2442 lines
68 KiB
C
2442 lines
68 KiB
C
/*
|
|
* PowerPC implementation of KVM hooks
|
|
*
|
|
* Copyright IBM Corp. 2007
|
|
* Copyright (C) 2011 Freescale Semiconductor, Inc.
|
|
*
|
|
* Authors:
|
|
* Jerone Young <jyoung5@us.ibm.com>
|
|
* Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com>
|
|
* Hollis Blanchard <hollisb@us.ibm.com>
|
|
*
|
|
* This work is licensed under the terms of the GNU GPL, version 2 or later.
|
|
* See the COPYING file in the top-level directory.
|
|
*
|
|
*/
|
|
|
|
#include <dirent.h>
|
|
#include <sys/types.h>
|
|
#include <sys/ioctl.h>
|
|
#include <sys/mman.h>
|
|
#include <sys/vfs.h>
|
|
|
|
#include <linux/kvm.h>
|
|
|
|
#include "qemu-common.h"
|
|
#include "qemu/timer.h"
|
|
#include "sysemu/sysemu.h"
|
|
#include "sysemu/kvm.h"
|
|
#include "kvm_ppc.h"
|
|
#include "cpu.h"
|
|
#include "sysemu/cpus.h"
|
|
#include "sysemu/device_tree.h"
|
|
#include "mmu-hash64.h"
|
|
|
|
#include "hw/sysbus.h"
|
|
#include "hw/ppc/spapr.h"
|
|
#include "hw/ppc/spapr_vio.h"
|
|
#include "hw/ppc/ppc.h"
|
|
#include "sysemu/watchdog.h"
|
|
#include "trace.h"
|
|
#include "exec/gdbstub.h"
|
|
#include "exec/memattrs.h"
|
|
|
|
//#define DEBUG_KVM
|
|
|
|
#ifdef DEBUG_KVM
|
|
#define DPRINTF(fmt, ...) \
|
|
do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
|
|
#else
|
|
#define DPRINTF(fmt, ...) \
|
|
do { } while (0)
|
|
#endif
|
|
|
|
#define PROC_DEVTREE_CPU "/proc/device-tree/cpus/"
|
|
|
|
const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
|
|
KVM_CAP_LAST_INFO
|
|
};
|
|
|
|
static int cap_interrupt_unset = false;
|
|
static int cap_interrupt_level = false;
|
|
static int cap_segstate;
|
|
static int cap_booke_sregs;
|
|
static int cap_ppc_smt;
|
|
static int cap_ppc_rma;
|
|
static int cap_spapr_tce;
|
|
static int cap_spapr_multitce;
|
|
static int cap_spapr_vfio;
|
|
static int cap_hior;
|
|
static int cap_one_reg;
|
|
static int cap_epr;
|
|
static int cap_ppc_watchdog;
|
|
static int cap_papr;
|
|
static int cap_htab_fd;
|
|
static int cap_fixup_hcalls;
|
|
|
|
static uint32_t debug_inst_opcode;
|
|
|
|
/* XXX We have a race condition where we actually have a level triggered
|
|
* interrupt, but the infrastructure can't expose that yet, so the guest
|
|
* takes but ignores it, goes to sleep and never gets notified that there's
|
|
* still an interrupt pending.
|
|
*
|
|
* As a quick workaround, let's just wake up again 20 ms after we injected
|
|
* an interrupt. That way we can assure that we're always reinjecting
|
|
* interrupts in case the guest swallowed them.
|
|
*/
|
|
static QEMUTimer *idle_timer;
|
|
|
|
static void kvm_kick_cpu(void *opaque)
|
|
{
|
|
PowerPCCPU *cpu = opaque;
|
|
|
|
qemu_cpu_kick(CPU(cpu));
|
|
}
|
|
|
|
static int kvm_ppc_register_host_cpu_type(void);
|
|
|
|
int kvm_arch_init(MachineState *ms, KVMState *s)
|
|
{
|
|
cap_interrupt_unset = kvm_check_extension(s, KVM_CAP_PPC_UNSET_IRQ);
|
|
cap_interrupt_level = kvm_check_extension(s, KVM_CAP_PPC_IRQ_LEVEL);
|
|
cap_segstate = kvm_check_extension(s, KVM_CAP_PPC_SEGSTATE);
|
|
cap_booke_sregs = kvm_check_extension(s, KVM_CAP_PPC_BOOKE_SREGS);
|
|
cap_ppc_smt = kvm_check_extension(s, KVM_CAP_PPC_SMT);
|
|
cap_ppc_rma = kvm_check_extension(s, KVM_CAP_PPC_RMA);
|
|
cap_spapr_tce = kvm_check_extension(s, KVM_CAP_SPAPR_TCE);
|
|
cap_spapr_multitce = kvm_check_extension(s, KVM_CAP_SPAPR_MULTITCE);
|
|
cap_spapr_vfio = false;
|
|
cap_one_reg = kvm_check_extension(s, KVM_CAP_ONE_REG);
|
|
cap_hior = kvm_check_extension(s, KVM_CAP_PPC_HIOR);
|
|
cap_epr = kvm_check_extension(s, KVM_CAP_PPC_EPR);
|
|
cap_ppc_watchdog = kvm_check_extension(s, KVM_CAP_PPC_BOOKE_WATCHDOG);
|
|
/* Note: we don't set cap_papr here, because this capability is
|
|
* only activated after this by kvmppc_set_papr() */
|
|
cap_htab_fd = kvm_check_extension(s, KVM_CAP_PPC_HTAB_FD);
|
|
cap_fixup_hcalls = kvm_check_extension(s, KVM_CAP_PPC_FIXUP_HCALL);
|
|
|
|
if (!cap_interrupt_level) {
|
|
fprintf(stderr, "KVM: Couldn't find level irq capability. Expect the "
|
|
"VM to stall at times!\n");
|
|
}
|
|
|
|
kvm_ppc_register_host_cpu_type();
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int kvm_arch_sync_sregs(PowerPCCPU *cpu)
|
|
{
|
|
CPUPPCState *cenv = &cpu->env;
|
|
CPUState *cs = CPU(cpu);
|
|
struct kvm_sregs sregs;
|
|
int ret;
|
|
|
|
if (cenv->excp_model == POWERPC_EXCP_BOOKE) {
|
|
/* What we're really trying to say is "if we're on BookE, we use
|
|
the native PVR for now". This is the only sane way to check
|
|
it though, so we potentially confuse users that they can run
|
|
BookE guests on BookS. Let's hope nobody dares enough :) */
|
|
return 0;
|
|
} else {
|
|
if (!cap_segstate) {
|
|
fprintf(stderr, "kvm error: missing PVR setting capability\n");
|
|
return -ENOSYS;
|
|
}
|
|
}
|
|
|
|
ret = kvm_vcpu_ioctl(cs, KVM_GET_SREGS, &sregs);
|
|
if (ret) {
|
|
return ret;
|
|
}
|
|
|
|
sregs.pvr = cenv->spr[SPR_PVR];
|
|
return kvm_vcpu_ioctl(cs, KVM_SET_SREGS, &sregs);
|
|
}
|
|
|
|
/* Set up a shared TLB array with KVM */
|
|
static int kvm_booke206_tlb_init(PowerPCCPU *cpu)
|
|
{
|
|
CPUPPCState *env = &cpu->env;
|
|
CPUState *cs = CPU(cpu);
|
|
struct kvm_book3e_206_tlb_params params = {};
|
|
struct kvm_config_tlb cfg = {};
|
|
unsigned int entries = 0;
|
|
int ret, i;
|
|
|
|
if (!kvm_enabled() ||
|
|
!kvm_check_extension(cs->kvm_state, KVM_CAP_SW_TLB)) {
|
|
return 0;
|
|
}
|
|
|
|
assert(ARRAY_SIZE(params.tlb_sizes) == BOOKE206_MAX_TLBN);
|
|
|
|
for (i = 0; i < BOOKE206_MAX_TLBN; i++) {
|
|
params.tlb_sizes[i] = booke206_tlb_size(env, i);
|
|
params.tlb_ways[i] = booke206_tlb_ways(env, i);
|
|
entries += params.tlb_sizes[i];
|
|
}
|
|
|
|
assert(entries == env->nb_tlb);
|
|
assert(sizeof(struct kvm_book3e_206_tlb_entry) == sizeof(ppcmas_tlb_t));
|
|
|
|
env->tlb_dirty = true;
|
|
|
|
cfg.array = (uintptr_t)env->tlb.tlbm;
|
|
cfg.array_len = sizeof(ppcmas_tlb_t) * entries;
|
|
cfg.params = (uintptr_t)¶ms;
|
|
cfg.mmu_type = KVM_MMU_FSL_BOOKE_NOHV;
|
|
|
|
ret = kvm_vcpu_enable_cap(cs, KVM_CAP_SW_TLB, 0, (uintptr_t)&cfg);
|
|
if (ret < 0) {
|
|
fprintf(stderr, "%s: couldn't enable KVM_CAP_SW_TLB: %s\n",
|
|
__func__, strerror(-ret));
|
|
return ret;
|
|
}
|
|
|
|
env->kvm_sw_tlb = true;
|
|
return 0;
|
|
}
|
|
|
|
|
|
#if defined(TARGET_PPC64)
|
|
static void kvm_get_fallback_smmu_info(PowerPCCPU *cpu,
|
|
struct kvm_ppc_smmu_info *info)
|
|
{
|
|
CPUPPCState *env = &cpu->env;
|
|
CPUState *cs = CPU(cpu);
|
|
|
|
memset(info, 0, sizeof(*info));
|
|
|
|
/* We don't have the new KVM_PPC_GET_SMMU_INFO ioctl, so
|
|
* need to "guess" what the supported page sizes are.
|
|
*
|
|
* For that to work we make a few assumptions:
|
|
*
|
|
* - If KVM_CAP_PPC_GET_PVINFO is supported we are running "PR"
|
|
* KVM which only supports 4K and 16M pages, but supports them
|
|
* regardless of the backing store characteritics. We also don't
|
|
* support 1T segments.
|
|
*
|
|
* This is safe as if HV KVM ever supports that capability or PR
|
|
* KVM grows supports for more page/segment sizes, those versions
|
|
* will have implemented KVM_CAP_PPC_GET_SMMU_INFO and thus we
|
|
* will not hit this fallback
|
|
*
|
|
* - Else we are running HV KVM. This means we only support page
|
|
* sizes that fit in the backing store. Additionally we only
|
|
* advertize 64K pages if the processor is ARCH 2.06 and we assume
|
|
* P7 encodings for the SLB and hash table. Here too, we assume
|
|
* support for any newer processor will mean a kernel that
|
|
* implements KVM_CAP_PPC_GET_SMMU_INFO and thus doesn't hit
|
|
* this fallback.
