qemu-e2k/hw/pc.c
aliguori cb457d7679 Make pci_nic_init() use qemu_setup_nic_model() (Mark McLoughlin)
Add a table of PCI NIC models to pass to qemu_setup_nic_model().

While we're at it, also add a corresponding table of NIC init
functions.

Signed-off-by: Mark McLoughlin <markmc@redhat.com>
Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>



git-svn-id: svn://svn.savannah.nongnu.org/qemu/trunk@6287 c046a42c-6fe2-441c-8c8c-71466251a162
2009-01-13 19:47:10 +00:00

1149 lines
32 KiB
C

/*
* QEMU PC System Emulator
*
* Copyright (c) 2003-2004 Fabrice Bellard
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "hw.h"
#include "pc.h"
#include "fdc.h"
#include "pci.h"
#include "block.h"
#include "sysemu.h"
#include "audio/audio.h"
#include "net.h"
#include "smbus.h"
#include "boards.h"
#include "console.h"
#include "fw_cfg.h"
#include "virtio-blk.h"
#include "virtio-balloon.h"
#include "hpet_emul.h"
/* output Bochs bios info messages */
//#define DEBUG_BIOS
#define BIOS_FILENAME "bios.bin"
#define VGABIOS_FILENAME "vgabios.bin"
#define VGABIOS_CIRRUS_FILENAME "vgabios-cirrus.bin"
#define PC_MAX_BIOS_SIZE (4 * 1024 * 1024)
/* Leave a chunk of memory at the top of RAM for the BIOS ACPI tables. */
#define ACPI_DATA_SIZE 0x10000
#define BIOS_CFG_IOPORT 0x510
#define MAX_IDE_BUS 2
static fdctrl_t *floppy_controller;
static RTCState *rtc_state;
static PITState *pit;
static IOAPICState *ioapic;
static PCIDevice *i440fx_state;
static void ioport80_write(void *opaque, uint32_t addr, uint32_t data)
{
}
/* MSDOS compatibility mode FPU exception support */
static qemu_irq ferr_irq;
/* XXX: add IGNNE support */
void cpu_set_ferr(CPUX86State *s)
{
qemu_irq_raise(ferr_irq);
}
static void ioportF0_write(void *opaque, uint32_t addr, uint32_t data)
{
qemu_irq_lower(ferr_irq);
}
/* TSC handling */
uint64_t cpu_get_tsc(CPUX86State *env)
{
/* Note: when using kqemu, it is more logical to return the host TSC
because kqemu does not trap the RDTSC instruction for
performance reasons */
#ifdef USE_KQEMU
if (env->kqemu_enabled) {
return cpu_get_real_ticks();
} else
#endif
{
return cpu_get_ticks();
}
}
/* SMM support */
void cpu_smm_update(CPUState *env)
{
if (i440fx_state && env == first_cpu)
i440fx_set_smm(i440fx_state, (env->hflags >> HF_SMM_SHIFT) & 1);
}
/* IRQ handling */
int cpu_get_pic_interrupt(CPUState *env)
{
int intno;
intno = apic_get_interrupt(env);
if (intno >= 0) {
/* set irq request if a PIC irq is still pending */
/* XXX: improve that */
pic_update_irq(isa_pic);
return intno;
}
/* read the irq from the PIC */
if (!apic_accept_pic_intr(env))
return -1;
intno = pic_read_irq(isa_pic);
return intno;
}
static void pic_irq_request(void *opaque, int irq, int level)
{
CPUState *env = first_cpu;
if (env->apic_state) {
while (env) {
if (apic_accept_pic_intr(env))
apic_deliver_pic_intr(env, level);
env = env->next_cpu;
}
} else {
if (level)
cpu_interrupt(env, CPU_INTERRUPT_HARD);
else
cpu_reset_interrupt(env, CPU_INTERRUPT_HARD);
}
}
/* PC cmos mappings */
#define REG_EQUIPMENT_BYTE 0x14
static int cmos_get_fd_drive_type(int fd0)
{
int val;
switch (fd0) {
case 0:
/* 1.44 Mb 3"5 drive */
val = 4;
break;
case 1:
/* 2.88 Mb 3"5 drive */
val = 5;
break;
case 2:
/* 1.2 Mb 5"5 drive */
val = 2;
break;
default:
val = 0;
break;
}
return val;
}
static void cmos_init_hd(int type_ofs, int info_ofs, BlockDriverState *hd)
{
RTCState *s = rtc_state;
int cylinders, heads, sectors;
bdrv_get_geometry_hint(hd, &cylinders, &heads, &sectors);
