreg(RFCTL),
|
||
e1000e_getreg(GSCN_1),
|
||
e1000e_getreg(FCAL),
|
||
e1000e_getreg(FLSWCNT),
|
||
|
||
[TOTH] = e1000e_mac_read_clr8,
|
||
[GOTCH] = e1000e_mac_read_clr8,
|
||
[PRC64] = e1000e_mac_read_clr4,
|
||
[PRC255] = e1000e_mac_read_clr4,
|
||
[PRC1023] = e1000e_mac_read_clr4,
|
||
[PTC64] = e1000e_mac_read_clr4,
|
||
[PTC255] = e1000e_mac_read_clr4,
|
||
[PTC1023] = e1000e_mac_read_clr4,
|
||
[GPRC] = e1000e_mac_read_clr4,
|
||
[TPT] = e1000e_mac_read_clr4,
|
||
[RUC] = e1000e_mac_read_clr4,
|
||
[BPRC] = e1000e_mac_read_clr4,
|
||
[MPTC] = e1000e_mac_read_clr4,
|
||
[IAC] = e1000e_mac_read_clr4,
|
||
[ICR] = e1000e_mac_icr_read,
|
||
[STATUS] = e1000e_get_status,
|
||
[TARC0] = e1000e_get_tarc,
|
||
[ICS] = e1000e_mac_ics_read,
|
||
[TORH] = e1000e_mac_read_clr8,
|
||
[GORCH] = e1000e_mac_read_clr8,
|
||
[PRC127] = e1000e_mac_read_clr4,
|
||
[PRC511] = e1000e_mac_read_clr4,
|
||
[PRC1522] = e1000e_mac_read_clr4,
|
||
[PTC127] = e1000e_mac_read_clr4,
|
||
[PTC511] = e1000e_mac_read_clr4,
|
||
[PTC1522] = e1000e_mac_read_clr4,
|
||
[GPTC] = e1000e_mac_read_clr4,
|
||
[TPR] = e1000e_mac_read_clr4,
|
||
[ROC] = e1000e_mac_read_clr4,
|
||
[MPRC] = e1000e_mac_read_clr4,
|
||
[BPTC] = e1000e_mac_read_clr4,
|
||
[TSCTC] = e1000e_mac_read_clr4,
|
||
[ITR] = e1000e_mac_itr_read,
|
||
[CTRL] = e1000e_get_ctrl,
|
||
[TARC1] = e1000e_get_tarc,
|
||
[SWSM] = e1000e_mac_swsm_read,
|
||
[IMS] = e1000e_mac_ims_read,
|
||
[SYSTIML] = e1000e_get_systiml,
|
||
[RXSATRH] = e1000e_get_rxsatrh,
|
||
[TXSTMPH] = e1000e_get_txstmph,
|
||
|
||
[CRCERRS ... MPC] = e1000e_mac_readreg,
|
||
[IP6AT ... IP6AT + 3] = e1000e_mac_readreg,
|
||
[IP4AT ... IP4AT + 6] = e1000e_mac_readreg,
|
||
[RA ... RA + 31] = e1000e_mac_readreg,
|
||
[WUPM ... WUPM + 31] = e1000e_mac_readreg,
|
||
[MTA ... MTA + E1000_MC_TBL_SIZE - 1] = e1000e_mac_readreg,
|
||
[VFTA ... VFTA + E1000_VLAN_FILTER_TBL_SIZE - 1] = e1000e_mac_readreg,
|
||
[FFMT ... FFMT + 254] = e1000e_mac_readreg,
|
||
[FFVT ... FFVT + 254] = e1000e_mac_readreg,
|
||
[MDEF ... MDEF + 7] = e1000e_mac_readreg,
|
||
[FFLT ... FFLT + 10] = e1000e_mac_readreg,
|
||
[FTFT ... FTFT + 254] = e1000e_mac_readreg,
|
||
[PBM ... PBM + 10239] = e1000e_mac_readreg,
|
||
[RETA ... RETA + 31] = e1000e_mac_readreg,
|
||
[RSSRK ... RSSRK + 31] = e1000e_mac_readreg,
|
||
[MAVTV0 ... MAVTV3] = e1000e_mac_readreg,
|
||
[EITR...EITR + E1000E_MSIX_VEC_NUM - 1] = e1000e_mac_eitr_read
|
||
};
|
||
enum { E1000E_NREADOPS = ARRAY_SIZE(e1000e_macreg_readops) };
|
||
|
||
#define e1000e_putreg(x) [x] = e1000e_mac_writereg
|
||
typedef void (*writeops)(E1000ECore *, int, uint32_t);