|
|
*/
|
|
if (kvm_check_extension(cs->kvm_state, KVM_CAP_PPC_GET_PVINFO)) {
|
|
/* No flags */
|
|
info->flags = 0;
|
|
info->slb_size = 64;
|
|
|
|
/* Standard 4k base page size segment */
|
|
info->sps[0].page_shift = 12;
|
|
info->sps[0].slb_enc = 0;
|
|
info->sps[0].enc[0].page_shift = 12;
|
|
info->sps[0].enc[0].pte_enc = 0;
|
|
|
|
/* Standard 16M large page size segment */
|
|
info->sps[1].page_shift = 24;
|
|
info->sps[1].slb_enc = SLB_VSID_L;
|
|
info->sps[1].enc[0].page_shift = 24;
|
|
info->sps[1].enc[0].pte_enc = 0;
|
|
} else {
|
|
int i = 0;
|
|
|
|
/* HV KVM has backing store size restrictions */
|
|
info->flags = KVM_PPC_PAGE_SIZES_REAL;
|
|
|
|
if (env->mmu_model & POWERPC_MMU_1TSEG) {
|
|
info->flags |= KVM_PPC_1T_SEGMENTS;
|
|
}
|
|
|
|
if (env->mmu_model == POWERPC_MMU_2_06) {
|
|
info->slb_size = 32;
|
|
} else {
|
|
info->slb_size = 64;
|
|
}
|
|
|
|
/* Standard 4k base page size segment */
|
|
info->sps[i].page_shift = 12;
|
|
info->sps[i].slb_enc = 0;
|
|
info->sps[i].enc[0].page_shift = 12;
|
|
info->sps[i].enc[0].pte_enc = 0;
|
|
i++;
|
|
|
|
/* 64K on MMU 2.06 */
|
|
if (env->mmu_model == POWERPC_MMU_2_06) {
|
|
info->sps[i].page_shift = 16;
|
|
info->sps[i].slb_enc = 0x110;
|
|
info->sps[i].enc[0].page_shift = 16;
|
|
info->sps[i].enc[0].pte_enc = 1;
|
|
i++;
|
|
}
|
|
|
|
/* Standard 16M large page size segment */
|
|
info->sps[i].page_shift = 24;
|
|
info->sps[i].slb_enc = SLB_VSID_L;
|
|
info->sps[i].enc[0].page_shift = 24;
|
|
info->sps[i].enc[0].pte_enc = 0;
|
|
}
|
|
}
|
|
|
|
static void kvm_get_smmu_info(PowerPCCPU *cpu, struct kvm_ppc_smmu_info *info)
|
|
{
|
|
CPUState *cs = CPU(cpu);
|
|
int ret;
|
|
|
|
if (kvm_check_extension(cs->kvm_state, KVM_CAP_PPC_GET_SMMU_INFO)) {
|
|
ret = kvm_vm_ioctl(cs->kvm_state, KVM_PPC_GET_SMMU_INFO, info);
|
|
if (ret == 0) {
|
|
return;
|
|
}
|
|
}
|
|
|
|
kvm_get_fallback_smmu_info(cpu, info);
|
|
}
|
|
|
|
static long getrampagesize(void)
|
|
{
|
|
struct statfs fs;
|
|
int ret;
|
|
|
|
if (!mem_path) {
|
|
/* guest RAM is backed by normal anonymous pages */
|
|
return getpagesize();
|
|
}
|
|
|
|
do {
|
|
ret = statfs(mem_path, &fs);
|
|
} while (ret != 0 && errno == EINTR);
|
|
|
|
if (ret != 0) {
|
|
fprintf(stderr, "Couldn't statfs() memory path: %s\n",
|
|
strerror(errno));
|
|
exit(1);
|
|
}
|
|
|
|
#define HUGETLBFS_MAGIC 0x958458f6
|
|
|
|
if (fs.f_type != HUGETLBFS_MAGIC) {
|
|
/* Explicit mempath, but it's ordinary pages */
|
|
return getpagesize();
|
|
}
|
|
|
|
/* It's hugepage, return the huge page size */
|
|
return fs.f_bsize;
|
|
}
|
|
|
|
static bool kvm_valid_page_size(uint32_t flags, long rampgsize, uint32_t shift)
|
|
{
|
|
if (!(flags & KVM_PPC_PAGE_SIZES_REAL)) {
|
|
return true;
|
|
}
|
|
|
|
return (1ul << shift) <= rampgsize;
|
|
}
|
|
|
|
static void kvm_fixup_page_sizes(PowerPCCPU *cpu)
|
|
{
|
|
static struct kvm_ppc_smmu_info smmu_info;
|
|
static bool has_smmu_info;
|
|
CPUPPCState *env = &cpu->env;
|
|
long rampagesize;
|
|
int iq, ik, jq, jk;
|
|
|
|
/* We only handle page sizes for 64-bit server guests for now */
|
|
if (!(env->mmu_model & POWERPC_MMU_64)) {
|
|
return;
|
|
}
|
|
|
|
/* Collect MMU info from kernel if not already */
|
|
if (!has_smmu_info) {
|
|
kvm_get_smmu_info(cpu, &smmu_info);
|
|
has_smmu_info = true;
|
|
}
|
|
|
|
rampagesize = getrampagesize();
|
|
|
|
/* Convert to QEMU form */
|
|
memset(&env->sps, 0, sizeof(env->sps));
|
|
|
|
/*
|
|
* XXX This loop should be an entry wide AND of the capabilities that
|
|
* the selected CPU has with the capabilities that KVM supports.
|
|
*/
|
|
for (ik = iq = 0; ik < KVM_PPC_PAGE_SIZES_MAX_SZ; ik++) {
|
|
struct ppc_one_seg_page_size *qsps = &env->sps.sps[iq];
|
|
struct kvm_ppc_one_seg_page_size *ksps = &smmu_info.sps[ik];
|
|
|
|
if (!kvm_valid_page_size(smmu_info.flags, rampagesize,
|
|
ksps->page_shift)) {
|
|
continue;
|
|
}
|
|
qsps->page_shift = ksps->page_shift;
|
|
qsps->slb_enc = ksps->slb_enc;
|
|
for (jk = jq = 0; jk < KVM_PPC_PAGE_SIZES_MAX_SZ; jk++) {
|
|
if (!kvm_valid_page_size(smmu_info.flags, rampagesize,
|
|
ksps->enc[jk].page_shift)) {
|
|
continue;
|
|
}
|
|
qsps->enc[jq].page_shift = ksps->enc[jk].page_shift;
|
|
qsps->enc[jq].pte_enc = ksps->enc[jk].pte_enc;
|
|
if (++jq >= PPC_PAGE_SIZES_MAX_SZ) {
|
|
break;
|
|
}
|
|
}
|
|
if (++iq >= PPC_PAGE_SIZES_MAX_SZ) {
|
|
break;
|
|
}
|
|
}
|
|
env->slb_nr = smmu_info.slb_size;
|
|
if (!(smmu_info.flags & KVM_PPC_1T_SEGMENTS)) {
|
|
env->mmu_model &= ~POWERPC_MMU_1TSEG;
|
|
}
|
|
}
|
|
#else /* defined (TARGET_PPC64) */
|
|
|
|
static inline void kvm_fixup_page_sizes(PowerPCCPU *cpu)
|
|
{
|
|
}
|
|
|
|
#endif /* !defined (TARGET_PPC64) */
|
|
|
|
unsigned long kvm_arch_vcpu_id(CPUState *cpu)
|
|
{
|
|
return ppc_get_vcpu_dt_id(POWERPC_CPU(cpu));
|
|
}
|
|
|
|
/* e500 supports 2 h/w breakpoint and 2 watchpoint.
|
|
* book3s supports only 1 watchpoint, so array size
|
|
* of 4 is sufficient for now.
|
|
*/
|
|
#define MAX_HW_BKPTS 4
|
|
|
|
static struct HWBreakpoint {
|
|
target_ulong addr;
|
|
int type;
|
|
} hw_debug_points[MAX_HW_BKPTS];
|
|
|
|
static CPUWatchpoint hw_watchpoint;
|
|
|
|
/* Default there is no breakpoint and watchpoint supported */
|
|
static int max_hw_breakpoint;
|
|
static int max_hw_watchpoint;
|
|
static int nb_hw_breakpoint;
|
|
static int nb_hw_watchpoint;
|
|
|
|
static void kvmppc_hw_debug_points_init(CPUPPCState *cenv)
|
|
{
|
|
if (cenv->excp_model == POWERPC_EXCP_BOOKE) {
|
|
max_hw_breakpoint = 2;
|
|
max_hw_watchpoint = 2;
|
|
}
|
|
|
|
if ((max_hw_breakpoint + max_hw_watchpoint) > MAX_HW_BKPTS) {
|
|
fprintf(stderr, "Error initializing h/w breakpoints\n");
|
|
return;
|
|
}
|
|
}
|
|
|
|
int kvm_arch_init_vcpu(CPUState *cs)
|
|
{
|
|
PowerPCCPU *cpu = POWERPC_CPU(cs);
|
|
CPUPPCState *cenv = &cpu->env;
|
|
int ret;
|
|
|
|
/* Gather server mmu info from KVM and update the CPU state */
|
|
kvm_fixup_page_sizes(cpu);
|
|
|
|
/* Synchronize sregs with kvm */
|
|
ret = kvm_arch_sync_sregs(cpu);
|
|
if (ret) {
|
|
return ret;
|
|
}
|
|
|
|
idle_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, kvm_kick_cpu, cpu);
|
|
|
|
/* Some targets support access to KVM's guest TLB. */
|
|
switch (cenv->mmu_model) {
|
|
case POWERPC_MMU_BOOKE206:
|
|
ret = kvm_booke206_tlb_init(cpu);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
kvm_get_one_reg(cs, KVM_REG_PPC_DEBUG_INST, &debug_inst_opcode);
|
|
kvmppc_hw_debug_points_init(cenv);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void kvm_sw_tlb_put(PowerPCCPU *cpu)
|
|
{
|
|
CPUPPCState *env = &cpu->env;
|
|
CPUState *cs = CPU(cpu);
|
|
struct kvm_dirty_tlb dirty_tlb;
|
|
unsigned char *bitmap;
|
|
int ret;
|
|
|
|
if (!env->kvm_sw_tlb) {
|
|
return;
|
|
}
|
|
|
|
bitmap = g_malloc((env->nb_tlb + 7) / 8);
|
|
memset(bitmap, 0xFF, (env->nb_tlb + 7) / 8);
|
|
|
|
dirty_tlb.bitmap = (uintptr_t)bitmap;
|
|
dirty_tlb.num_dirty = env->nb_tlb;
|
|
|
|
ret = kvm_vcpu_ioctl(cs, KVM_DIRTY_TLB, &dirty_tlb);
|
|
if (ret) {
|
|
fprintf(stderr, "%s: KVM_DIRTY_TLB: %s\n",
|
|
__func__, strerror(-ret));
|
|
}
|
|
|
|
g_free(bitmap);
|
|
}
|
|
|
|
static void kvm_get_one_spr(CPUState *cs, uint64_t id, int spr)
|
|
{
|
|
PowerPCCPU *cpu = POWERPC_CPU(cs);
|
|
CPUPPCState *env = &cpu->env;
|
|
union {
|
|
uint32_t u32;
|
|
uint64_t u64;
|
|
} val;
|
|
struct kvm_one_reg reg = {
|
|
.id = id,
|
|
.addr = (uintptr_t) &val,
|
|
};
|
|
int ret;
|
|
|
|
ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®);
|
|
if (ret != 0) {
|
|
trace_kvm_failed_spr_get(spr, strerror(errno));
|
|
} else {
|
|
switch (id & KVM_REG_SIZE_MASK) {
|
|
case KVM_REG_SIZE_U32:
|
|
env->spr[spr] = val.u32;
|
|
break;
|
|
|
|
case KVM_REG_SIZE_U64:
|
|
env->spr[spr] = val.u64;
|
|
break;
|
|
|
|
default:
|
|
/* Don't handle this size yet */
|
|
abort();
|
|
}
|
|
}
|
|
}
|
|
|
|
static void kvm_put_one_spr(CPUState *cs, uint64_t id, int spr)
|
|
{
|
|
PowerPCCPU *cpu = POWERPC_CPU(cs);
|
|
CPUPPCState *env = &cpu->env;
|
|
union {
|
|
uint32_t u32;
|
|
uint64_t u64;
|
|
} val;
|
|
struct kvm_one_reg reg = {
|
|
.id = id,
|
|
.addr = (uintptr_t) &val,
|
|
};
|
|
int ret;
|
|
|
|
switch (id & KVM_REG_SIZE_MASK) {
|
|
case KVM_REG_SIZE_U32:
|
|
val.u32 = env->spr[spr];
|
|
break;
|
|
|
|
case KVM_REG_SIZE_U64:
|
|
val.u64 = env->spr[spr];
|
|
break;
|
|
|
|
default:
|
|
/* Don't handle this size yet */
|
|
abort();
|
|
}
|
|
|
|
ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®);
|
|
if (ret != 0) {
|
|
trace_kvm_failed_spr_set(spr, strerror(errno));
|
|
}
|
|
}
|
|
|
|
static int kvm_put_fp(CPUState *cs)
|
|
{
|
|