rtc_set_memory(s, type_ofs, 47);
rtc_set_memory(s, info_ofs, cylinders);
rtc_set_memory(s, info_ofs + 1, cylinders >> 8);
rtc_set_memory(s, info_ofs + 2, heads);
rtc_set_memory(s, info_ofs + 3, 0xff);
rtc_set_memory(s, info_ofs + 4, 0xff);
rtc_set_memory(s, info_ofs + 5, 0xc0 | ((heads > 8) << 3));
rtc_set_memory(s, info_ofs + 6, cylinders);
rtc_set_memory(s, info_ofs + 7, cylinders >> 8);
rtc_set_memory(s, info_ofs + 8, sectors);
}
/* convert boot_device letter to something recognizable by the bios */
static int boot_device2nibble(char boot_device)
{
switch(boot_device) {
case 'a':
case 'b':
return 0x01; /* floppy boot */
case 'c':
return 0x02; /* hard drive boot */
case 'd':
return 0x03; /* CD-ROM boot */
case 'n':
return 0x04; /* Network boot */
}
return 0;
}
/* copy/pasted from cmos_init, should be made a general function
and used there as well */
static int pc_boot_set(void *opaque, const char *boot_device)
{
#define PC_MAX_BOOT_DEVICES 3
RTCState *s = (RTCState *)opaque;
int nbds, bds[3] = { 0, };
int i;
nbds = strlen(boot_device);
if (nbds > PC_MAX_BOOT_DEVICES) {
term_printf("Too many boot devices for PC\n");
return(1);
}
for (i = 0; i < nbds; i++) {
bds[i] = boot_device2nibble(boot_device[i]);
if (bds[i] == 0) {
term_printf("Invalid boot device for PC: '%c'\n",
boot_device[i]);
return(1);
}
}
rtc_set_memory(s, 0x3d, (bds[1] << 4) | bds[0]);
rtc_set_memory(s, 0x38, (bds[2] << 4));
return(0);
}
/* hd_table must contain 4 block drivers */
static void cmos_init(ram_addr_t ram_size, ram_addr_t above_4g_mem_size,
const char *boot_device, BlockDriverState **hd_table)
{
RTCState *s = rtc_state;
int nbds, bds[3] = { 0, };
int val;
int fd0, fd1, nb;
int i;
/* various important CMOS locations needed by PC/Bochs bios */
/* memory size */
val = 640; /* base memory in K */
rtc_set_memory(s, 0x15, val);
rtc_set_memory(s, 0x16, val >> 8);
val = (ram_size / 1024) - 1024;
if (val > 65535)
val = 65535;
rtc_set_memory(s, 0x17, val);
rtc_set_memory(s, 0x18, val >> 8);
rtc_set_memory(s, 0x30, val);
rtc_set_memory(s, 0x31, val >> 8);
if (above_4g_mem_size) {
rtc_set_memory(s, 0x5b, (unsigned int)above_4g_mem_size >> 16);
rtc_set_memory(s, 0x5c, (unsigned int)above_4g_mem_size >> 24);
rtc_set_memory(s, 0x5d, (uint64_t)above_4g_mem_size >> 32);
}
if (ram_size > (16 * 1024 * 1024))
val = (ram_size / 65536) - ((16 * 1024 * 1024) / 65536);
else
val = 0;
if (val > 65535)
val = 65535;
rtc_set_memory(s, 0x34, val);
rtc_set_memory(s, 0x35, val >> 8);
/* set the number of CPU */
rtc_set_memory(s, 0x5f, smp_cpus - 1);
/* set boot devices, and disable floppy signature check if requested */
#define PC_MAX_BOOT_DEVICES 3
nbds = strlen(boot_device);
if (nbds > PC_MAX_BOOT_DEVICES) {
fprintf(stderr, "Too many boot devices for PC\n");
exit(1);
}
for (i = 0; i < nbds; i++) {
bds[i] = boot_device2nibble(boot_device[i]);
if (bds[i] == 0) {
fprintf(stderr, "Invalid boot device for PC: '%c'\n",
boot_device[i]);
exit(1);
}
}
rtc_set_memory(s, 0x3d, (bds[1] << 4) | bds[0]);
rtc_set_memory(s, 0x38, (bds[2] << 4) | (fd_bootchk ? 0x0 : 0x1));
/* floppy type */
fd0 = fdctrl_get_drive_type(floppy_controller, 0);
fd1 = fdctrl_get_drive_type(floppy_controller, 1);
val = (cmos_get_fd_drive_type(fd0) << 4) | cmos_get_fd_drive_type(fd1);
rtc_set_memory(s, 0x10, val);
val = 0;
nb = 0;
if (fd0 < 3)
nb++;
if (fd1 < 3)
nb++;
switch (nb) {
case 0:
break;
case 1:
val |= 0x01; /* 1 drive, ready for boot */
break;
case 2:
