qemu-e2k/hw/i386/pc.c
Roman Kagan 424e4a87d2 i386/pc: expose identifying the floppy controller
Factor out and expose the function to locate the floppy controller in
the system.
It will allow to dynamically populate the relevant objects in the ACPI
tables.

Signed-off-by: Roman Kagan <rkagan@virtuozzo.com>
Cc: "Michael S. Tsirkin" <mst@redhat.com>
Cc: Eduardo Habkost <ehabkost@redhat.com>
Cc: Igor Mammedov <imammedo@redhat.com>
Cc: John Snow <jsnow@redhat.com>
Cc: Kevin Wolf <kwolf@redhat.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Richard Henderson <rth@twiddle.net>
Cc: qemu-block@nongnu.org
Cc: qemu-stable@nongnu.org
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
2016-01-09 23:20:20 +02:00

2008 lines
59 KiB
C

/*
* QEMU PC System Emulator
*
* Copyright (c) 2003-2004 Fabrice Bellard
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "hw/hw.h"
#include "hw/i386/pc.h"
#include "hw/char/serial.h"
#include "hw/i386/apic.h"
#include "hw/i386/topology.h"
#include "sysemu/cpus.h"
#include "hw/block/fdc.h"
#include "hw/ide.h"
#include "hw/pci/pci.h"
#include "hw/pci/pci_bus.h"
#include "hw/nvram/fw_cfg.h"
#include "hw/timer/hpet.h"
#include "hw/smbios/smbios.h"
#include "hw/loader.h"
#include "elf.h"
#include "multiboot.h"
#include "hw/timer/mc146818rtc.h"
#include "hw/timer/i8254.h"
#include "hw/audio/pcspk.h"
#include "hw/pci/msi.h"
#include "hw/sysbus.h"
#include "sysemu/sysemu.h"
#include "sysemu/numa.h"
#include "sysemu/kvm.h"
#include "sysemu/qtest.h"
#include "kvm_i386.h"
#include "hw/xen/xen.h"
#include "sysemu/block-backend.h"
#include "hw/block/block.h"
#include "ui/qemu-spice.h"
#include "exec/memory.h"
#include "exec/address-spaces.h"
#include "sysemu/arch_init.h"
#include "qemu/bitmap.h"
#include "qemu/config-file.h"
#include "qemu/error-report.h"
#include "hw/acpi/acpi.h"
#include "hw/acpi/cpu_hotplug.h"
#include "hw/boards.h"
#include "hw/pci/pci_host.h"
#include "acpi-build.h"
#include "hw/mem/pc-dimm.h"
#include "qapi/visitor.h"
#include "qapi-visit.h"
#include "qom/cpu.h"
/* debug PC/ISA interrupts */
//#define DEBUG_IRQ
#ifdef DEBUG_IRQ
#define DPRINTF(fmt, ...) \
do { printf("CPUIRQ: " fmt , ## __VA_ARGS__); } while (0)
#else
#define DPRINTF(fmt, ...)
#endif
#define BIOS_CFG_IOPORT 0x510
#define FW_CFG_ACPI_TABLES (FW_CFG_ARCH_LOCAL + 0)
#define FW_CFG_SMBIOS_ENTRIES (FW_CFG_ARCH_LOCAL + 1)
#define FW_CFG_IRQ0_OVERRIDE (FW_CFG_ARCH_LOCAL + 2)
#define FW_CFG_E820_TABLE (FW_CFG_ARCH_LOCAL + 3)
#define FW_CFG_HPET (FW_CFG_ARCH_LOCAL + 4)
#define E820_NR_ENTRIES 16
struct e820_entry {
uint64_t address;
uint64_t length;
uint32_t type;
} QEMU_PACKED __attribute((__aligned__(4)));
struct e820_table {
uint32_t count;
struct e820_entry entry[E820_NR_ENTRIES];
} QEMU_PACKED __attribute((__aligned__(4)));
static struct e820_table e820_reserve;
static struct e820_entry *e820_table;
static unsigned e820_entries;
struct hpet_fw_config hpet_cfg = {.count = UINT8_MAX};
void gsi_handler(void *opaque, int n, int level)
{
GSIState *s = opaque;
DPRINTF("pc: %s GSI %d\n", level ? "raising" : "lowering", n);