PowerPCCPU *cpu = POWERPC_CPU(cs);
|
|
CPUPPCState *env = &cpu->env;
|
|
struct kvm_one_reg reg;
|
|
int i;
|
|
int ret;
|
|
|
|
if (env->insns_flags & PPC_FLOAT) {
|
|
uint64_t fpscr = env->fpscr;
|
|
bool vsx = !!(env->insns_flags2 & PPC2_VSX);
|
|
|
|
reg.id = KVM_REG_PPC_FPSCR;
|
|
reg.addr = (uintptr_t)&fpscr;
|
|
ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®);
|
|
if (ret < 0) {
|
|
DPRINTF("Unable to set FPSCR to KVM: %s\n", strerror(errno));
|
|
return ret;
|
|
}
|
|
|
|
for (i = 0; i < 32; i++) {
|
|
uint64_t vsr[2];
|
|
|
|
vsr[0] = float64_val(env->fpr[i]);
|
|
vsr[1] = env->vsr[i];
|
|
reg.addr = (uintptr_t) &vsr;
|
|
reg.id = vsx ? KVM_REG_PPC_VSR(i) : KVM_REG_PPC_FPR(i);
|
|
|
|
ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®);
|
|
if (ret < 0) {
|
|
DPRINTF("Unable to set %s%d to KVM: %s\n", vsx ? "VSR" : "FPR",
|
|
i, strerror(errno));
|
|
return ret;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (env->insns_flags & PPC_ALTIVEC) {
|
|
reg.id = KVM_REG_PPC_VSCR;
|
|
reg.addr = (uintptr_t)&env->vscr;
|
|
ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®);
|
|
if (ret < 0) {
|
|
DPRINTF("Unable to set VSCR to KVM: %s\n", strerror(errno));
|
|
return ret;
|
|
}
|
|
|
|
for (i = 0; i < 32; i++) {
|
|
reg.id = KVM_REG_PPC_VR(i);
|
|
reg.addr = (uintptr_t)&env->avr[i];
|
|
ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®);
|
|
if (ret < 0) {
|
|
DPRINTF("Unable to set VR%d to KVM: %s\n", i, strerror(errno));
|
|
return ret;
|
|
}
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int kvm_get_fp(CPUState *cs)
|
|
{
|
|
PowerPCCPU *cpu = POWERPC_CPU(cs);
|
|
CPUPPCState *env = &cpu->env;
|
|
struct kvm_one_reg reg;
|
|
int i;
|
|
int ret;
|
|
|
|
if (env->insns_flags & PPC_FLOAT) {
|
|
uint64_t fpscr;
|
|
bool vsx = !!(env->insns_flags2 & PPC2_VSX);
|
|
|
|
reg.id = KVM_REG_PPC_FPSCR;
|
|
reg.addr = (uintptr_t)&fpscr;
|
|
ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®);
|
|
if (ret < 0) {
|
|
DPRINTF("Unable to get FPSCR from KVM: %s\n", strerror(errno));
|
|
return ret;
|
|
} else {
|
|
env->fpscr = fpscr;
|
|
}
|
|
|
|
for (i = 0; i < 32; i++) {
|
|
uint64_t vsr[2];
|
|
|
|
reg.addr = (uintptr_t) &vsr;
|
|
reg.id = vsx ? KVM_REG_PPC_VSR(i) : KVM_REG_PPC_FPR(i);
|
|
|
|
ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®);
|
|
if (ret < 0) {
|
|
DPRINTF("Unable to get %s%d from KVM: %s\n",
|
|
vsx ? "VSR" : "FPR", i, strerror(errno));
|
|
return ret;
|
|
} else {
|
|
env->fpr[i] = vsr[0];
|
|
if (vsx) {
|
|
env->vsr[i] = vsr[1];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (env->insns_flags & PPC_ALTIVEC) {
|
|
reg.id = KVM_REG_PPC_VSCR;
|
|
reg.addr = (uintptr_t)&env->vscr;
|
|
ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®);
|
|
if (ret < 0) {
|
|
DPRINTF("Unable to get VSCR from KVM: %s\n", strerror(errno));
|
|
return ret;
|
|
}
|
|
|
|
for (i = 0; i < 32; i++) {
|
|
reg.id = KVM_REG_PPC_VR(i);
|
|
reg.addr = (uintptr_t)&env->avr[i];
|
|
ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®);
|
|
if (ret < 0) {
|
|
DPRINTF("Unable to get VR%d from KVM: %s\n",
|
|
i, strerror(errno));
|
|
return ret;
|
|
}
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
#if defined(TARGET_PPC64)
|
|
static int kvm_get_vpa(CPUState *cs)
|
|
{
|
|
PowerPCCPU *cpu = POWERPC_CPU(cs);
|
|
CPUPPCState *env = &cpu->env;
|
|
struct kvm_one_reg reg;
|
|
int ret;
|
|
|
|
reg.id = KVM_REG_PPC_VPA_ADDR;
|
|
reg.addr = (uintptr_t)&env->vpa_addr;
|
|
ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®);
|
|
if (ret < 0) {
|
|
DPRINTF("Unable to get VPA address from KVM: %s\n", strerror(errno));
|
|
return ret;
|
|
}
|
|
|
|
assert((uintptr_t)&env->slb_shadow_size
|
|
== ((uintptr_t)&env->slb_shadow_addr + 8));
|
|
reg.id = KVM_REG_PPC_VPA_SLB;
|
|
reg.addr = (uintptr_t)&env->slb_shadow_addr;
|
|
ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®);
|
|
if (ret < 0) {
|
|
DPRINTF("Unable to get SLB shadow state from KVM: %s\n",
|
|
strerror(errno));
|
|
return ret;
|
|
}
|
|
|
|
assert((uintptr_t)&env->dtl_size == ((uintptr_t)&env->dtl_addr + 8));
|
|
reg.id = KVM_REG_PPC_VPA_DTL;
|
|
reg.addr = (uintptr_t)&env->dtl_addr;
|
|
ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®);
|
|
if (ret < 0) {
|
|
DPRINTF("Unable to get dispatch trace log state from KVM: %s\n",
|
|
strerror(errno));
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int kvm_put_vpa(CPUState *cs)
|
|
{
|
|
PowerPCCPU *cpu = POWERPC_CPU(cs);
|
|
CPUPPCState *env = &cpu->env;
|
|
struct kvm_one_reg reg;
|
|
int ret;
|
|
|
|
/* SLB shadow or DTL can't be registered unless a master VPA is
|
|
* registered. That means when restoring state, if a VPA *is*
|
|
* registered, we need to set that up first. If not, we need to
|
|
* deregister the others before deregistering the master VPA */
|
|
assert(env->vpa_addr || !(env->slb_shadow_addr || env->dtl_addr));
|
|
|
|
if (env->vpa_addr) {
|
|
reg.id = KVM_REG_PPC_VPA_ADDR;
|
|
reg.addr = (uintptr_t)&env->vpa_addr;
|
|
ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®);
|
|
if (ret < 0) {
|
|
DPRINTF("Unable to set VPA address to KVM: %s\n", strerror(errno));
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
assert((uintptr_t)&env->slb_shadow_size
|
|
== ((uintptr_t)&env->slb_shadow_addr + 8));
|
|
reg.id = KVM_REG_PPC_VPA_SLB;
|
|
reg.addr = (uintptr_t)&env->slb_shadow_addr;
|
|
ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®);
|
|
if (ret < 0) {
|
|
DPRINTF("Unable to set SLB shadow state to KVM: %s\n", strerror(errno));
|
|
return ret;
|
|
}
|
|
|
|
assert((uintptr_t)&env->dtl_size == ((uintptr_t)&env->dtl_addr + 8));
|
|
reg.id = KVM_REG_PPC_VPA_DTL;
|
|
reg.addr = (uintptr_t)&env->dtl_addr;
|
|
ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®);
|
|
if (ret < 0) {
|
|
DPRINTF("Unable to set dispatch trace log state to KVM: %s\n",
|
|
strerror(errno));
|
|
return ret;
|
|
}
|
|
|
|
if (!env->vpa_addr) {
|
|
reg.id = KVM_REG_PPC_VPA_ADDR;
|
|
reg.addr = (uintptr_t)&env->vpa_addr;
|
|
ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®);
|
|
if (ret < 0) {
|
|
DPRINTF("Unable to set VPA address to KVM: %s\n", strerror(errno));
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
#endif /* TARGET_PPC64 */
|
|
|
|
int kvm_arch_put_registers(CPUState *cs, int level)
|
|
{
|
|
PowerPCCPU *cpu = POWERPC_CPU(cs);
|
|
CPUPPCState *env = &cpu->env;
|
|
struct kvm_regs regs;
|
|
int ret;
|
|
int i;
|
|
|
|
ret = kvm_vcpu_ioctl(cs, KVM_GET_REGS, ®s);
|
|
if (ret < 0) {
|
|
return ret;
|
|
}
|
|
|
|
regs.ctr = env->ctr;
|
|
regs.lr = env->lr;
|
|
regs.xer = cpu_read_xer(env);
|
|
regs.msr = env->msr;
|
|
regs.pc = env->nip;
|
|
|
|
regs.srr0 = env->spr[SPR_SRR0];
|
|
regs.srr1 = env->spr[SPR_SRR1];
|
|
|
|
regs.sprg0 = env->spr[SPR_SPRG0];
|
|
regs.sprg1 = env->spr[SPR_SPRG1];
|
|
regs.sprg2 = env->spr[SPR_SPRG2];
|
|
regs.sprg3 = env->spr[SPR_SPRG3];
|
|
regs.sprg4 = env->spr[SPR_SPRG4];
|
|
regs.sprg5 = env->spr[SPR_SPRG5];
|
|
regs.sprg6 = env->spr[SPR_SPRG6];
|
|
regs.sprg7 = env->spr[SPR_SPRG7];
|
|
|
|
regs.pid = env->spr[SPR_BOOKE_PID];
|
|
|
|
for (i = 0;i < 32; i++)
|
|
regs.gpr[i] = env->gpr[i];
|
|
|
|
regs.cr = 0;
|
|
for (i = 0; i < 8; i++) {
|
|
regs.cr |= (env->crf[i] & 15) << (4 * (7 - i));
|
|
}
|
|
|
|
ret = kvm_vcpu_ioctl(cs, KVM_SET_REGS, ®s);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
kvm_put_fp(cs);
|
|
|
|
if (env->tlb_dirty) {
|
|
kvm_sw_tlb_put(cpu);
|
|
env->tlb_dirty = false;
|
|
}
|
|
|
|
if (cap_segstate && (level >= KVM_PUT_RESET_STATE)) {
|
|
struct kvm_sregs sregs;
|
|
|
|
sregs.pvr = env->spr[SPR_PVR];
|
|
|
|
sregs.u.s.sdr1 = env->spr[SPR_SDR1];
|
|
|
|
/* Sync SLB */
|
|
#ifdef TARGET_PPC64
|
|
for (i = 0; i < ARRAY_SIZE(env->slb); i++) {
|
|
sregs.u.s.ppc64.slb[i].slbe = env->slb[i].esid;
|
|
if (env->slb[i].esid & SLB_ESID_V) {
|
|
sregs.u.s.ppc64.slb[i].slbe |= i;
|
|
}
|
|
sregs.u.s.ppc64.slb[i].slbv = env->slb[i].vsid;
|
|
}
|
|
#endif
|
|
|
|
/* Sync SRs */
|
|
for (i = 0; i < 16; i++) {
|
|
sregs.u.s.ppc32.sr[i] = env->sr[i];
|
|
}
|
|
|
|
/* Sync BATs */
|
|
for (i = 0; i < 8; i++) {
|
|
/* Beware. We have to swap upper and lower bits here */
|
|
sregs.u.s.ppc32.dbat[i] = ((uint64_t)env->DBAT[0][i] << 32)
|
|
| env->DBAT[1][i];
|
|
sregs.u.s.ppc32.ibat[i] = ((uint64_t)env->IBAT[0][i] << 32)
|
|
| env->IBAT[1][i];
|
|
}
|
|
|
|
ret = kvm_vcpu_ioctl(cs, KVM_SET_SREGS, &sregs);
|
|
if (ret) {
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
if (cap_hior && (level >= KVM_PUT_RESET_STATE)) {
|
|
kvm_put_one_spr(cs, KVM_REG_PPC_HIOR, SPR_HIOR);
|
|
}
|
|
|
|