val |= 0x41; /* 2 drives, ready for boot */
break;
}
val |= 0x02; /* FPU is there */
val |= 0x04; /* PS/2 mouse installed */
rtc_set_memory(s, REG_EQUIPMENT_BYTE, val);
/* hard drives */
rtc_set_memory(s, 0x12, (hd_table[0] ? 0xf0 : 0) | (hd_table[1] ? 0x0f : 0));
if (hd_table[0])
cmos_init_hd(0x19, 0x1b, hd_table[0]);
if (hd_table[1])
cmos_init_hd(0x1a, 0x24, hd_table[1]);
val = 0;
for (i = 0; i < 4; i++) {
if (hd_table[i]) {
int cylinders, heads, sectors, translation;
/* NOTE: bdrv_get_geometry_hint() returns the physical
geometry. It is always such that: 1 <= sects <= 63, 1
<= heads <= 16, 1 <= cylinders <= 16383. The BIOS
geometry can be different if a translation is done. */
translation = bdrv_get_translation_hint(hd_table[i]);
if (translation == BIOS_ATA_TRANSLATION_AUTO) {
bdrv_get_geometry_hint(hd_table[i], &cylinders, &heads, &sectors);
if (cylinders <= 1024 && heads <= 16 && sectors <= 63) {
/* No translation. */
translation = 0;
} else {
/* LBA translation. */
translation = 1;
}
} else {
translation--;
}
val |= translation << (i * 2);
}
}
rtc_set_memory(s, 0x39, val);
}
void ioport_set_a20(int enable)
{
/* XXX: send to all CPUs ? */
cpu_x86_set_a20(first_cpu, enable);
}
int ioport_get_a20(void)
{
return ((first_cpu->a20_mask >> 20) & 1);
}
static void ioport92_write(void *opaque, uint32_t addr, uint32_t val)
{
ioport_set_a20((val >> 1) & 1);
/* XXX: bit 0 is fast reset */
}
static uint32_t ioport92_read(void *opaque, uint32_t addr)
{
return ioport_get_a20() << 1;
}
/***********************************************************/
/* Bochs BIOS debug ports */
static void bochs_bios_write(void *opaque, uint32_t addr, uint32_t val)
{
static const char shutdown_str[8] = "Shutdown";
static int shutdown_index = 0;
switch(addr) {
/* Bochs BIOS messages */
case 0x400:
case 0x401:
fprintf(stderr, "BIOS panic at rombios.c, line %d\n", val);
exit(1);
case 0x402:
case 0x403:
#ifdef DEBUG_BIOS
fprintf(stderr, "%c", val);
#endif
break;
case 0x8900:
/* same as Bochs power off */
if (val == shutdown_str[shutdown_index]) {
shutdown_index++;
if (shutdown_index == 8) {
shutdown_index = 0;
qemu_system_shutdown_request();
}
} else {
shutdown_index = 0;
}
break;
/* LGPL'ed VGA BIOS messages */
case 0x501:
case 0x502:
fprintf(stderr, "VGA BIOS panic, line %d\n", val);
exit(1);
case 0x500:
case 0x503:
#ifdef DEBUG_BIOS
fprintf(stderr, "%c", val);
#endif
break;
}
}
static void bochs_bios_init(void)
{
void *fw_cfg;
register_ioport_write(0x400, 1, 2, bochs_bios_write, NULL);
register_ioport_write(0x401, 1, 2, bochs_bios_write, NULL);
register_ioport_write(0x402, 1, 1, bochs_bios_write, NULL);
register_ioport_write(0x403, 1, 1, bochs_bios_write, NULL);
register_ioport_write(0x8900, 1, 1, bochs_bios_write, NULL);
register_ioport_write(0x501, 1, 2, bochs_bios_write, NULL);
register_ioport_write(0x502, 1, 2, bochs_bios_write, NULL);
register_ioport_write(0x500, 1, 1, bochs_bios_write, NULL);
register_ioport_write(0x503, 1, 1, bochs_bios_write, NULL);
fw_cfg = fw_cfg_init(BIOS_CFG_IOPORT, BIOS_CFG_IOPORT + 1, 0, 0);
fw_cfg_add_i32(fw_cfg, FW_CFG_ID, 1);
fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size);
}
/* Generate an initial boot sector which sets state and jump to
a specified vector */
static void generate_bootsect(uint8_t *option_rom,
uint32_t gpr[8], uint16_t segs[6], uint16_t ip)
{
uint8_t rom[512], *p, *reloc;
uint8_t sum;
int i;
memset(rom, 0, sizeof(rom));
p = rom;
/* Make sure we have an option rom signature */