|
||
static const writeops e1000e_macreg_writeops[] = {
|
||
e1000e_putreg(PBA),
|
||
e1000e_putreg(SWSM),
|
||
e1000e_putreg(WUFC),
|
||
e1000e_putreg(RDBAH1),
|
||
e1000e_putreg(TDBAH),
|
||
e1000e_putreg(TXDCTL),
|
||
e1000e_putreg(RDBAH0),
|
||
e1000e_putreg(LEDCTL),
|
||
e1000e_putreg(FCAL),
|
||
e1000e_putreg(FCRUC),
|
||
e1000e_putreg(WUC),
|
||
e1000e_putreg(WUS),
|
||
e1000e_putreg(IPAV),
|
||
e1000e_putreg(TDBAH1),
|
||
e1000e_putreg(IAM),
|
||
e1000e_putreg(EIAC),
|
||
e1000e_putreg(IVAR),
|
||
e1000e_putreg(TARC0),
|
||
e1000e_putreg(TARC1),
|
||
e1000e_putreg(FLSWDATA),
|
||
e1000e_putreg(POEMB),
|
||
e1000e_putreg(MFUTP01),
|
||
e1000e_putreg(MFUTP23),
|
||
e1000e_putreg(MANC),
|
||
e1000e_putreg(MANC2H),
|
||
e1000e_putreg(MFVAL),
|
||
e1000e_putreg(EXTCNF_CTRL),
|
||
e1000e_putreg(FACTPS),
|
||
e1000e_putreg(FUNCTAG),
|
||
e1000e_putreg(GSCL_1),
|
||
e1000e_putreg(GSCL_2),
|
||
e1000e_putreg(GSCL_3),
|
||
e1000e_putreg(GSCL_4),
|
||
e1000e_putreg(GSCN_0),
|
||
e1000e_putreg(GSCN_1),
|
||
e1000e_putreg(GSCN_2),
|
||
e1000e_putreg(GSCN_3),
|
||
e1000e_putreg(GCR2),
|
||
e1000e_putreg(MRQC),
|
||
e1000e_putreg(FLOP),
|
||
e1000e_putreg(FLOL),
|
||
e1000e_putreg(FLSWCTL),
|
||
e1000e_putreg(FLSWCNT),
|
||
e1000e_putreg(FLA),
|
||
e1000e_putreg(RXDCTL1),
|
||
e1000e_putreg(TXDCTL1),
|
||
e1000e_putreg(TIPG),
|
||
e1000e_putreg(RXSTMPH),
|
||
e1000e_putreg(RXSTMPL),
|
||
e1000e_putreg(RXSATRL),
|
||
e1000e_putreg(RXSATRH),
|
||
e1000e_putreg(TXSTMPL),
|
||
e1000e_putreg(TXSTMPH),
|
||
e1000e_putreg(SYSTIML),
|
||
e1000e_putreg(SYSTIMH),
|
||
e1000e_putreg(TIMADJL),
|
||
e1000e_putreg(RXUDP),
|
||
e1000e_putreg(RXCFGL),
|
||
e1000e_putreg(TSYNCRXCTL),
|
||
e1000e_putreg(TSYNCTXCTL),
|
||
e1000e_putreg(EXTCNF_SIZE),
|
||
e1000e_putreg(EEMNGCTL),
|
||
e1000e_putreg(RA),
|
||
|
||
[TDH1] = e1000e_set_16bit,
|
||
[TDT1] = e1000e_set_tdt,
|
||
[TCTL] = e1000e_set_tctl,
|
||
[TDT] = e1000e_set_tdt,
|
||
[MDIC] = e1000e_set_mdic,
|
||
[ICS] = e1000e_set_ics,
|
||
[TDH] = e1000e_set_16bit,
|
||
[RDH0] = e1000e_set_16bit,
|
||
[RDT0] = e1000e_set_rdt,
|
||
[IMC] = e1000e_set_imc,
|
||
[IMS] = e1000e_set_ims,
|
||
[ICR] = e1000e_set_icr,
|
||
[EECD] = e1000e_set_eecd,
|
||
[RCTL] = e1000e_set_rx_control,
|
||
[CTRL] = e1000e_set_ctrl,
|
||
[RDTR] = e1000e_set_rdtr,
|
||
[RADV] = e1000e_set_16bit,
|
||
[TADV] = e1000e_set_16bit,
|
||
[ITR] = e1000e_set_itr,
|
||
[EERD] = e1000e_set_eerd,
|
||
[AIT] = e1000e_set_16bit,
|
||
[TDFH] = e1000e_set_13bit,
|
||
[TDFT] = e1000e_set_13bit,
|
||
[TDFHS] = e1000e_set_13bit,
|
||
[TDFTS] = e1000e_set_13bit,