if (cap_one_reg) {
|
|
int i;
|
|
|
|
/* We deliberately ignore errors here, for kernels which have
|
|
* the ONE_REG calls, but don't support the specific
|
|
* registers, there's a reasonable chance things will still
|
|
* work, at least until we try to migrate. */
|
|
for (i = 0; i < 1024; i++) {
|
|
uint64_t id = env->spr_cb[i].one_reg_id;
|
|
|
|
if (id != 0) {
|
|
kvm_put_one_spr(cs, id, i);
|
|
}
|
|
}
|
|
|
|
#ifdef TARGET_PPC64
|
|
if (msr_ts) {
|
|
for (i = 0; i < ARRAY_SIZE(env->tm_gpr); i++) {
|
|
kvm_set_one_reg(cs, KVM_REG_PPC_TM_GPR(i), &env->tm_gpr[i]);
|
|
}
|
|
for (i = 0; i < ARRAY_SIZE(env->tm_vsr); i++) {
|
|
kvm_set_one_reg(cs, KVM_REG_PPC_TM_VSR(i), &env->tm_vsr[i]);
|
|
}
|
|
kvm_set_one_reg(cs, KVM_REG_PPC_TM_CR, &env->tm_cr);
|
|
kvm_set_one_reg(cs, KVM_REG_PPC_TM_LR, &env->tm_lr);
|
|
kvm_set_one_reg(cs, KVM_REG_PPC_TM_CTR, &env->tm_ctr);
|
|
kvm_set_one_reg(cs, KVM_REG_PPC_TM_FPSCR, &env->tm_fpscr);
|
|
kvm_set_one_reg(cs, KVM_REG_PPC_TM_AMR, &env->tm_amr);
|
|
kvm_set_one_reg(cs, KVM_REG_PPC_TM_PPR, &env->tm_ppr);
|
|
kvm_set_one_reg(cs, KVM_REG_PPC_TM_VRSAVE, &env->tm_vrsave);
|
|
kvm_set_one_reg(cs, KVM_REG_PPC_TM_VSCR, &env->tm_vscr);
|
|
kvm_set_one_reg(cs, KVM_REG_PPC_TM_DSCR, &env->tm_dscr);
|
|
kvm_set_one_reg(cs, KVM_REG_PPC_TM_TAR, &env->tm_tar);
|
|
}
|
|
|
|
if (cap_papr) {
|
|
if (kvm_put_vpa(cs) < 0) {
|
|
DPRINTF("Warning: Unable to set VPA information to KVM\n");
|
|
}
|
|
}
|
|
|
|
kvm_set_one_reg(cs, KVM_REG_PPC_TB_OFFSET, &env->tb_env->tb_offset);
|
|
#endif /* TARGET_PPC64 */
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void kvm_sync_excp(CPUPPCState *env, int vector, int ivor)
|
|
{
|
|
env->excp_vectors[vector] = env->spr[ivor] + env->spr[SPR_BOOKE_IVPR];
|
|
}
|
|
|
|
int kvm_arch_get_registers(CPUState *cs)
|
|
{
|
|
PowerPCCPU *cpu = POWERPC_CPU(cs);
|
|
CPUPPCState *env = &cpu->env;
|
|
struct kvm_regs regs;
|
|
struct kvm_sregs sregs;
|
|
uint32_t cr;
|
|
int i, ret;
|
|
|
|
ret = kvm_vcpu_ioctl(cs, KVM_GET_REGS, ®s);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
cr = regs.cr;
|
|
for (i = 7; i >= 0; i--) {
|
|
env->crf[i] = cr & 15;
|
|
cr >>= 4;
|
|
}
|
|
|
|
env->ctr = regs.ctr;
|
|
env->lr = regs.lr;
|
|
cpu_write_xer(env, regs.xer);
|
|
env->msr = regs.msr;
|
|
env->nip = regs.pc;
|
|
|
|
env->spr[SPR_SRR0] = regs.srr0;
|
|
env->spr[SPR_SRR1] = regs.srr1;
|
|
|
|
env->spr[SPR_SPRG0] = regs.sprg0;
|
|
env->spr[SPR_SPRG1] = regs.sprg1;
|
|
env->spr[SPR_SPRG2] = regs.sprg2;
|
|
env->spr[SPR_SPRG3] = regs.sprg3;
|
|
env->spr[SPR_SPRG4] = regs.sprg4;
|
|
env->spr[SPR_SPRG5] = regs.sprg5;
|
|
env->spr[SPR_SPRG6] = regs.sprg6;
|
|
env->spr[SPR_SPRG7] = regs.sprg7;
|
|
|
|
env->spr[SPR_BOOKE_PID] = regs.pid;
|
|
|
|
for (i = 0;i < 32; i++)
|
|
env->gpr[i] = regs.gpr[i];
|
|
|
|
kvm_get_fp(cs);
|
|
|
|
if (cap_booke_sregs) {
|
|
ret = kvm_vcpu_ioctl(cs, KVM_GET_SREGS, &sregs);
|
|
if (ret < 0) {
|
|
return ret;
|
|
}
|
|
|
|
if (sregs.u.e.features & KVM_SREGS_E_BASE) {
|
|
env->spr[SPR_BOOKE_CSRR0] = sregs.u.e.csrr0;
|
|
env->spr[SPR_BOOKE_CSRR1] = sregs.u.e.csrr1;
|
|
env->spr[SPR_BOOKE_ESR] = sregs.u.e.esr;
|
|
env->spr[SPR_BOOKE_DEAR] = sregs.u.e.dear;
|
|
env->spr[SPR_BOOKE_MCSR] = sregs.u.e.mcsr;
|
|
env->spr[SPR_BOOKE_TSR] = sregs.u.e.tsr;
|
|
env->spr[SPR_BOOKE_TCR] = sregs.u.e.tcr;
|
|
env->spr[SPR_DECR] = sregs.u.e.dec;
|
|
env->spr[SPR_TBL] = sregs.u.e.tb & 0xffffffff;
|
|
env->spr[SPR_TBU] = sregs.u.e.tb >> 32;
|
|
env->spr[SPR_VRSAVE] = sregs.u.e.vrsave;
|
|
}
|
|
|
|
if (sregs.u.e.features & KVM_SREGS_E_ARCH206) {
|
|
env->spr[SPR_BOOKE_PIR] = sregs.u.e.pir;
|
|
env->spr[SPR_BOOKE_MCSRR0] = sregs.u.e.mcsrr0;
|
|
env->spr[SPR_BOOKE_MCSRR1] = sregs.u.e.mcsrr1;
|
|
env->spr[SPR_BOOKE_DECAR] = sregs.u.e.decar;
|
|
env->spr[SPR_BOOKE_IVPR] = sregs.u.e.ivpr;
|
|
}
|
|
|
|
if (sregs.u.e.features & KVM_SREGS_E_64) {
|
|
env->spr[SPR_BOOKE_EPCR] = sregs.u.e.epcr;
|
|
}
|
|
|
|
if (sregs.u.e.features & KVM_SREGS_E_SPRG8) {
|
|
env->spr[SPR_BOOKE_SPRG8] = sregs.u.e.sprg8;
|
|
}
|
|
|
|
if (sregs.u.e.features & KVM_SREGS_E_IVOR) {
|
|
env->spr[SPR_BOOKE_IVOR0] = sregs.u.e.ivor_low[0];
|
|
kvm_sync_excp(env, POWERPC_EXCP_CRITICAL, SPR_BOOKE_IVOR0);
|
|
env->spr[SPR_BOOKE_IVOR1] = sregs.u.e.ivor_low[1];
|
|
kvm_sync_excp(env, POWERPC_EXCP_MCHECK, SPR_BOOKE_IVOR1);
|
|
env->spr[SPR_BOOKE_IVOR2] = sregs.u.e.ivor_low[2];
|
|
kvm_sync_excp(env, POWERPC_EXCP_DSI, SPR_BOOKE_IVOR2);
|
|
env->spr[SPR_BOOKE_IVOR3] = sregs.u.e.ivor_low[3];
|
|
kvm_sync_excp(env, POWERPC_EXCP_ISI, SPR_BOOKE_IVOR3);
|
|
env->spr[SPR_BOOKE_IVOR4] = sregs.u.e.ivor_low[4];
|
|
kvm_sync_excp(env, POWERPC_EXCP_EXTERNAL, SPR_BOOKE_IVOR4);
|
|
env->spr[SPR_BOOKE_IVOR5] = sregs.u.e.ivor_low[5];
|
|
kvm_sync_excp(env, POWERPC_EXCP_ALIGN, SPR_BOOKE_IVOR5);
|
|
env->spr[SPR_BOOKE_IVOR6] = sregs.u.e.ivor_low[6];
|
|
kvm_sync_excp(env, POWERPC_EXCP_PROGRAM, SPR_BOOKE_IVOR6);
|
|
env->spr[SPR_BOOKE_IVOR7] = sregs.u.e.ivor_low[7];
|
|
kvm_sync_excp(env, POWERPC_EXCP_FPU, SPR_BOOKE_IVOR7);
|
|
env->spr[SPR_BOOKE_IVOR8] = sregs.u.e.ivor_low[8];
|
|
kvm_sync_excp(env, POWERPC_EXCP_SYSCALL, SPR_BOOKE_IVOR8);
|
|
env->spr[SPR_BOOKE_IVOR9] = sregs.u.e.ivor_low[9];
|
|
kvm_sync_excp(env, POWERPC_EXCP_APU, SPR_BOOKE_IVOR9);
|
|
env->spr[SPR_BOOKE_IVOR10] = sregs.u.e.ivor_low[10];
|
|
kvm_sync_excp(env, POWERPC_EXCP_DECR, SPR_BOOKE_IVOR10);
|
|
env->spr[SPR_BOOKE_IVOR11] = sregs.u.e.ivor_low[11];
|
|
kvm_sync_excp(env, POWERPC_EXCP_FIT, SPR_BOOKE_IVOR11);
|
|
env->spr[SPR_BOOKE_IVOR12] = sregs.u.e.ivor_low[12];
|
|
kvm_sync_excp(env, POWERPC_EXCP_WDT, SPR_BOOKE_IVOR12);
|
|
env->spr[SPR_BOOKE_IVOR13] = sregs.u.e.ivor_low[13];
|
|
kvm_sync_excp(env, POWERPC_EXCP_DTLB, SPR_BOOKE_IVOR13);
|
|
env->spr[SPR_BOOKE_IVOR14] = sregs.u.e.ivor_low[14];
|
|
kvm_sync_excp(env, POWERPC_EXCP_ITLB, SPR_BOOKE_IVOR14);
|
|
env->spr[SPR_BOOKE_IVOR15] = sregs.u.e.ivor_low[15];
|
|
kvm_sync_excp(env, POWERPC_EXCP_DEBUG, SPR_BOOKE_IVOR15);
|
|
|
|
if (sregs.u.e.features & KVM_SREGS_E_SPE) {
|
|
env->spr[SPR_BOOKE_IVOR32] = sregs.u.e.ivor_high[0];
|
|
kvm_sync_excp(env, POWERPC_EXCP_SPEU, SPR_BOOKE_IVOR32);
|
|
env->spr[SPR_BOOKE_IVOR33] = sregs.u.e.ivor_high[1];
|
|
kvm_sync_excp(env, POWERPC_EXCP_EFPDI, SPR_BOOKE_IVOR33);
|
|
env->spr[SPR_BOOKE_IVOR34] = sregs.u.e.ivor_high[2];
|
|
kvm_sync_excp(env, POWERPC_EXCP_EFPRI, SPR_BOOKE_IVOR34);
|
|
}
|
|
|
|
if (sregs.u.e.features & KVM_SREGS_E_PM) {
|
|
env->spr[SPR_BOOKE_IVOR35] = sregs.u.e.ivor_high[3];
|
|
kvm_sync_excp(env, POWERPC_EXCP_EPERFM, SPR_BOOKE_IVOR35);
|
|
}
|
|
|
|
if (sregs.u.e.features & KVM_SREGS_E_PC) {
|
|
env->spr[SPR_BOOKE_IVOR36] = sregs.u.e.ivor_high[4];
|
|
kvm_sync_excp(env, POWERPC_EXCP_DOORI, SPR_BOOKE_IVOR36);
|
|
env->spr[SPR_BOOKE_IVOR37] = sregs.u.e.ivor_high[5];
|
|
kvm_sync_excp(env, POWERPC_EXCP_DOORCI, SPR_BOOKE_IVOR37);
|
|
}
|
|
}
|
|
|
|
if (sregs.u.e.features & KVM_SREGS_E_ARCH206_MMU) {
|
|
env->spr[SPR_BOOKE_MAS0] = sregs.u.e.mas0;
|
|
env->spr[SPR_BOOKE_MAS1] = sregs.u.e.mas1;
|
|
env->spr[SPR_BOOKE_MAS2] = sregs.u.e.mas2;
|
|
env->spr[SPR_BOOKE_MAS3] = sregs.u.e.mas7_3 & 0xffffffff;
|
|
env->spr[SPR_BOOKE_MAS4] = sregs.u.e.mas4;
|
|
env->spr[SPR_BOOKE_MAS6] = sregs.u.e.mas6;
|
|
env->spr[SPR_BOOKE_MAS7] = sregs.u.e.mas7_3 >> 32;
|
|
env->spr[SPR_MMUCFG] = sregs.u.e.mmucfg;
|
|
env->spr[SPR_BOOKE_TLB0CFG] = sregs.u.e.tlbcfg[0];
|
|
env->spr[SPR_BOOKE_TLB1CFG] = sregs.u.e.tlbcfg[1];
|
|
}
|
|
|
|
if (sregs.u.e.features & KVM_SREGS_EXP) {
|
|
env->spr[SPR_BOOKE_EPR] = sregs.u.e.epr;
|
|
}
|
|
|
|
if (sregs.u.e.features & KVM_SREGS_E_PD) {
|
|
env->spr[SPR_BOOKE_EPLC] = sregs.u.e.eplc;
|
|
env->spr[SPR_BOOKE_EPSC] = sregs.u.e.epsc;
|
|
}
|
|
|
|
if (sregs.u.e.impl_id == KVM_SREGS_E_IMPL_FSL) {
|
|
env->spr[SPR_E500_SVR] = sregs.u.e.impl.fsl.svr;
|
|
env->spr[SPR_Exxx_MCAR] = sregs.u.e.impl.fsl.mcar;
|
|
env->spr[SPR_HID0] = sregs.u.e.impl.fsl.hid0;
|
|
|
|
if (sregs.u.e.impl.fsl.features & KVM_SREGS_E_FSL_PIDn) {
|
|
env->spr[SPR_BOOKE_PID1] = sregs.u.e.impl.fsl.pid1;
|
|
env->spr[SPR_BOOKE_PID2] = sregs.u.e.impl.fsl.pid2;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (cap_segstate) {
|
|
ret = kvm_vcpu_ioctl(cs, KVM_GET_SREGS, &sregs);
|
|
if (ret < 0) {
|
|
return ret;
|
|
}
|
|
|
|
if (!env->external_htab) {
|
|
ppc_store_sdr1(env, sregs.u.s.sdr1);
|
|
}
|
|
|
|
/* Sync SLB */
|
|
#ifdef TARGET_PPC64
|
|
/*
|
|
* The packed SLB array we get from KVM_GET_SREGS only contains
|
|
* information about valid entries. So we flush our internal
|
|
* copy to get rid of stale ones, then put all valid SLB entries
|
|
* back in.