*p++ = 0x55;
*p++ = 0xaa;
/* ROM size in sectors*/
*p++ = 1;
/* Hook int19 */
*p++ = 0x50; /* push ax */
*p++ = 0x1e; /* push ds */
*p++ = 0x31; *p++ = 0xc0; /* xor ax, ax */
*p++ = 0x8e; *p++ = 0xd8; /* mov ax, ds */
*p++ = 0xc7; *p++ = 0x06; /* movvw _start,0x64 */
*p++ = 0x64; *p++ = 0x00;
reloc = p;
*p++ = 0x00; *p++ = 0x00;
*p++ = 0x8c; *p++ = 0x0e; /* mov cs,0x66 */
*p++ = 0x66; *p++ = 0x00;
*p++ = 0x1f; /* pop ds */
*p++ = 0x58; /* pop ax */
*p++ = 0xcb; /* lret */
/* Actual code */
*reloc = (p - rom);
*p++ = 0xfa; /* CLI */
*p++ = 0xfc; /* CLD */
for (i = 0; i < 6; i++) {
if (i == 1) /* Skip CS */
continue;
*p++ = 0xb8; /* MOV AX,imm16 */
*p++ = segs[i];
*p++ = segs[i] >> 8;
*p++ = 0x8e; /* MOV <seg>,AX */
*p++ = 0xc0 + (i << 3);
}
for (i = 0; i < 8; i++) {
*p++ = 0x66; /* 32-bit operand size */
*p++ = 0xb8 + i; /* MOV <reg>,imm32 */
*p++ = gpr[i];
*p++ = gpr[i] >> 8;
*p++ = gpr[i] >> 16;
*p++ = gpr[i] >> 24;
}
*p++ = 0xea; /* JMP FAR */
*p++ = ip; /* IP */
*p++ = ip >> 8;
*p++ = segs[1]; /* CS */
*p++ = segs[1] >> 8;
/* sign rom */
sum = 0;
for (i = 0; i < (sizeof(rom) - 1); i++)
sum += rom[i];
rom[sizeof(rom) - 1] = -sum;
memcpy(option_rom, rom, sizeof(rom));
}
static long get_file_size(FILE *f)
{
long where, size;
/* XXX: on Unix systems, using fstat() probably makes more sense */
where = ftell(f);
fseek(f, 0, SEEK_END);
size = ftell(f);
fseek(f, where, SEEK_SET);
return size;
}
static void load_linux(uint8_t *option_rom,
const char *kernel_filename,
const char *initrd_filename,
const char *kernel_cmdline)
{
uint16_t protocol;
uint32_t gpr[8];
uint16_t seg[6];
uint16_t real_seg;
int setup_size, kernel_size, initrd_size, cmdline_size;
uint32_t initrd_max;
uint8_t header[1024];
target_phys_addr_t real_addr, prot_addr, cmdline_addr, initrd_addr;
FILE *f, *fi;
/* Align to 16 bytes as a paranoia measure */
cmdline_size = (strlen(kernel_cmdline)+16) & ~15;
/* load the kernel header */
f = fopen(kernel_filename, "rb");
if (!f || !(kernel_size = get_file_size(f)) ||
fread(header, 1, 1024, f) != 1024) {
fprintf(stderr, "qemu: could not load kernel '%s'\n",
kernel_filename);
exit(1);
}
/* kernel protocol version */
#if 0
fprintf(stderr, "header magic: %#x\n", ldl_p(header+0x202));
#endif
if (ldl_p(header+0x202) == 0x53726448)
protocol = lduw_p(header+0x206);
else
protocol = 0;
if (protocol < 0x200 || !(header[0x211] & 0x01)) {
/* Low kernel */
real_addr = 0x90000;
cmdline_addr = 0x9a000 - cmdline_size;
prot_addr = 0x10000;
} else if (protocol < 0x202) {
/* High but ancient kernel */
real_addr = 0x90000;
cmdline_addr = 0x9a000 - cmdline_size;
prot_addr = 0x100000;
} else {
/* High and recent kernel */
real_addr = 0x10000;
cmdline_addr = 0x20000;
prot_addr = 0x100000;
}
#if 0
fprintf(stderr,
"qemu: real_addr = 0x" TARGET_FMT_plx "\n"
"qemu: cmdline_addr = 0x" TARGET_FMT_plx "\n"
"qemu: prot_addr = 0x" TARGET_FMT_plx "\n",
real_addr,
cmdline_addr,
prot_addr);
#endif
/* highest address for loading the initrd */
if (protocol >= 0x203)
initrd_max = ldl_p(header+0x22c);
else
initrd_max = 0x37ffffff;
if (initrd_max >= ram_size-ACPI_DATA_SIZE)
initrd_max = ram_size-ACPI_DATA_SIZE-1;
/* kernel command line */
pstrcpy_targphys(cmdline_addr, 4096, kernel_cmdline);
if (protocol >= 0x202) {
stl_p(header+0x228, cmdline_addr);
} else {
stw_p(header+0x20, 0xA33F);
stw_p(header+0x22, cmdline_addr-real_addr);
}
/* loader type */
/* High nybble = B reserved for Qemu; low nybble is revision number.