|
||
[TDFPC] = e1000e_set_13bit,
|
||
[RDFH] = e1000e_set_13bit,
|
||
[RDFHS] = e1000e_set_13bit,
|
||
[RDFT] = e1000e_set_13bit,
|
||
[RDFTS] = e1000e_set_13bit,
|
||
[RDFPC] = e1000e_set_13bit,
|
||
[PBS] = e1000e_set_6bit,
|
||
[GCR] = e1000e_set_gcr,
|
||
[PSRCTL] = e1000e_set_psrctl,
|
||
[RXCSUM] = e1000e_set_rxcsum,
|
||
[RAID] = e1000e_set_16bit,
|
||
[RSRPD] = e1000e_set_12bit,
|
||
[TIDV] = e1000e_set_tidv,
|
||
[TDLEN1] = e1000e_set_dlen,
|
||
[TDLEN] = e1000e_set_dlen,
|
||
[RDLEN0] = e1000e_set_dlen,
|
||
[RDLEN1] = e1000e_set_dlen,
|
||
[TDBAL] = e1000e_set_dbal,
|
||
[TDBAL1] = e1000e_set_dbal,
|
||
[RDBAL0] = e1000e_set_dbal,
|
||
[RDBAL1] = e1000e_set_dbal,
|
||
[RDH1] = e1000e_set_16bit,
|
||
[RDT1] = e1000e_set_rdt,
|
||
[STATUS] = e1000e_set_status,
|
||
[PBACLR] = e1000e_set_pbaclr,
|
||
[CTRL_EXT] = e1000e_set_ctrlext,
|
||
[FCAH] = e1000e_set_16bit,
|
||
[FCT] = e1000e_set_16bit,
|
||
[FCTTV] = e1000e_set_16bit,
|
||
[FCRTV] = e1000e_set_16bit,
|
||
[FCRTH] = e1000e_set_fcrth,
|
||
[FCRTL] = e1000e_set_fcrtl,
|
||
[VET] = e1000e_set_vet,
|
||
[RXDCTL] = e1000e_set_rxdctl,
|
||
[FLASHT] = e1000e_set_16bit,
|
||
[EEWR] = e1000e_set_eewr,
|
||
[CTRL_DUP] = e1000e_set_ctrl,
|
||
[RFCTL] = e1000e_set_rfctl,
|
||
[RA + 1] = e1000e_mac_setmacaddr,
|
||
[TIMINCA] = e1000e_set_timinca,
|
||
[TIMADJH] = e1000e_set_timadjh,
|
||
|
||
[IP6AT ... IP6AT + 3] = e1000e_mac_writereg,
|
||
[IP4AT ... IP4AT + 6] = e1000e_mac_writereg,
|
||
[RA + 2 ... RA + 31] = e1000e_mac_writereg,
|
||
[WUPM ... WUPM + 31] = e1000e_mac_writereg,
|
||
[MTA ... MTA + E1000_MC_TBL_SIZE - 1] = e1000e_mac_writereg,
|
||
[VFTA ... VFTA + E1000_VLAN_FILTER_TBL_SIZE - 1] = e1000e_mac_writereg,
|
||
[FFMT ... FFMT + 254] = e1000e_set_4bit,
|
||
[FFVT ... FFVT + 254] = e1000e_mac_writereg,
|
||
[PBM ... PBM + 10239] = e1000e_mac_writereg,
|
||
[MDEF ... MDEF + 7] = e1000e_mac_writereg,
|
||
[FFLT ... FFLT + 10] = e1000e_set_11bit,
|
||
[FTFT ... FTFT + 254] = e1000e_mac_writereg,
|
||
[RETA ... RETA + 31] = e1000e_mac_writereg,
|
||
[RSSRK ... RSSRK + 31] = e1000e_mac_writereg,
|
||
[MAVTV0 ... MAVTV3] = e1000e_mac_writereg,
|
||
[EITR...EITR + E1000E_MSIX_VEC_NUM - 1] = e1000e_set_eitr
|
||
};
|
||
enum { E1000E_NWRITEOPS = ARRAY_SIZE(e1000e_macreg_writeops) };
|
||
|
||
enum { MAC_ACCESS_PARTIAL = 1 };
|
||
|
||
/*
|
||
* The array below combines alias offsets of the index values for the
|
||
* MAC registers that have aliases, with the indication of not fully
|
||
* implemented registers (lowest bit). This combination is possible
|
||
* because all of the offsets are even.