|
|
*/
|
|
memset(env->slb, 0, sizeof(env->slb));
|
|
for (i = 0; i < ARRAY_SIZE(env->slb); i++) {
|
|
target_ulong rb = sregs.u.s.ppc64.slb[i].slbe;
|
|
target_ulong rs = sregs.u.s.ppc64.slb[i].slbv;
|
|
/*
|
|
* Only restore valid entries
|
|
*/
|
|
if (rb & SLB_ESID_V) {
|
|
ppc_store_slb(env, rb, rs);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/* Sync SRs */
|
|
for (i = 0; i < 16; i++) {
|
|
env->sr[i] = sregs.u.s.ppc32.sr[i];
|
|
}
|
|
|
|
/* Sync BATs */
|
|
for (i = 0; i < 8; i++) {
|
|
env->DBAT[0][i] = sregs.u.s.ppc32.dbat[i] & 0xffffffff;
|
|
env->DBAT[1][i] = sregs.u.s.ppc32.dbat[i] >> 32;
|
|
env->IBAT[0][i] = sregs.u.s.ppc32.ibat[i] & 0xffffffff;
|
|
env->IBAT[1][i] = sregs.u.s.ppc32.ibat[i] >> 32;
|
|
}
|
|
}
|
|
|
|
if (cap_hior) {
|
|
kvm_get_one_spr(cs, KVM_REG_PPC_HIOR, SPR_HIOR);
|
|
}
|
|
|
|
if (cap_one_reg) {
|
|
int i;
|
|
|
|
/* We deliberately ignore errors here, for kernels which have
|
|
* the ONE_REG calls, but don't support the specific
|
|
* registers, there's a reasonable chance things will still
|
|
* work, at least until we try to migrate. */
|
|
for (i = 0; i < 1024; i++) {
|
|
uint64_t id = env->spr_cb[i].one_reg_id;
|
|
|
|
if (id != 0) {
|
|
kvm_get_one_spr(cs, id, i);
|
|
}
|
|
}
|
|
|
|
#ifdef TARGET_PPC64
|
|
if (msr_ts) {
|
|
for (i = 0; i < ARRAY_SIZE(env->tm_gpr); i++) {
|
|
kvm_get_one_reg(cs, KVM_REG_PPC_TM_GPR(i), &env->tm_gpr[i]);
|
|
}
|
|
for (i = 0; i < ARRAY_SIZE(env->tm_vsr); i++) {
|
|
kvm_get_one_reg(cs, KVM_REG_PPC_TM_VSR(i), &env->tm_vsr[i]);
|
|
}
|
|
kvm_get_one_reg(cs, KVM_REG_PPC_TM_CR, &env->tm_cr);
|
|
kvm_get_one_reg(cs, KVM_REG_PPC_TM_LR, &env->tm_lr);
|
|
kvm_get_one_reg(cs, KVM_REG_PPC_TM_CTR, &env->tm_ctr);
|
|
kvm_get_one_reg(cs, KVM_REG_PPC_TM_FPSCR, &env->tm_fpscr);
|
|
kvm_get_one_reg(cs, KVM_REG_PPC_TM_AMR, &env->tm_amr);
|
|
kvm_get_one_reg(cs, KVM_REG_PPC_TM_PPR, &env->tm_ppr);
|
|
kvm_get_one_reg(cs, KVM_REG_PPC_TM_VRSAVE, &env->tm_vrsave);
|
|
kvm_get_one_reg(cs, KVM_REG_PPC_TM_VSCR, &env->tm_vscr);
|
|
kvm_get_one_reg(cs, KVM_REG_PPC_TM_DSCR, &env->tm_dscr);
|
|
kvm_get_one_reg(cs, KVM_REG_PPC_TM_TAR, &env->tm_tar);
|
|
}
|
|
|
|
if (cap_papr) {
|
|
if (kvm_get_vpa(cs) < 0) {
|
|
DPRINTF("Warning: Unable to get VPA information from KVM\n");
|
|
}
|
|
}
|
|
|
|
kvm_get_one_reg(cs, KVM_REG_PPC_TB_OFFSET, &env->tb_env->tb_offset);
|
|
#endif
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int kvmppc_set_interrupt(PowerPCCPU *cpu, int irq, int level)
|
|
{
|
|
unsigned virq = level ? KVM_INTERRUPT_SET_LEVEL : KVM_INTERRUPT_UNSET;
|
|
|
|
if (irq != PPC_INTERRUPT_EXT) {
|
|
return 0;
|
|
}
|
|
|
|
if (!kvm_enabled() || !cap_interrupt_unset || !cap_interrupt_level) {
|
|
return 0;
|
|
}
|
|
|
|
kvm_vcpu_ioctl(CPU(cpu), KVM_INTERRUPT, &virq);
|
|
|
|
return 0;
|
|
}
|
|
|
|
#if defined(TARGET_PPCEMB)
|
|
#define PPC_INPUT_INT PPC40x_INPUT_INT
|
|
#elif defined(TARGET_PPC64)
|
|
#define PPC_INPUT_INT PPC970_INPUT_INT
|
|
#else
|
|
#define PPC_INPUT_INT PPC6xx_INPUT_INT
|
|
#endif
|
|
|
|
void kvm_arch_pre_run(CPUState *cs, struct kvm_run *run)
|
|
{
|
|
PowerPCCPU *cpu = POWERPC_CPU(cs);
|
|
CPUPPCState *env = &cpu->env;
|
|
int r;
|
|
unsigned irq;
|
|
|
|
qemu_mutex_lock_iothread();
|
|
|
|
/* PowerPC QEMU tracks the various core input pins (interrupt, critical
|
|
* interrupt, reset, etc) in PPC-specific env->irq_input_state. */
|
|
if (!cap_interrupt_level &&
|
|
run->ready_for_interrupt_injection &&
|
|
(cs->interrupt_request & CPU_INTERRUPT_HARD) &&
|
|
(env->irq_input_state & (1<<PPC_INPUT_INT)))
|
|
{
|
|
/* For now KVM disregards the 'irq' argument. However, in the
|
|
* future KVM could cache it in-kernel to avoid a heavyweight exit
|
|
* when reading the UIC.
|
|
*/
|
|
irq = KVM_INTERRUPT_SET;
|
|
|
|
DPRINTF("injected interrupt %d\n", irq);
|
|
r = kvm_vcpu_ioctl(cs, KVM_INTERRUPT, &irq);
|
|
if (r < 0) {
|
|
printf("cpu %d fail inject %x\n", cs->cpu_index, irq);
|
|
}
|
|
|
|
/* Always wake up soon in case the interrupt was level based */
|
|
timer_mod(idle_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
|
|
(get_ticks_per_sec() / 50));
|
|
}
|
|
|
|
/* We don't know if there are more interrupts pending after this. However,
|
|
* the guest will return to userspace in the course of handling this one
|
|
* anyways, so we will get a chance to deliver the rest. */
|
|
|
|
qemu_mutex_unlock_iothread();
|
|
}
|
|
|
|
MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run)
|
|
{
|
|
return MEMTXATTRS_UNSPECIFIED;
|
|
}
|
|
|
|
int kvm_arch_process_async_events(CPUState *cs)
|
|
{
|
|
return cs->halted;
|
|
}
|
|
|
|
static int kvmppc_handle_halt(PowerPCCPU *cpu)
|
|
{
|
|
CPUState *cs = CPU(cpu);
|
|
CPUPPCState *env = &cpu->env;
|
|
|
|
if (!(cs->interrupt_request & CPU_INTERRUPT_HARD) && (msr_ee)) {
|
|
cs->halted = 1;
|
|
cs->exception_index = EXCP_HLT;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* map dcr access to existing qemu dcr emulation */
|
|
static int kvmppc_handle_dcr_read(CPUPPCState *env, uint32_t dcrn, uint32_t *data)
|
|
{
|
|
if (ppc_dcr_read(env->dcr_env, dcrn, data) < 0)
|
|
fprintf(stderr, "Read to unhandled DCR (0x%x)\n", dcrn);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int kvmppc_handle_dcr_write(CPUPPCState *env, uint32_t dcrn, uint32_t data)
|
|
{
|
|
if (ppc_dcr_write(env->dcr_env, dcrn, data) < 0)
|
|
fprintf(stderr, "Write to unhandled DCR (0x%x)\n", dcrn);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
|
|
{
|
|
/* Mixed endian case is not handled */
|
|
uint32_t sc = debug_inst_opcode;
|
|
|
|
if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn,
|
|
sizeof(sc), 0) ||
|
|
cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&sc, sizeof(sc), 1)) {
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
|
|
{
|
|
uint32_t sc;
|
|
|
|
if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&sc, sizeof(sc), 0) ||
|
|
sc != debug_inst_opcode ||
|
|
cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn,
|
|
sizeof(sc), 1)) {
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int find_hw_breakpoint(target_ulong addr, int type)
|
|
{
|
|
int n;
|
|
|
|
assert((nb_hw_breakpoint + nb_hw_watchpoint)
|
|
<= ARRAY_SIZE(hw_debug_points));
|
|
|
|
for (n = 0; n < nb_hw_breakpoint + nb_hw_watchpoint; n++) {
|
|
if (hw_debug_points[n].addr == addr &&
|
|
hw_debug_points[n].type == type) {
|
|
return n;
|
|
}
|
|
}
|
|
|
|
return -1;
|
|
}
|
|
|
|
static int find_hw_watchpoint(target_ulong addr, int *flag)
|
|
{
|
|
int n;
|
|
|
|
n = find_hw_breakpoint(addr, GDB_WATCHPOINT_ACCESS);
|
|
if (n >= 0) {
|
|
*flag = BP_MEM_ACCESS;
|
|
return n;
|
|
}
|
|
|
|
n = find_hw_breakpoint(addr, GDB_WATCHPOINT_WRITE);
|
|
if (n >= 0) {
|
|
*flag = BP_MEM_WRITE;
|
|
return n;
|
|
}
|
|
|
|
n = find_hw_breakpoint(addr, GDB_WATCHPOINT_READ);
|
|
if (n >= 0) {
|
|
*flag = BP_MEM_READ;
|
|
return n;
|
|
}
|
|
|
|
return -1;
|
|
}
|
|
|
|
int kvm_arch_insert_hw_breakpoint(target_ulong addr,
|
|
target_ulong len, int type)
|
|
{
|
|
if ((nb_hw_breakpoint + nb_hw_watchpoint) >= ARRAY_SIZE(hw_debug_points)) {
|
|
return -ENOBUFS;
|
|
}
|
|
|
|
hw_debug_points[nb_hw_breakpoint + nb_hw_watchpoint].addr = addr;
|
|
hw_debug_points[nb_hw_breakpoint + nb_hw_watchpoint].type = type;
|
|
|
|
switch (type) {
|
|
case GDB_BREAKPOINT_HW:
|
|
if (nb_hw_breakpoint >= max_hw_breakpoint) {
|
|
return -ENOBUFS;
|
|
}
|
|
|
|
if (find_hw_breakpoint(addr, type) >= 0) {
|
|
return -EEXIST;
|
|
}
|
|
|
|
nb_hw_breakpoint++;
|
|
break;
|
|
|
|
case GDB_WATCHPOINT_WRITE:
|
|
case GDB_WATCHPOINT_READ:
|
|
case GDB_WATCHPOINT_ACCESS:
|
|
if (nb_hw_watchpoint >= max_hw_watchpoint) {
|
|
return -ENOBUFS;
|
|
}
|
|
|
|
if (find_hw_breakpoint(addr, type) >= 0) {
|
|
return -EEXIST;
|
|
}
|
|
|
|
nb_hw_watchpoint++;
|
|
break;
|
|
|
|
default:
|
|
return -ENOSYS;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int kvm_arch_remove_hw_breakpoint(target_ulong addr,
|
|
target_ulong len, int type)
|
|
{
|
|
int n;
|
|
|
|
n = find_hw_breakpoint(addr, type);
|
|
if (n < 0) {
|
|
return -ENOENT;
|
|
}
|
|
|
|
switch (type) {
|
|
case GDB_BREAKPOINT_HW:
|
|
nb_hw_breakpoint--;
|
|
break;
|
|
|
|
case GDB_WATCHPOINT_WRITE:
|
|
case GDB_WATCHPOINT_READ:
|
|
case GDB_WATCHPOINT_ACCESS:
|
|
nb_hw_watchpoint--;
|
|
break;
|
|
|
|
default:
|
|
return -ENOSYS;