If this code is substantially changed, you may want to consider
incrementing the revision. */
if (protocol >= 0x200)
header[0x210] = 0xB0;
/* heap */
if (protocol >= 0x201) {
header[0x211] |= 0x80; /* CAN_USE_HEAP */
stw_p(header+0x224, cmdline_addr-real_addr-0x200);
}
/* load initrd */
if (initrd_filename) {
if (protocol < 0x200) {
fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n");
exit(1);
}
fi = fopen(initrd_filename, "rb");
if (!fi) {
fprintf(stderr, "qemu: could not load initial ram disk '%s'\n",
initrd_filename);
exit(1);
}
initrd_size = get_file_size(fi);
initrd_addr = (initrd_max-initrd_size) & ~4095;
fprintf(stderr, "qemu: loading initrd (%#x bytes) at 0x" TARGET_FMT_plx
"\n", initrd_size, initrd_addr);
if (!fread_targphys_ok(initrd_addr, initrd_size, fi)) {
fprintf(stderr, "qemu: read error on initial ram disk '%s'\n",
initrd_filename);
exit(1);
}
fclose(fi);
stl_p(header+0x218, initrd_addr);
stl_p(header+0x21c, initrd_size);
}
/* store the finalized header and load the rest of the kernel */
cpu_physical_memory_write(real_addr, header, 1024);
setup_size = header[0x1f1];
if (setup_size == 0)
setup_size = 4;
setup_size = (setup_size+1)*512;
kernel_size -= setup_size; /* Size of protected-mode code */
if (!fread_targphys_ok(real_addr+1024, setup_size-1024, f) ||
!fread_targphys_ok(prot_addr, kernel_size, f)) {
fprintf(stderr, "qemu: read error on kernel '%s'\n",
kernel_filename);
exit(1);
}
fclose(f);
/* generate bootsector to set up the initial register state */
real_seg = real_addr >> 4;
seg[0] = seg[2] = seg[3] = seg[4] = seg[4] = real_seg;
seg[1] = real_seg+0x20; /* CS */
memset(gpr, 0, sizeof gpr);
gpr[4] = cmdline_addr-real_addr-16; /* SP (-16 is paranoia) */
generate_bootsect(option_rom, gpr, seg, 0);
}
static void main_cpu_reset(void *opaque)
{
CPUState *env = opaque;
cpu_reset(env);
}
static const int ide_iobase[2] = { 0x1f0, 0x170 };
static const int ide_iobase2[2] = { 0x3f6, 0x376 };
static const int ide_irq[2] = { 14, 15 };
#define NE2000_NB_MAX 6
static int ne2000_io[NE2000_NB_MAX] = { 0x300, 0x320, 0x340, 0x360, 0x280, 0x380 };
static int ne2000_irq[NE2000_NB_MAX] = { 9, 10, 11, 3, 4, 5 };
static int serial_io[MAX_SERIAL_PORTS] = { 0x3f8, 0x2f8, 0x3e8, 0x2e8 };
static int serial_irq[MAX_SERIAL_PORTS] = { 4, 3, 4, 3 };
static int parallel_io[MAX_PARALLEL_PORTS] = { 0x378, 0x278, 0x3bc };
static int parallel_irq[MAX_PARALLEL_PORTS] = { 7, 7, 7 };
#ifdef HAS_AUDIO
static void audio_init (PCIBus *pci_bus, qemu_irq *pic)
{
struct soundhw *c;
int audio_enabled = 0;
for (c = soundhw; !audio_enabled && c->name; ++c) {
audio_enabled = c->enabled;
}
if (audio_enabled) {
AudioState *s;
s = AUD_init ();
if (s) {
for (c = soundhw; c->name; ++c) {
if (c->enabled) {
if (c->isa) {
c->init.init_isa (s, pic);
}
else {
if (pci_bus) {
c->init.init_pci (pci_bus, s);
}
}
}
}
}
}
}
#endif
static void pc_init_ne2k_isa(NICInfo *nd, qemu_irq *pic)
{
static int nb_ne2k = 0;
if (nb_ne2k == NE2000_NB_MAX)
return;
isa_ne2000_init(ne2000_io[nb_ne2k], pic[ne2000_irq[nb_ne2k]], nd);
nb_ne2k++;
}
/* PC hardware initialisation */
static void pc_init1(ram_addr_t ram_size, int vga_ram_size,
const char *boot_device, DisplayState *ds,