|
||
*/
|
||
static const uint16_t mac_reg_access[E1000E_MAC_SIZE] = {
|
||
/* Alias index offsets */
|
||
[FCRTL_A] = 0x07fe, [FCRTH_A] = 0x0802,
|
||
[RDH0_A] = 0x09bc, [RDT0_A] = 0x09bc, [RDTR_A] = 0x09c6,
|
||
[RDFH_A] = 0xe904, [RDFT_A] = 0xe904,
|
||
[TDH_A] = 0x0cf8, [TDT_A] = 0x0cf8, [TIDV_A] = 0x0cf8,
|
||
[TDFH_A] = 0xed00, [TDFT_A] = 0xed00,
|
||
[RA_A ... RA_A + 31] = 0x14f0,
|
||
[VFTA_A ... VFTA_A + E1000_VLAN_FILTER_TBL_SIZE - 1] = 0x1400,
|
||
[RDBAL0_A ... RDLEN0_A] = 0x09bc,
|
||
[TDBAL_A ... TDLEN_A] = 0x0cf8,
|
||
/* Access options */
|
||
[RDFH] = MAC_ACCESS_PARTIAL, [RDFT] = MAC_ACCESS_PARTIAL,
|
||
[RDFHS] = MAC_ACCESS_PARTIAL, [RDFTS] = MAC_ACCESS_PARTIAL,
|
||
[RDFPC] = MAC_ACCESS_PARTIAL,
|
||
[TDFH] = MAC_ACCESS_PARTIAL, [TDFT] = MAC_ACCESS_PARTIAL,
|
||
[TDFHS] = MAC_ACCESS_PARTIAL, [TDFTS] = MAC_ACCESS_PARTIAL,
|
||
[TDFPC] = MAC_ACCESS_PARTIAL, [EECD] = MAC_ACCESS_PARTIAL,
|
||
[PBM] = MAC_ACCESS_PARTIAL, [FLA] = MAC_ACCESS_PARTIAL,
|
||
[FCAL] = MAC_ACCESS_PARTIAL, [FCAH] = MAC_ACCESS_PARTIAL,
|
||
[FCT] = MAC_ACCESS_PARTIAL, [FCTTV] = MAC_ACCESS_PARTIAL,
|
||
[FCRTV] = MAC_ACCESS_PARTIAL, [FCRTL] = MAC_ACCESS_PARTIAL,
|
||
[FCRTH] = MAC_ACCESS_PARTIAL, [TXDCTL] = MAC_ACCESS_PARTIAL,
|
||
[TXDCTL1] = MAC_ACCESS_PARTIAL,
|
||
[MAVTV0 ... MAVTV3] = MAC_ACCESS_PARTIAL
|
||
};
|
||
|
||
void
|
||
e1000e_core_write(E1000ECore *core, hwaddr addr, uint64_t val, unsigned size)
|
||
{
|
||
uint16_t index = e1000e_get_reg_index_with_offset(mac_reg_access, addr);
|
||
|
||
if (index < E1000E_NWRITEOPS && e1000e_macreg_writeops[index]) {
|
||
if (mac_reg_access[index] & MAC_ACCESS_PARTIAL) {
|
||
trace_e1000e_wrn_regs_write_trivial(index << 2);
|
||
}
|
||
trace_e1000e_core_write(index << 2, size, val);
|
||
e1000e_macreg_writeops[index](core, index, val);
|
||
} else if (index < E1000E_NREADOPS && e1000e_macreg_readops[index]) {
|
||
trace_e1000e_wrn_regs_write_ro(index << 2, size, val);
|
||
} else {
|
||
trace_e1000e_wrn_regs_write_unknown(index << 2, size, val);
|
||
}
|
||
}
|
||
|
||
uint64_t
|
||
e1000e_core_read(E1000ECore *core, hwaddr addr, unsigned size)
|
||
{
|
||
uint64_t val;
|
||
uint16_t index = e1000e_get_reg_index_with_offset(mac_reg_access, addr);
|
||
|
||
if (index < E1000E_NREADOPS && e1000e_macreg_readops[index]) {
|
||
if (mac_reg_access[index] & MAC_ACCESS_PARTIAL) {
|
||
trace_e1000e_wrn_regs_read_trivial(index << 2);
|
||
}
|
||