|
|
}
|
|
hw_debug_points[n] = hw_debug_points[nb_hw_breakpoint + nb_hw_watchpoint];
|
|
|
|
return 0;
|
|
}
|
|
|
|
void kvm_arch_remove_all_hw_breakpoints(void)
|
|
{
|
|
nb_hw_breakpoint = nb_hw_watchpoint = 0;
|
|
}
|
|
|
|
void kvm_arch_update_guest_debug(CPUState *cs, struct kvm_guest_debug *dbg)
|
|
{
|
|
int n;
|
|
|
|
/* Software Breakpoint updates */
|
|
if (kvm_sw_breakpoints_active(cs)) {
|
|
dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
|
|
}
|
|
|
|
assert((nb_hw_breakpoint + nb_hw_watchpoint)
|
|
<= ARRAY_SIZE(hw_debug_points));
|
|
assert((nb_hw_breakpoint + nb_hw_watchpoint) <= ARRAY_SIZE(dbg->arch.bp));
|
|
|
|
if (nb_hw_breakpoint + nb_hw_watchpoint > 0) {
|
|
dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
|
|
memset(dbg->arch.bp, 0, sizeof(dbg->arch.bp));
|
|
for (n = 0; n < nb_hw_breakpoint + nb_hw_watchpoint; n++) {
|
|
switch (hw_debug_points[n].type) {
|
|
case GDB_BREAKPOINT_HW:
|
|
dbg->arch.bp[n].type = KVMPPC_DEBUG_BREAKPOINT;
|
|
break;
|
|
case GDB_WATCHPOINT_WRITE:
|
|
dbg->arch.bp[n].type = KVMPPC_DEBUG_WATCH_WRITE;
|
|
break;
|
|
case GDB_WATCHPOINT_READ:
|
|
dbg->arch.bp[n].type = KVMPPC_DEBUG_WATCH_READ;
|
|
break;
|
|
case GDB_WATCHPOINT_ACCESS:
|
|
dbg->arch.bp[n].type = KVMPPC_DEBUG_WATCH_WRITE |
|
|
KVMPPC_DEBUG_WATCH_READ;
|
|
break;
|
|
default:
|
|
cpu_abort(cs, "Unsupported breakpoint type\n");
|
|
}
|
|
dbg->arch.bp[n].addr = hw_debug_points[n].addr;
|
|
}
|
|
}
|
|
}
|
|
|
|
static int kvm_handle_debug(PowerPCCPU *cpu, struct kvm_run *run)
|
|
{
|
|
CPUState *cs = CPU(cpu);
|
|
CPUPPCState *env = &cpu->env;
|
|
struct kvm_debug_exit_arch *arch_info = &run->debug.arch;
|
|
int handle = 0;
|
|
int n;
|
|
int flag = 0;
|
|
|
|
if (cs->singlestep_enabled) {
|
|
handle = 1;
|
|
} else if (arch_info->status) {
|
|
if (nb_hw_breakpoint + nb_hw_watchpoint > 0) {
|
|
if (arch_info->status & KVMPPC_DEBUG_BREAKPOINT) {
|
|
n = find_hw_breakpoint(arch_info->address, GDB_BREAKPOINT_HW);
|
|
if (n >= 0) {
|
|
handle = 1;
|
|
}
|
|
} else if (arch_info->status & (KVMPPC_DEBUG_WATCH_READ |
|
|
KVMPPC_DEBUG_WATCH_WRITE)) {
|
|
n = find_hw_watchpoint(arch_info->address, &flag);
|
|
if (n >= 0) {
|
|
handle = 1;
|
|
cs->watchpoint_hit = &hw_watchpoint;
|
|
hw_watchpoint.vaddr = hw_debug_points[n].addr;
|
|
hw_watchpoint.flags = flag;
|
|
}
|
|
}
|
|
}
|
|
} else if (kvm_find_sw_breakpoint(cs, arch_info->address)) {
|
|
handle = 1;
|
|
} else {
|
|
/* QEMU is not able to handle debug exception, so inject
|
|
* program exception to guest;
|
|
* Yes program exception NOT debug exception !!
|
|
* When QEMU is using debug resources then debug exception must
|
|
* be always set. To achieve this we set MSR_DE and also set
|
|
* MSRP_DEP so guest cannot change MSR_DE.
|
|
* When emulating debug resource for guest we want guest
|
|
* to control MSR_DE (enable/disable debug interrupt on need).
|
|
* Supporting both configurations are NOT possible.
|
|
* So the result is that we cannot share debug resources
|
|
* between QEMU and Guest on BOOKE architecture.
|
|
* In the current design QEMU gets the priority over guest,
|
|
* this means that if QEMU is using debug resources then guest
|
|
* cannot use them;
|
|
* For software breakpoint QEMU uses a privileged instruction;
|
|
* So there cannot be any reason that we are here for guest
|
|
* set debug exception, only possibility is guest executed a
|
|
* privileged / illegal instruction and that's why we are
|
|
* injecting a program interrupt.
|
|
*/
|
|
|
|
cpu_synchronize_state(cs);
|
|
/* env->nip is PC, so increment this by 4 to use
|
|
* ppc_cpu_do_interrupt(), which set srr0 = env->nip - 4.
|
|
*/
|
|
env->nip += 4;
|
|
cs->exception_index = POWERPC_EXCP_PROGRAM;
|
|
env->error_code = POWERPC_EXCP_INVAL;
|
|
ppc_cpu_do_interrupt(cs);
|
|
}
|
|
|
|
return handle;
|
|
}
|
|
|
|
int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
|
|
{
|
|
PowerPCCPU *cpu = POWERPC_CPU(cs);
|
|
CPUPPCState *env = &cpu->env;
|
|
int ret;
|
|
|
|
qemu_mutex_lock_iothread();
|
|
|
|
switch (run->exit_reason) {
|
|
case KVM_EXIT_DCR:
|
|
if (run->dcr.is_write) {
|
|
DPRINTF("handle dcr write\n");
|
|
ret = kvmppc_handle_dcr_write(env, run->dcr.dcrn, run->dcr.data);
|
|
} else {
|
|
DPRINTF("handle dcr read\n");
|
|
ret = kvmppc_handle_dcr_read(env, run->dcr.dcrn, &run->dcr.data);
|
|
}
|
|
break;
|
|
case KVM_EXIT_HLT:
|
|
DPRINTF("handle halt\n");
|
|
ret = kvmppc_handle_halt(cpu);
|
|
break;
|
|
#if defined(TARGET_PPC64)
|
|
case KVM_EXIT_PAPR_HCALL:
|
|
DPRINTF("handle PAPR hypercall\n");
|
|
run->papr_hcall.ret = spapr_hypercall(cpu,
|
|
run->papr_hcall.nr,
|
|
run->papr_hcall.args);
|
|
ret = 0;
|
|
break;
|
|
#endif
|
|
case KVM_EXIT_EPR:
|
|
DPRINTF("handle epr\n");
|
|
run->epr.epr = ldl_phys(cs->as, env->mpic_iack);
|
|
ret = 0;
|
|
break;
|
|
case KVM_EXIT_WATCHDOG:
|
|
DPRINTF("handle watchdog expiry\n");
|
|
watchdog_perform_action();
|
|
ret = 0;
|
|
break;
|
|
|
|
case KVM_EXIT_DEBUG:
|
|
DPRINTF("handle debug exception\n");
|
|
if (kvm_handle_debug(cpu, run)) {
|
|
ret = EXCP_DEBUG;
|
|
break;
|
|
}
|
|
/* re-enter, this exception was guest-internal */
|
|
ret = 0;
|
|
break;
|
|
|
|
default:
|
|
fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
|
|
ret = -1;
|
|
break;
|
|
}
|
|
|
|
qemu_mutex_unlock_iothread();
|
|
return ret;
|
|
}
|
|
|
|
int kvmppc_or_tsr_bits(PowerPCCPU *cpu, uint32_t tsr_bits)
|
|
{
|
|
CPUState *cs = CPU(cpu);
|
|
uint32_t bits = tsr_bits;
|
|
struct kvm_one_reg reg = {
|
|
.id = KVM_REG_PPC_OR_TSR,
|
|
.addr = (uintptr_t) &bits,
|
|
};
|
|
|
|
return kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®);
|
|
}
|
|
|
|
int kvmppc_clear_tsr_bits(PowerPCCPU *cpu, uint32_t tsr_bits)
|
|
{
|
|
|
|
CPUState *cs = CPU(cpu);
|
|
uint32_t bits = tsr_bits;
|
|
struct kvm_one_reg reg = {
|
|
.id = KVM_REG_PPC_CLEAR_TSR,
|
|
.addr = (uintptr_t) &bits,
|
|
};
|
|
|
|
return kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®);
|
|
}
|
|
|
|
int kvmppc_set_tcr(PowerPCCPU *cpu)
|
|
{
|
|
CPUState *cs = CPU(cpu);
|
|
CPUPPCState *env = &cpu->env;
|
|
uint32_t tcr = env->spr[SPR_BOOKE_TCR];
|
|
|
|
struct kvm_one_reg reg = {
|
|
.id = KVM_REG_PPC_TCR,
|
|
.addr = (uintptr_t) &tcr,
|
|
};
|
|
|
|
return kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®);
|
|
}
|
|
|
|
int kvmppc_booke_watchdog_enable(PowerPCCPU *cpu)
|
|
{
|
|
CPUState *cs = CPU(cpu);
|
|
int ret;
|
|
|
|
if (!kvm_enabled()) {
|
|
return -1;
|
|
}
|
|
|
|
if (!cap_ppc_watchdog) {
|
|
printf("warning: KVM does not support watchdog");
|
|
return -1;
|
|
}
|
|
|
|
ret = kvm_vcpu_enable_cap(cs, KVM_CAP_PPC_BOOKE_WATCHDOG, 0);
|
|
if (ret < 0) {
|
|
fprintf(stderr, "%s: couldn't enable KVM_CAP_PPC_BOOKE_WATCHDOG: %s\n",
|
|
__func__, strerror(-ret));
|
|
return ret;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int read_cpuinfo(const char *field, char *value, int len)
|
|
{
|
|
FILE *f;
|
|
int ret = -1;
|
|
int field_len = strlen(field);
|
|
char line[512];
|
|
|
|
f = fopen("/proc/cpuinfo", "r");
|
|
if (!f) {
|
|
return -1;
|
|
}
|
|
|
|
do {
|
|
if (!fgets(line, sizeof(line), f)) {
|
|
break;
|
|
}
|
|
if (!strncmp(line, field, field_len)) {
|
|
pstrcpy(value, len, line);
|
|
ret = 0;
|
|
break;
|
|
}
|
|
} while(*line);
|
|
|
|
fclose(f);
|
|
|
|
return ret;
|
|
}
|
|
|
|
uint32_t kvmppc_get_tbfreq(void)
|
|
{
|
|
char line[512];
|
|
char *ns;
|
|
uint32_t retval = get_ticks_per_sec();
|
|
|
|
if (read_cpuinfo("timebase", line, sizeof(line))) {
|
|
return retval;
|
|
}
|
|
|
|
if (!(ns = strchr(line, ':'))) {
|
|
return retval;
|
|
}
|
|
|
|
ns++;
|
|
|
|
retval = atoi(ns);
|
|
return retval;
|
|
}
|
|
|
|
bool kvmppc_get_host_serial(char **value)
|
|
{
|
|
return g_file_get_contents("/proc/device-tree/system-id", value, NULL,
|
|
NULL);
|
|
}
|
|
|
|
bool kvmppc_get_host_model(char **value)
|
|
{
|
|
return g_file_get_contents("/proc/device-tree/model", value, NULL, NULL);
|
|
}
|
|
|
|
/* Try to find a device tree node for a CPU with clock-frequency property */
|
|
static int kvmppc_find_cpu_dt(char *buf, int buf_len)
|
|
{
|
|
struct dirent *dirp;
|
|
DIR *dp;
|
|
|
|
if ((dp = opendir(PROC_DEVTREE_CPU)) == NULL) {
|
|
printf("Can't open directory " PROC_DEVTREE_CPU "\n");
|
|
return -1;
|
|
}
|
|
|
|
buf[0] = '\0';
|
|
while ((dirp = readdir(dp)) != NULL) {