const char *kernel_filename, const char *kernel_cmdline,
const char *initrd_filename,
int pci_enabled, const char *cpu_model)
{
char buf[1024];
int ret, linux_boot, i;
ram_addr_t ram_addr, vga_ram_addr, bios_offset, vga_bios_offset;
ram_addr_t below_4g_mem_size, above_4g_mem_size = 0;
int bios_size, isa_bios_size, vga_bios_size;
PCIBus *pci_bus;
int piix3_devfn = -1;
CPUState *env;
qemu_irq *cpu_irq;
qemu_irq *i8259;
int index;
BlockDriverState *hd[MAX_IDE_BUS * MAX_IDE_DEVS];
BlockDriverState *fd[MAX_FD];
if (ram_size >= 0xe0000000 ) {
above_4g_mem_size = ram_size - 0xe0000000;
below_4g_mem_size = 0xe0000000;
} else {
below_4g_mem_size = ram_size;
}
linux_boot = (kernel_filename != NULL);
/* init CPUs */
if (cpu_model == NULL) {
#ifdef TARGET_X86_64
cpu_model = "qemu64";
#else
cpu_model = "qemu32";
#endif
}
for(i = 0; i < smp_cpus; i++) {
env = cpu_init(cpu_model);
if (!env) {
fprintf(stderr, "Unable to find x86 CPU definition\n");
exit(1);
}
if (i != 0)
env->halted = 1;
if (smp_cpus > 1) {
/* XXX: enable it in all cases */
env->cpuid_features |= CPUID_APIC;
}
qemu_register_reset(main_cpu_reset, env);
if (pci_enabled) {
apic_init(env);
}
}
vmport_init();
/* allocate RAM */
ram_addr = qemu_ram_alloc(0xa0000);
cpu_register_physical_memory(0, 0xa0000, ram_addr);
/* Allocate, even though we won't register, so we don't break the
* phys_ram_base + PA assumption. This range includes vga (0xa0000 - 0xc0000),
* and some bios areas, which will be registered later
*/
ram_addr = qemu_ram_alloc(0x100000 - 0xa0000);
ram_addr = qemu_ram_alloc(below_4g_mem_size - 0x100000);
cpu_register_physical_memory(0x100000,
below_4g_mem_size - 0x100000,
ram_addr);
/* above 4giga memory allocation */
if (above_4g_mem_size > 0) {
ram_addr = qemu_ram_alloc(above_4g_mem_size);
cpu_register_physical_memory(0x100000000ULL,
above_4g_mem_size,
ram_addr);
}
/* allocate VGA RAM */
vga_ram_addr = qemu_ram_alloc(vga_ram_size);
/* BIOS load */
if (bios_name == NULL)
bios_name = BIOS_FILENAME;
snprintf(buf, sizeof(buf), "%s/%s", bios_dir, bios_name);
bios_size = get_image_size(buf);
if (bios_size <= 0 ||
(bios_size % 65536) != 0) {
goto bios_error;
}
bios_offset = qemu_ram_alloc(bios_size);
ret = load_image(buf, phys_ram_base + bios_offset);
if (ret != bios_size) {
bios_error:
fprintf(stderr, "qemu: could not load PC BIOS '%s'\n", buf);
exit(1);
}
/* VGA BIOS load */
if (cirrus_vga_enabled) {
snprintf(buf, sizeof(buf), "%s/%s", bios_dir, VGABIOS_CIRRUS_FILENAME);
} else {
snprintf(buf, sizeof(buf), "%s/%s", bios_dir, VGABIOS_FILENAME);
}
vga_bios_size = get_image_size(buf);
if (vga_bios_size <= 0 || vga_bios_size > 65536)
goto vga_bios_error;
vga_bios_offset = qemu_ram_alloc(65536);
ret = load_image(buf, phys_ram_base + vga_bios_offset);
if (ret != vga_bios_size) {
vga_bios_error:
fprintf(stderr, "qemu: could not load VGA BIOS '%s'\n", buf);
exit(1);
}
/* setup basic memory access */
cpu_register_physical_memory(0xc0000, 0x10000,
vga_bios_offset | IO_MEM_ROM);
/* map the last 128KB of the BIOS in ISA space */
isa_bios_size = bios_size;
if (isa_bios_size > (128 * 1024))
isa_bios_size = 128 * 1024;
cpu_register_physical_memory(0x100000 - isa_bios_size,