val = e1000e_macreg_readops[index](core, index);
|
||
trace_e1000e_core_read(index << 2, size, val);
|
||
return val;
|
||
} else {
|
||
trace_e1000e_wrn_regs_read_unknown(index << 2, size);
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
static inline void
|
||
e1000e_autoneg_pause(E1000ECore *core)
|
||
{
|
||
timer_del(core->autoneg_timer);
|
||
}
|
||
|
||
static void
|
||
e1000e_autoneg_resume(E1000ECore *core)
|
||
{
|
||
if (e1000e_have_autoneg(core) &&
|
||
!(core->phy[0][MII_BMSR] & MII_BMSR_AN_COMP)) {
|
||
qemu_get_queue(core->owner_nic)->link_down = false;
|
||
timer_mod(core->autoneg_timer,
|
||
qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + 500);
|
||
}
|
||
}
|
||
|
||
static void
|
||
e1000e_vm_state_change(void *opaque, bool running, RunState state)
|
||
{
|
||
E1000ECore *core = opaque;
|
||
|
||
if (running) {
|
||
trace_e1000e_vm_state_running();
|
||
e1000e_intrmgr_resume(core);
|
||
e1000e_autoneg_resume(core);
|
||
} else {
|
||
trace_e1000e_vm_state_stopped();
|
||
e1000e_autoneg_pause(core);
|
||
e1000e_intrmgr_pause(core);
|
||
}
|
||
}
|
||
|
||
void
|
||
e1000e_core_pci_realize(E1000ECore *core,
|
||
const uint16_t *eeprom_templ,
|
||
uint32_t eeprom_size,
|
||
const uint8_t *macaddr)
|
||
{
|
||
int i;
|
||
|
||
core->autoneg_timer = timer_new_ms(QEMU_CLOCK_VIRTUAL,
|
||
e1000e_autoneg_timer, core);
|
||
e1000e_intrmgr_pci_realize(core);
|
||
|
||
core->vmstate =
|
||
qemu_add_vm_change_state_handler(e1000e_vm_state_change, core);
|
||
|
||
for (i = 0; i < E1000E_NUM_QUEUES; i++) {
|
||
net_tx_pkt_init(&core->tx[i].tx_pkt, E1000E_MAX_TX_FRAGS);
|
||
}
|
||
|
||
net_rx_pkt_init(&core->rx_pkt);
|
||
|
||
e1000x_core_prepare_eeprom(core->eeprom,
|
||
eeprom_templ,
|
||
eeprom_size,
|
||
PCI_DEVICE_GET_CLASS(core->owner)->device_id,
|
||
macaddr);
|
||
e1000e_update_rx_offloads(core);
|
||
}
|
||
|
||
void
|
||
e1000e_core_pci_uninit(E1000ECore *core)
|
||
{
|
||
int i;
|
||
|
||
timer_free(core->autoneg_timer);
|
||
|
||
e1000e_intrmgr_pci_unint(core);
|
||
|
||
qemu_del_vm_change_state_handler(core->vmstate);
|
||
|
||
for (i = 0; i < E1000E_NUM_QUEUES; i++) {
|
||
net_tx_pkt_uninit(core->tx[i].tx_pkt);
|
||
}
|
||
|
||
net_rx_pkt_uninit(core->rx_pkt);
|
||
}
|
||
|
||
static const uint16_t
|
||
e1000e_phy_reg_init[E1000E_PHY_PAGES][E1000E_PHY_PAGE_SIZE] = {
|
||
[0] = {
|
||
[MII_BMCR] = MII_BMCR_SPEED1000 |
|
||
MII_BMCR_FD |
|
||