|
|
FILE *f;
|
|
snprintf(buf, buf_len, "%s%s/clock-frequency", PROC_DEVTREE_CPU,
|
|
dirp->d_name);
|
|
f = fopen(buf, "r");
|
|
if (f) {
|
|
snprintf(buf, buf_len, "%s%s", PROC_DEVTREE_CPU, dirp->d_name);
|
|
fclose(f);
|
|
break;
|
|
}
|
|
buf[0] = '\0';
|
|
}
|
|
closedir(dp);
|
|
if (buf[0] == '\0') {
|
|
printf("Unknown host!\n");
|
|
return -1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Read a CPU node property from the host device tree that's a single
|
|
* integer (32-bit or 64-bit). Returns 0 if anything goes wrong
|
|
* (can't find or open the property, or doesn't understand the
|
|
* format) */
|
|
static uint64_t kvmppc_read_int_cpu_dt(const char *propname)
|
|
{
|
|
char buf[PATH_MAX], *tmp;
|
|
union {
|
|
uint32_t v32;
|
|
uint64_t v64;
|
|
} u;
|
|
FILE *f;
|
|
int len;
|
|
|
|
if (kvmppc_find_cpu_dt(buf, sizeof(buf))) {
|
|
return -1;
|
|
}
|
|
|
|
tmp = g_strdup_printf("%s/%s", buf, propname);
|
|
|
|
f = fopen(tmp, "rb");
|
|
g_free(tmp);
|
|
if (!f) {
|
|
return -1;
|
|
}
|
|
|
|
len = fread(&u, 1, sizeof(u), f);
|
|
fclose(f);
|
|
switch (len) {
|
|
case 4:
|
|
/* property is a 32-bit quantity */
|
|
return be32_to_cpu(u.v32);
|
|
case 8:
|
|
return be64_to_cpu(u.v64);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
uint64_t kvmppc_get_clockfreq(void)
|
|
{
|
|
return kvmppc_read_int_cpu_dt("clock-frequency");
|
|
}
|
|
|
|
uint32_t kvmppc_get_vmx(void)
|
|
{
|
|
return kvmppc_read_int_cpu_dt("ibm,vmx");
|
|
}
|
|
|
|
uint32_t kvmppc_get_dfp(void)
|
|
{
|
|
return kvmppc_read_int_cpu_dt("ibm,dfp");
|
|
}
|
|
|
|
static int kvmppc_get_pvinfo(CPUPPCState *env, struct kvm_ppc_pvinfo *pvinfo)
|
|
{
|
|
PowerPCCPU *cpu = ppc_env_get_cpu(env);
|
|
CPUState *cs = CPU(cpu);
|
|
|
|
if (kvm_vm_check_extension(cs->kvm_state, KVM_CAP_PPC_GET_PVINFO) &&
|
|
!kvm_vm_ioctl(cs->kvm_state, KVM_PPC_GET_PVINFO, pvinfo)) {
|
|
return 0;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
int kvmppc_get_hasidle(CPUPPCState *env)
|
|
{
|
|
struct kvm_ppc_pvinfo pvinfo;
|
|
|
|
if (!kvmppc_get_pvinfo(env, &pvinfo) &&
|
|
(pvinfo.flags & KVM_PPC_PVINFO_FLAGS_EV_IDLE)) {
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int kvmppc_get_hypercall(CPUPPCState *env, uint8_t *buf, int buf_len)
|
|
{
|
|
uint32_t *hc = (uint32_t*)buf;
|
|
struct kvm_ppc_pvinfo pvinfo;
|
|
|
|
if (!kvmppc_get_pvinfo(env, &pvinfo)) {
|
|
memcpy(buf, pvinfo.hcall, buf_len);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Fallback to always fail hypercalls regardless of endianness:
|
|
*
|
|
* tdi 0,r0,72 (becomes b .+8 in wrong endian, nop in good endian)
|
|
* li r3, -1
|
|
* b .+8 (becomes nop in wrong endian)
|
|
* bswap32(li r3, -1)
|
|
*/
|
|
|
|
hc[0] = cpu_to_be32(0x08000048);
|
|
hc[1] = cpu_to_be32(0x3860ffff);
|
|
hc[2] = cpu_to_be32(0x48000008);
|
|
hc[3] = cpu_to_be32(bswap32(0x3860ffff));
|
|
|
|
return 0;
|
|
}
|
|
|
|
static inline int kvmppc_enable_hcall(KVMState *s, target_ulong hcall)
|
|
{
|
|
return kvm_vm_enable_cap(s, KVM_CAP_PPC_ENABLE_HCALL, 0, hcall, 1);
|
|
}
|
|
|
|
void kvmppc_enable_logical_ci_hcalls(void)
|
|
{
|
|
/*
|
|
* FIXME: it would be nice if we could detect the cases where
|
|
* we're using a device which requires the in kernel
|
|
* implementation of these hcalls, but the kernel lacks them and
|
|
* produce a warning.
|
|
*/
|
|
kvmppc_enable_hcall(kvm_state, H_LOGICAL_CI_LOAD);
|
|
kvmppc_enable_hcall(kvm_state, H_LOGICAL_CI_STORE);
|
|
}
|
|
|
|
void kvmppc_set_papr(PowerPCCPU *cpu)
|
|
{
|
|
CPUState *cs = CPU(cpu);
|
|
int ret;
|
|
|
|
ret = kvm_vcpu_enable_cap(cs, KVM_CAP_PPC_PAPR, 0);
|
|
if (ret) {
|
|
cpu_abort(cs, "This KVM version does not support PAPR\n");
|
|
}
|
|
|
|
/* Update the capability flag so we sync the right information
|
|
* with kvm */
|
|
cap_papr = 1;
|
|
}
|
|
|
|
int kvmppc_set_compat(PowerPCCPU *cpu, uint32_t cpu_version)
|
|
{
|
|
return kvm_set_one_reg(CPU(cpu), KVM_REG_PPC_ARCH_COMPAT, &cpu_version);
|
|
}
|
|
|
|
void kvmppc_set_mpic_proxy(PowerPCCPU *cpu, int mpic_proxy)
|
|
{
|
|
CPUState *cs = CPU(cpu);
|
|
int ret;
|
|
|
|
ret = kvm_vcpu_enable_cap(cs, KVM_CAP_PPC_EPR, 0, mpic_proxy);
|
|
if (ret && mpic_proxy) {
|
|
cpu_abort(cs, "This KVM version does not support EPR\n");
|
|
}
|
|
}
|
|
|
|
int kvmppc_smt_threads(void)
|
|
{
|
|
return cap_ppc_smt ? cap_ppc_smt : 1;
|
|
}
|
|
|
|
#ifdef TARGET_PPC64
|
|
off_t kvmppc_alloc_rma(void **rma)
|
|
{
|
|
off_t size;
|
|
int fd;
|
|
struct kvm_allocate_rma ret;
|
|
|
|
/* If cap_ppc_rma == 0, contiguous RMA allocation is not supported
|
|
* if cap_ppc_rma == 1, contiguous RMA allocation is supported, but
|
|
* not necessary on this hardware
|
|
* if cap_ppc_rma == 2, contiguous RMA allocation is needed on this hardware
|
|
*
|
|
* FIXME: We should allow the user to force contiguous RMA
|
|
* allocation in the cap_ppc_rma==1 case.
|
|
*/
|
|
if (cap_ppc_rma < 2) {
|
|
return 0;
|
|
}
|
|
|
|
fd = kvm_vm_ioctl(kvm_state, KVM_ALLOCATE_RMA, &ret);
|
|
if (fd < 0) {
|
|
fprintf(stderr, "KVM: Error on KVM_ALLOCATE_RMA: %s\n",
|
|
strerror(errno));
|
|
return -1;
|
|
}
|
|
|
|
size = MIN(ret.rma_size, 256ul << 20);
|
|
|
|
*rma = mmap(NULL, size, PROT_READ|PROT_WRITE, MAP_SHARED, fd, 0);
|
|
if (*rma == MAP_FAILED) {
|
|
fprintf(stderr, "KVM: Error mapping RMA: %s\n", strerror(errno));
|
|
return -1;
|
|
};
|
|
|
|
return size;
|
|
}
|
|
|
|
uint64_t kvmppc_rma_size(uint64_t current_size, unsigned int hash_shift)
|
|
{
|
|
struct kvm_ppc_smmu_info info;
|
|
long rampagesize, best_page_shift;
|
|
int i;
|
|
|
|
if (cap_ppc_rma >= 2) {
|
|
return current_size;
|
|
}
|
|
|
|
/* Find the largest hardware supported page size that's less than
|
|
* or equal to the (logical) backing page size of guest RAM */
|
|
kvm_get_smmu_info(POWERPC_CPU(first_cpu), &info);
|
|
rampagesize = getrampagesize();
|
|
best_page_shift = 0;
|
|
|
|
for (i = 0; i < KVM_PPC_PAGE_SIZES_MAX_SZ; i++) {
|
|
struct kvm_ppc_one_seg_page_size *sps = &info.sps[i];
|
|
|
|
if (!sps->page_shift) {
|
|
continue;
|
|
}
|
|
|
|
if ((sps->page_shift > best_page_shift)
|
|
&& ((1UL << sps->page_shift) <= rampagesize)) {
|
|
best_page_shift = sps->page_shift;
|
|
}
|
|
}
|
|
|
|
return MIN(current_size,
|
|
1ULL << (best_page_shift + hash_shift - 7));
|
|
}
|
|
#endif
|
|
|
|
bool kvmppc_spapr_use_multitce(void)
|
|
{
|
|
return cap_spapr_multitce;
|
|
}
|
|
|
|
void *kvmppc_create_spapr_tce(uint32_t liobn, uint32_t window_size, int *pfd,
|
|
bool vfio_accel)
|
|
{
|
|
struct kvm_create_spapr_tce args = {
|
|
.liobn = liobn,
|
|
.window_size = window_size,
|
|
};
|
|
long len;
|
|
int fd;
|
|
void *table;
|
|
|
|
/* Must set fd to -1 so we don't try to munmap when called for
|
|
* destroying the table, which the upper layers -will- do
|
|
*/
|
|
*pfd = -1;
|
|
if (!cap_spapr_tce || (vfio_accel && !cap_spapr_vfio)) {
|
|
return NULL;
|
|
}
|
|
|
|
fd = kvm_vm_ioctl(kvm_state, KVM_CREATE_SPAPR_TCE, &args);
|
|
if (fd < 0) {
|
|
fprintf(stderr, "KVM: Failed to create TCE table for liobn 0x%x\n",
|
|
liobn);
|
|
return NULL;
|
|
}
|
|
|
|
len = (window_size / SPAPR_TCE_PAGE_SIZE) * sizeof(uint64_t);
|
|
/* FIXME: round this up to page size */
|
|
|
|
table = mmap(NULL, len, PROT_READ|PROT_WRITE, MAP_SHARED, fd, 0);
|
|
if (table == MAP_FAILED) {
|
|
fprintf(stderr, "KVM: Failed to map TCE table for liobn 0x%x\n",
|
|
liobn);
|
|
close(fd);
|
|
return NULL;
|
|
}
|
|
|
|
*pfd = fd;
|
|
return table;
|
|
}
|
|
|
|
int kvmppc_remove_spapr_tce(void *table, int fd, uint32_t nb_table)
|
|
{
|
|
long len;
|
|
|
|
if (fd < 0) {
|
|
return -1;
|
|
}
|
|
|
|
len = nb_table * sizeof(uint64_t);
|
|
if ((munmap(table, len) < 0) ||
|
|
(close(fd) < 0)) {
|
|
fprintf(stderr, "KVM: Unexpected error removing TCE table: %s",
|
|
strerror(errno));
|
|
/* Leak the table */
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int kvmppc_reset_htab(int shift_hint)
|
|
{
|
|
uint32_t shift = shift_hint;
|
|
|
|
if (!kvm_enabled()) {
|
|
/* Full emulation, tell caller to allocate htab itself */
|
|
return 0;
|
|
}
|
|
if (kvm_check_extension(kvm_state, KVM_CAP_PPC_ALLOC_HTAB)) {
|
|
int ret;
|
|
ret = kvm_vm_ioctl(kvm_state, KVM_PPC_ALLOCATE_HTAB, &shift);
|
|
if (ret == -ENOTTY) {
|
|
/* At least some versions of PR KVM advertise the
|
|
* capability, but don't implement the ioctl(). Oops.