isa_bios_size,
(bios_offset + bios_size - isa_bios_size) | IO_MEM_ROM);
{
ram_addr_t option_rom_offset;
int size, offset;
offset = 0;
if (linux_boot) {
option_rom_offset = qemu_ram_alloc(TARGET_PAGE_SIZE);
load_linux(phys_ram_base + option_rom_offset,
kernel_filename, initrd_filename, kernel_cmdline);
cpu_register_physical_memory(0xd0000, TARGET_PAGE_SIZE,
option_rom_offset | IO_MEM_ROM);
offset = TARGET_PAGE_SIZE;
}
for (i = 0; i < nb_option_roms; i++) {
size = get_image_size(option_rom[i]);
if (size < 0) {
fprintf(stderr, "Could not load option rom '%s'\n",
option_rom[i]);
exit(1);
}
if (size > (0x10000 - offset))
goto option_rom_error;
option_rom_offset = qemu_ram_alloc(size);
ret = load_image(option_rom[i], phys_ram_base + option_rom_offset);
if (ret != size) {
option_rom_error:
fprintf(stderr, "Too many option ROMS\n");
exit(1);
}
size = (size + 4095) & ~4095;
cpu_register_physical_memory(0xd0000 + offset,
size, option_rom_offset | IO_MEM_ROM);
offset += size;
}
}
/* map all the bios at the top of memory */
cpu_register_physical_memory((uint32_t)(-bios_size),
bios_size, bios_offset | IO_MEM_ROM);
bochs_bios_init();
cpu_irq = qemu_allocate_irqs(pic_irq_request, NULL, 1);
i8259 = i8259_init(cpu_irq[0]);
ferr_irq = i8259[13];
if (pci_enabled) {
pci_bus = i440fx_init(&i440fx_state, i8259);
piix3_devfn = piix3_init(pci_bus, -1);
} else {
pci_bus = NULL;
}
/* init basic PC hardware */
register_ioport_write(0x80, 1, 1, ioport80_write, NULL);
register_ioport_write(0xf0, 1, 1, ioportF0_write, NULL);
if (cirrus_vga_enabled) {
if (pci_enabled) {
pci_cirrus_vga_init(pci_bus,
ds, phys_ram_base + vga_ram_addr,
vga_ram_addr, vga_ram_size);
} else {
isa_cirrus_vga_init(ds, phys_ram_base + vga_ram_addr,
vga_ram_addr, vga_ram_size);
}
} else if (vmsvga_enabled) {
if (pci_enabled)
pci_vmsvga_init(pci_bus, ds, phys_ram_base + vga_ram_addr,
vga_ram_addr, vga_ram_size);
else
fprintf(stderr, "%s: vmware_vga: no PCI bus\n", __FUNCTION__);
} else {
if (pci_enabled) {
pci_vga_init(pci_bus, ds, phys_ram_base + vga_ram_addr,
vga_ram_addr, vga_ram_size, 0, 0);
} else {
isa_vga_init(ds, phys_ram_base + vga_ram_addr,
vga_ram_addr, vga_ram_size);
}
}
rtc_state = rtc_init(0x70, i8259[8]);
qemu_register_boot_set(pc_boot_set, rtc_state);
register_ioport_read(0x92, 1, 1, ioport92_read, NULL);
register_ioport_write(0x92, 1, 1, ioport92_write, NULL);
if (pci_enabled) {
ioapic = ioapic_init();
}
pit = pit_init(0x40, i8259[0]);
pcspk_init(pit);
if (!no_hpet) {
hpet_init(i8259);
}
if (pci_enabled) {
pic_set_alt_irq_func(isa_pic, ioapic_set_irq, ioapic);
}
for(i = 0; i < MAX_SERIAL_PORTS; i++) {
if (serial_hds[i]) {
serial_init(serial_io[i], i8259[serial_irq[i]], 115200,
serial_hds[i]);
}
}
for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
if (parallel_hds[i]) {
parallel_init(parallel_io[i], i8259[parallel_irq[i]],
parallel_hds[i]);
}
}
for(i = 0; i < nb_nics; i++) {
NICInfo *nd = &nd_table[i];
if (!pci_enabled || (nd->model && strcmp(nd->model, "ne2k_isa") == 0))
pc_init_ne2k_isa(nd, i8259);
else
pci_nic_init(pci_bus, nd, -1, "ne2k_pci");
}
if (drive_get_max_bus(IF_IDE) >= MAX_IDE_BUS) {