MII_BMCR_AUTOEN,
|
||
|
||
[MII_BMSR] = MII_BMSR_EXTCAP |
|
||
MII_BMSR_LINK_ST |
|
||
MII_BMSR_AUTONEG |
|
||
MII_BMSR_MFPS |
|
||
MII_BMSR_EXTSTAT |
|
||
MII_BMSR_10T_HD |
|
||
MII_BMSR_10T_FD |
|
||
MII_BMSR_100TX_HD |
|
||
MII_BMSR_100TX_FD,
|
||
|
||
[MII_PHYID1] = 0x141,
|
||
[MII_PHYID2] = E1000_PHY_ID2_82574x,
|
||
[MII_ANAR] = MII_ANAR_CSMACD | MII_ANAR_10 |
|
||
MII_ANAR_10FD | MII_ANAR_TX |
|
||
MII_ANAR_TXFD | MII_ANAR_PAUSE |
|
||
MII_ANAR_PAUSE_ASYM,
|
||
[MII_ANLPAR] = MII_ANLPAR_10 | MII_ANLPAR_10FD |
|
||
MII_ANLPAR_TX | MII_ANLPAR_TXFD |
|
||
MII_ANLPAR_T4 | MII_ANLPAR_PAUSE,
|
||
[MII_ANER] = MII_ANER_NP | MII_ANER_NWAY,
|
||
[MII_ANNP] = 1 | MII_ANNP_MP,
|
||
[MII_CTRL1000] = MII_CTRL1000_HALF | MII_CTRL1000_FULL |
|
||
MII_CTRL1000_PORT | MII_CTRL1000_MASTER,
|
||
[MII_STAT1000] = MII_STAT1000_HALF | MII_STAT1000_FULL |
|
||
MII_STAT1000_ROK | MII_STAT1000_LOK,
|
||
[MII_EXTSTAT] = MII_EXTSTAT_1000T_HD | MII_EXTSTAT_1000T_FD,
|
||
|
||
[PHY_COPPER_CTRL1] = BIT(5) | BIT(6) | BIT(8) | BIT(9) |
|
||
BIT(12) | BIT(13),
|
||
[PHY_COPPER_STAT1] = BIT(3) | BIT(10) | BIT(11) | BIT(13) | BIT(15)
|
||
},
|
||
[2] = {
|
||
[PHY_MAC_CTRL1] = BIT(3) | BIT(7),
|
||
[PHY_MAC_CTRL2] = BIT(1) | BIT(2) | BIT(6) | BIT(12)
|
||
},
|
||
[3] = {
|
||
[PHY_LED_TIMER_CTRL] = BIT(0) | BIT(2) | BIT(14)
|
||
}
|
||
};
|
||
|
||
static const uint32_t e1000e_mac_reg_init[] = {
|
||
[PBA] = 0x00140014,
|
||
[LEDCTL] = BIT(1) | BIT(8) | BIT(9) | BIT(15) | BIT(17) | BIT(18),
|
||
[EXTCNF_CTRL] = BIT(3),
|
||
[EEMNGCTL] = BIT(31),
|
||
[FLASHT] = 0x2,
|
||
[FLSWCTL] = BIT(30) | BIT(31),
|
||
[FLOL] = BIT(0),
|
||
[RXDCTL] = BIT(16),
|
||
[RXDCTL1] = BIT(16),
|
||
[TIPG] = 0x8 | (0x8 << 10) | (0x6 << 20),
|
||
[RXCFGL] = 0x88F7,
|
||
[RXUDP] = 0x319,
|
||
[CTRL] = E1000_CTRL_FD | E1000_CTRL_SWDPIN2 | E1000_CTRL_SWDPIN0 |
|
||
E1000_CTRL_SPD_1000 | E1000_CTRL_SLU |
|
||
E1000_CTRL_ADVD3WUC,
|
||
[STATUS] = E1000_STATUS_ASDV_1000 | E1000_STATUS_LU,
|
||
[PSRCTL] = (2 << E1000_PSRCTL_BSIZE0_SHIFT) |
|
||
(4 << E1000_PSRCTL_BSIZE1_SHIFT) |
|
||
(4 << E1000_PSRCTL_BSIZE2_SHIFT),
|
||
[TARC0] = 0x3 | E1000_TARC_ENABLE,
|
||
[TARC1] = 0x3 | E1000_TARC_ENABLE,
|
||
[EECD] = E1000_EECD_AUTO_RD | E1000_EECD_PRES,
|
||
[EERD] = E1000_EERW_DONE,
|
||
[EEWR] = E1000_EERW_DONE,
|
||
[GCR] = E1000_L0S_ADJUST |
|
||
E1000_L1_ENTRY_LATENCY_MSB |
|
||
E1000_L1_ENTRY_LATENCY_LSB,
|
||
[TDFH] = 0x600,
|
||