|
|
* Return 0 so that we allocate the htab in qemu, as is
|
|
* correct for PR. */
|
|
return 0;
|
|
} else if (ret < 0) {
|
|
return ret;
|
|
}
|
|
return shift;
|
|
}
|
|
|
|
/* We have a kernel that predates the htab reset calls. For PR
|
|
* KVM, we need to allocate the htab ourselves, for an HV KVM of
|
|
* this era, it has allocated a 16MB fixed size hash table
|
|
* already. Kernels of this era have the GET_PVINFO capability
|
|
* only on PR, so we use this hack to determine the right
|
|
* answer */
|
|
if (kvm_check_extension(kvm_state, KVM_CAP_PPC_GET_PVINFO)) {
|
|
/* PR - tell caller to allocate htab */
|
|
return 0;
|
|
} else {
|
|
/* HV - assume 16MB kernel allocated htab */
|
|
return 24;
|
|
}
|
|
}
|
|
|
|
static inline uint32_t mfpvr(void)
|
|
{
|
|
uint32_t pvr;
|
|
|
|
asm ("mfpvr %0"
|
|
: "=r"(pvr));
|
|
return pvr;
|
|
}
|
|
|
|
static void alter_insns(uint64_t *word, uint64_t flags, bool on)
|
|
{
|
|
if (on) {
|
|
*word |= flags;
|
|
} else {
|
|
*word &= ~flags;
|
|
}
|
|
}
|
|
|
|
static void kvmppc_host_cpu_initfn(Object *obj)
|
|
{
|
|
assert(kvm_enabled());
|
|
}
|
|
|
|
static void kvmppc_host_cpu_class_init(ObjectClass *oc, void *data)
|
|
{
|
|
PowerPCCPUClass *pcc = POWERPC_CPU_CLASS(oc);
|
|
uint32_t vmx = kvmppc_get_vmx();
|
|
uint32_t dfp = kvmppc_get_dfp();
|
|
uint32_t dcache_size = kvmppc_read_int_cpu_dt("d-cache-size");
|
|
uint32_t icache_size = kvmppc_read_int_cpu_dt("i-cache-size");
|
|
|
|
/* Now fix up the class with information we can query from the host */
|
|
pcc->pvr = mfpvr();
|
|
|
|
if (vmx != -1) {
|
|
/* Only override when we know what the host supports */
|
|
alter_insns(&pcc->insns_flags, PPC_ALTIVEC, vmx > 0);
|
|
alter_insns(&pcc->insns_flags2, PPC2_VSX, vmx > 1);
|
|
}
|
|
if (dfp != -1) {
|
|
/* Only override when we know what the host supports */
|
|
alter_insns(&pcc->insns_flags2, PPC2_DFP, dfp);
|
|
}
|
|
|
|
if (dcache_size != -1) {
|
|
pcc->l1_dcache_size = dcache_size;
|
|
}
|
|
|
|
if (icache_size != -1) {
|
|
pcc->l1_icache_size = icache_size;
|
|
}
|
|
}
|
|
|
|
bool kvmppc_has_cap_epr(void)
|
|
{
|
|
return cap_epr;
|
|
}
|
|
|
|
bool kvmppc_has_cap_htab_fd(void)
|
|
{
|
|
return cap_htab_fd;
|
|
}
|
|
|
|
bool kvmppc_has_cap_fixup_hcalls(void)
|
|
{
|
|
return cap_fixup_hcalls;
|
|
}
|
|
|
|
static PowerPCCPUClass *ppc_cpu_get_family_class(PowerPCCPUClass *pcc)
|
|
{
|
|
ObjectClass *oc = OBJECT_CLASS(pcc);
|
|
|
|
while (oc && !object_class_is_abstract(oc)) {
|
|
oc = object_class_get_parent(oc);
|
|
}
|
|
assert(oc);
|
|
|
|
return POWERPC_CPU_CLASS(oc);
|
|
}
|
|
|
|
static int kvm_ppc_register_host_cpu_type(void)
|
|
{
|
|
TypeInfo type_info = {
|
|
.name = TYPE_HOST_POWERPC_CPU,
|
|
.instance_init = kvmppc_host_cpu_initfn,
|
|
.class_init = kvmppc_host_cpu_class_init,
|
|
};
|
|
uint32_t host_pvr = mfpvr();
|
|
PowerPCCPUClass *pvr_pcc;
|
|
DeviceClass *dc;
|
|
|
|
pvr_pcc = ppc_cpu_class_by_pvr(host_pvr);
|
|
if (pvr_pcc == NULL) {
|
|
pvr_pcc = ppc_cpu_class_by_pvr_mask(host_pvr);
|
|
}
|
|
if (pvr_pcc == NULL) {
|
|
return -1;
|
|
}
|
|
type_info.parent = object_class_get_name(OBJECT_CLASS(pvr_pcc));
|
|
type_register(&type_info);
|
|
|
|
/* Register generic family CPU class for a family */
|
|
pvr_pcc = ppc_cpu_get_family_class(pvr_pcc);
|
|
dc = DEVICE_CLASS(pvr_pcc);
|
|
type_info.parent = object_class_get_name(OBJECT_CLASS(pvr_pcc));
|
|
type_info.name = g_strdup_printf("%s-"TYPE_POWERPC_CPU, dc->desc);
|
|
type_register(&type_info);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int kvmppc_define_rtas_kernel_token(uint32_t token, const char *function)
|
|
{
|
|
struct kvm_rtas_token_args args = {
|
|
.token = token,
|
|
};
|
|
|
|
if (!kvm_check_extension(kvm_state, KVM_CAP_PPC_RTAS)) {
|
|
return -ENOENT;
|
|
}
|
|
|
|
strncpy(args.name, function, sizeof(args.name));
|
|
|
|
return kvm_vm_ioctl(kvm_state, KVM_PPC_RTAS_DEFINE_TOKEN, &args);
|
|
}
|
|
|
|
int kvmppc_get_htab_fd(bool write)
|
|
{
|
|
struct kvm_get_htab_fd s = {
|
|
.flags = write ? KVM_GET_HTAB_WRITE : 0,
|
|
.start_index = 0,
|
|
};
|
|
|
|
if (!cap_htab_fd) {
|
|
fprintf(stderr, "KVM version doesn't support saving the hash table\n");
|
|
return -1;
|
|
}
|
|
|
|
return kvm_vm_ioctl(kvm_state, KVM_PPC_GET_HTAB_FD, &s);
|
|
}
|
|
|
|
int kvmppc_save_htab(QEMUFile *f, int fd, size_t bufsize, int64_t max_ns)
|
|
{
|
|
int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
|
|
uint8_t buf[bufsize];
|
|
ssize_t rc;
|
|
|
|
do {
|
|
rc = read(fd, buf, bufsize);
|
|
if (rc < 0) {
|
|
fprintf(stderr, "Error reading data from KVM HTAB fd: %s\n",
|
|
strerror(errno));
|
|
return rc;
|
|
} else if (rc) {
|
|
uint8_t *buffer = buf;
|
|
ssize_t n = rc;
|
|
while (n) {
|
|
struct kvm_get_htab_header *head =
|
|
(struct kvm_get_htab_header *) buffer;
|
|
size_t chunksize = sizeof(*head) +
|
|
HASH_PTE_SIZE_64 * head->n_valid;
|
|
|
|
qemu_put_be32(f, head->index);
|
|
qemu_put_be16(f, head->n_valid);
|
|
qemu_put_be16(f, head->n_invalid);
|
|
qemu_put_buffer(f, (void *)(head + 1),
|
|
HASH_PTE_SIZE_64 * head->n_valid);
|
|
|
|
buffer += chunksize;
|
|
n -= chunksize;
|
|
}
|
|
}
|
|
} while ((rc != 0)
|
|
&& ((max_ns < 0)
|
|
|| ((qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) < max_ns)));
|
|
|
|
return (rc == 0) ? 1 : 0;
|
|
}
|
|
|
|
int kvmppc_load_htab_chunk(QEMUFile *f, int fd, uint32_t index,
|
|
uint16_t n_valid, uint16_t n_invalid)
|
|
{
|
|
struct kvm_get_htab_header *buf;
|
|
size_t chunksize = sizeof(*buf) + n_valid*HASH_PTE_SIZE_64;
|
|
ssize_t rc;
|
|
|
|
buf = alloca(chunksize);
|
|
buf->index = index;
|
|
buf->n_valid = n_valid;
|
|
buf->n_invalid = n_invalid;
|
|
|
|
qemu_get_buffer(f, (void *)(buf + 1), HASH_PTE_SIZE_64*n_valid);
|
|
|
|
rc = write(fd, buf, chunksize);
|
|
if (rc < 0) {
|
|
fprintf(stderr, "Error writing KVM hash table: %s\n",
|
|
strerror(errno));
|
|
return rc;
|
|
}
|
|
if (rc != chunksize) {
|
|
/* We should never get a short write on a single chunk */
|
|
fprintf(stderr, "Short write, restoring KVM hash table\n");
|
|
return -1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
bool kvm_arch_stop_on_emulation_error(CPUState *cpu)
|
|
{
|
|
return true;
|
|
}
|
|
|
|
int kvm_arch_on_sigbus_vcpu(CPUState *cpu, int code, void *addr)
|
|
{
|
|
return 1;
|
|
}
|
|
|
|
int kvm_arch_on_sigbus(int code, void *addr)
|
|
{
|
|
return 1;
|
|
}
|
|
|
|
void kvm_arch_init_irq_routing(KVMState *s)
|
|
{
|
|
}
|
|
|
|
struct kvm_get_htab_buf {
|
|
struct kvm_get_htab_header header;
|
|
/*
|
|
* We require one extra byte for read
|
|
*/
|
|
target_ulong hpte[(HPTES_PER_GROUP * 2) + 1];
|
|
};
|
|
|
|
uint64_t kvmppc_hash64_read_pteg(PowerPCCPU *cpu, target_ulong pte_index)
|
|
{
|
|
int htab_fd;
|
|
struct kvm_get_htab_fd ghf;
|
|
struct kvm_get_htab_buf *hpte_buf;
|
|
|
|
ghf.flags = 0;
|
|
ghf.start_index = pte_index;
|
|
htab_fd = kvm_vm_ioctl(kvm_state, KVM_PPC_GET_HTAB_FD, &ghf);
|
|
if (htab_fd < 0) {
|
|
goto error_out;
|
|
}
|
|
|
|
hpte_buf = g_malloc0(sizeof(*hpte_buf));
|
|
/*
|
|
* Read the hpte group
|
|
*/
|
|
if (read(htab_fd, hpte_buf, sizeof(*hpte_buf)) < 0) {
|
|
goto out_close;
|
|
}
|
|
|
|
close(htab_fd);
|
|
return (uint64_t)(uintptr_t) hpte_buf->hpte;
|
|
|
|
out_close:
|
|
g_free(hpte_buf);
|
|
close(htab_fd);
|
|
error_out:
|
|
return 0;
|
|
}
|
|
|
|
void kvmppc_hash64_free_pteg(uint64_t token)
|
|
{
|
|
struct kvm_get_htab_buf *htab_buf;
|
|
|
|
htab_buf = container_of((void *)(uintptr_t) token, struct kvm_get_htab_buf,
|
|
hpte);
|
|
g_free(htab_buf);
|
|
return;
|
|
}
|
|
|
|
void kvmppc_hash64_write_pte(CPUPPCState *env, target_ulong pte_index,
|
|
target_ulong pte0, target_ulong pte1)
|
|
{
|
|
int htab_fd;
|
|
struct kvm_get_htab_fd ghf;
|
|
struct kvm_get_htab_buf hpte_buf;
|
|
|
|
ghf.flags = 0;
|
|
ghf.start_index = 0; /* Ignored */
|
|
htab_fd = kvm_vm_ioctl(kvm_state, KVM_PPC_GET_HTAB_FD, &ghf);
|
|
if (htab_fd < 0) {
|
|
goto error_out;
|
|
}
|
|
|
|
hpte_buf.header.n_valid = 1;
|
|
hpte_buf.header.n_invalid = 0;
|
|
hpte_buf.header.index = pte_index;
|
|
hpte_buf.hpte[0] = pte0;
|
|
hpte_buf.hpte[1] = pte1;
|
|
/*
|
|
* Write the hpte entry.
|
|
* CAUTION: write() has the warn_unused_result attribute. Hence we
|
|
* need to check the return value, even though we do nothing.
|
|
*/
|
|
if (write(htab_fd, &hpte_buf, sizeof(hpte_buf)) < 0) {
|
|
goto out_close;
|
|
}
|
|
|
|
out_close:
|
|
close(htab_fd);
|
|
return;
|
|
|
|
error_out:
|
|
return;
|
|
}
|
|
|
|
int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
|
|
uint64_t address, uint32_t data)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
int kvm_arch_msi_data_to_gsi(uint32_t data)
|
|
{
|
|
return data & 0xffff;
|
|
}
|