fprintf(stderr, "qemu: too many IDE bus\n");
exit(1);
}
for(i = 0; i < MAX_IDE_BUS * MAX_IDE_DEVS; i++) {
index = drive_get_index(IF_IDE, i / MAX_IDE_DEVS, i % MAX_IDE_DEVS);
if (index != -1)
hd[i] = drives_table[index].bdrv;
else
hd[i] = NULL;
}
if (pci_enabled) {
pci_piix3_ide_init(pci_bus, hd, piix3_devfn + 1, i8259);
} else {
for(i = 0; i < MAX_IDE_BUS; i++) {
isa_ide_init(ide_iobase[i], ide_iobase2[i], i8259[ide_irq[i]],
hd[MAX_IDE_DEVS * i], hd[MAX_IDE_DEVS * i + 1]);
}
}
i8042_init(i8259[1], i8259[12], 0x60);
DMA_init(0);
#ifdef HAS_AUDIO
audio_init(pci_enabled ? pci_bus : NULL, i8259);
#endif
for(i = 0; i < MAX_FD; i++) {
index = drive_get_index(IF_FLOPPY, 0, i);
if (index != -1)
fd[i] = drives_table[index].bdrv;
else
fd[i] = NULL;
}
floppy_controller = fdctrl_init(i8259[6], 2, 0, 0x3f0, fd);
cmos_init(below_4g_mem_size, above_4g_mem_size, boot_device, hd);
if (pci_enabled && usb_enabled) {
usb_uhci_piix3_init(pci_bus, piix3_devfn + 2);
}
if (pci_enabled && acpi_enabled) {
uint8_t *eeprom_buf = qemu_mallocz(8 * 256); /* XXX: make this persistent */
i2c_bus *smbus;
/* TODO: Populate SPD eeprom data. */
smbus = piix4_pm_init(pci_bus, piix3_devfn + 3, 0xb100, i8259[9]);
for (i = 0; i < 8; i++) {
smbus_eeprom_device_init(smbus, 0x50 + i, eeprom_buf + (i * 256));
}
}
if (i440fx_state) {
i440fx_init_memory_mappings(i440fx_state);
}
if (pci_enabled) {
int max_bus;
int bus, unit;
void *scsi;
max_bus = drive_get_max_bus(IF_SCSI);
for (bus = 0; bus <= max_bus; bus++) {
scsi = lsi_scsi_init(pci_bus, -1);
for (unit = 0; unit < LSI_MAX_DEVS; unit++) {
index = drive_get_index(IF_SCSI, bus, unit);
if (index == -1)
continue;
lsi_scsi_attach(scsi, drives_table[index].bdrv, unit);
}
}
}
/* Add virtio block devices */
if (pci_enabled) {
int index;
int unit_id = 0;
while ((index = drive_get_index(IF_VIRTIO, 0, unit_id)) != -1) {
virtio_blk_init(pci_bus, drives_table[index].bdrv);
unit_id++;
}
}
/* Add virtio balloon device */
if (pci_enabled)
virtio_balloon_init(pci_bus);
}
static void pc_init_pci(ram_addr_t ram_size, int vga_ram_size,
const char *boot_device, DisplayState *ds,
const char *kernel_filename,
const char *kernel_cmdline,
const char *initrd_filename,
const char *cpu_model)
{
pc_init1(ram_size, vga_ram_size, boot_device, ds,
kernel_filename, kernel_cmdline,
initrd_filename, 1, cpu_model);
}
static void pc_init_isa(ram_addr_t ram_size, int vga_ram_size,
const char *boot_device, DisplayState *ds,
const char *kernel_filename,
const char *kernel_cmdline,
const char *initrd_filename,
const char *cpu_model)
{
pc_init1(ram_size, vga_ram_size, boot_device, ds,
kernel_filename, kernel_cmdline,
initrd_filename, 0, cpu_model);
}
/* set CMOS shutdown status register (index 0xF) as S3_resume(0xFE)
BIOS will read it and start S3 resume at POST Entry */
void cmos_set_s3_resume(void)
{
if (rtc_state)
rtc_set_memory(rtc_state, 0xF, 0xFE);
}
QEMUMachine pc_machine = {
.name = "pc",
.desc = "Standard PC",
.init = pc_init_pci,
.ram_require = VGA_RAM_SIZE + PC_MAX_BIOS_SIZE,
.max_cpus = 255,
};
QEMUMachine isapc_machine = {
.name = "isapc",
.desc = "ISA-only PC",
.init = pc_init_isa,
.ram_require = VGA_RAM_SIZE + PC_MAX_BIOS_SIZE,
.max_cpus = 1,
};