[TDFT] = 0x600,
|
||
[TDFHS] = 0x600,
|
||
[TDFTS] = 0x600,
|
||
[POEMB] = 0x30D,
|
||
[PBS] = 0x028,
|
||
[MANC] = E1000_MANC_DIS_IP_CHK_ARP,
|
||
[FACTPS] = E1000_FACTPS_LAN0_ON | 0x20000000,
|
||
[SWSM] = 1,
|
||
[RXCSUM] = E1000_RXCSUM_IPOFLD | E1000_RXCSUM_TUOFLD,
|
||
[ITR] = E1000E_MIN_XITR,
|
||
[EITR...EITR + E1000E_MSIX_VEC_NUM - 1] = E1000E_MIN_XITR,
|
||
};
|
||
|
||
static void e1000e_reset(E1000ECore *core, bool sw)
|
||
{
|
||
int i;
|
||
|
||
timer_del(core->autoneg_timer);
|
||
|
||
e1000e_intrmgr_reset(core);
|
||
|
||
memset(core->phy, 0, sizeof core->phy);
|
||
memcpy(core->phy, e1000e_phy_reg_init, sizeof e1000e_phy_reg_init);
|
||
|
||
for (i = 0; i < E1000E_MAC_SIZE; i++) {
|
||
if (sw && (i == PBA || i == PBS || i == FLA)) {
|
||
continue;
|
||
}
|
||
|
||
core->mac[i] = i < ARRAY_SIZE(e1000e_mac_reg_init) ?
|
||
e1000e_mac_reg_init[i] : 0;
|
||
}
|
||
|
||
core->rxbuf_min_shift = 1 + E1000_RING_DESC_LEN_SHIFT;
|
||
|
||
if (qemu_get_queue(core->owner_nic)->link_down) {
|
||
e1000e_link_down(core);
|
||
}
|
||
|
||
e1000x_reset_mac_addr(core->owner_nic, core->mac, core->permanent_mac);
|
||
|
||
for (i = 0; i < ARRAY_SIZE(core->tx); i++) {
|
||
memset(&core->tx[i].props, 0, sizeof(core->tx[i].props));
|
||
core->tx[i].skip_cp = false;
|
||
}
|
||
}
|
||
|
||
void
|
||
e1000e_core_reset(E1000ECore *core)
|
||
{
|
||
e1000e_reset(core, false);
|
||
}
|
||
|
||
void e1000e_core_pre_save(E1000ECore *core)
|
||
{
|
||
int i;
|
||
NetClientState *nc = qemu_get_queue(core->owner_nic);
|
||
|
||
/*
|
||
* If link is down and auto-negotiation is supported and ongoing,
|
||
* complete auto-negotiation immediately. This allows us to look
|
||
* at MII_BMSR_AN_COMP to infer link status on load.
|
||
*/
|
||
if (nc->link_down && e1000e_have_autoneg(core)) {
|
||
core->phy[0][MII_BMSR] |= MII_BMSR_AN_COMP;
|
||
e1000e_update_flowctl_status(core);
|
||
}
|
||
|
||
for (i = 0; i < ARRAY_SIZE(core->tx); i++) {
|
||
if (net_tx_pkt_has_fragments(core->tx[i].tx_pkt)) {
|
||
core->tx[i].skip_cp = true;
|
||
}
|
||
}
|
||
}
|
||
|
||
int
|
||
e1000e_core_post_load(E1000ECore *core)
|
||
{
|
||
NetClientState *nc = qemu_get_queue(core->owner_nic);
|
||
|
||
/*
|
||
* nc.link_down can't be migrated, so infer link_down according
|
||
* to link status bit in core.mac[STATUS].
|
||
*/
|
||
nc->link_down = (core->mac[STATUS] & E1000_STATUS_LU) == 0;
|
||
|
||
return 0;
|
||
}
|