if (n < ISA_NUM_IRQS) {
qemu_set_irq(s->i8259_irq[n], level);
}
qemu_set_irq(s->ioapic_irq[n], level);
}
static void ioport80_write(void *opaque, hwaddr addr, uint64_t data,
unsigned size)
{
}
static uint64_t ioport80_read(void *opaque, hwaddr addr, unsigned size)
{
return 0xffffffffffffffffULL;
}
/* MSDOS compatibility mode FPU exception support */
static qemu_irq ferr_irq;
void pc_register_ferr_irq(qemu_irq irq)
{
ferr_irq = irq;
}
/* XXX: add IGNNE support */
void cpu_set_ferr(CPUX86State *s)
{
qemu_irq_raise(ferr_irq);
}
static void ioportF0_write(void *opaque, hwaddr addr, uint64_t data,
unsigned size)
{
qemu_irq_lower(ferr_irq);
}
static uint64_t ioportF0_read(void *opaque, hwaddr addr, unsigned size)
{
return 0xffffffffffffffffULL;
}
/* TSC handling */
uint64_t cpu_get_tsc(CPUX86State *env)
{
return cpu_get_ticks();
}
/* IRQ handling */
int cpu_get_pic_interrupt(CPUX86State *env)
{
X86CPU *cpu = x86_env_get_cpu(env);
int intno;
intno = apic_get_interrupt(cpu->apic_state);
if (intno >= 0) {
return intno;
}
/* read the irq from the PIC */
if (!apic_accept_pic_intr(cpu->apic_state)) {
return -1;
}
intno = pic_read_irq(isa_pic);
return intno;
}
static void pic_irq_request(void *opaque, int irq, int level)
{
CPUState *cs = first_cpu;
X86CPU *cpu = X86_CPU(cs);
DPRINTF("pic_irqs: %s irq %d\n", level? "raise" : "lower", irq);
if (cpu->apic_state) {
CPU_FOREACH(cs) {
cpu = X86_CPU(cs);
if (apic_accept_pic_intr(cpu->apic_state)) {
apic_deliver_pic_intr(cpu->apic_state, level);
}
}
} else {
if (level) {
cpu_interrupt(cs, CPU_INTERRUPT_HARD);
} else {
cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
}
}
}
/* PC cmos mappings */
#define REG_EQUIPMENT_BYTE 0x14
static int cmos_get_fd_drive_type(FDriveType fd0)
{
int val;
switch (fd0) {
case FDRIVE_DRV_144:
/* 1.44 Mb 3"5 drive */
val = 4;
break;
case FDRIVE_DRV_288:
/* 2.88 Mb 3"5 drive */
val = 5;
break;
case FDRIVE_DRV_120:
/* 1.2 Mb 5"5 drive */
val = 2;
break;
case FDRIVE_DRV_NONE:
default:
val = 0;
break;
}
return val;
}
static void cmos_init_hd(ISADevice *s, int type_ofs, int info_ofs,
int16_t cylinders, int8_t heads, int8_t sectors)
{
rtc_set_memory(s, type_ofs, 47);
rtc_set_memory(s, info_ofs, cylinders);
rtc_set_memory(s, info_ofs + 1, cylinders >> 8);
rtc_set_memory(s, info_ofs + 2, heads);
rtc_set_memory(s, info_ofs + 3, 0xff);
rtc_set_memory(s, info_ofs + 4, 0xff);
rtc_set_memory(s, info_ofs + 5, 0xc0 | ((heads > 8) << 3));
rtc_set_memory(s, info_ofs + 6, cylinders);
rtc_set_memory(s, info_ofs + 7, cylinders >> 8);
rtc_set_memory(s, info_ofs + 8, sectors);
}
/* convert boot_device letter to something recognizable by the bios */
static int boot_device2nibble(char boot_device)
{
switch(boot_device) {
case 'a':
case 'b':
return 0x01; /* floppy boot */
case 'c':
return 0x02; /* hard drive boot */
case 'd':
return 0x03; /* CD-ROM boot */
case 'n':
return 0x04; /* Network boot */
}
return 0;
}
static void set_boot_dev(ISADevice *s, const char *boot_device, Error **errp)
{
#define PC_MAX_BOOT_DEVICES 3
int nbds, bds[3] = { 0, };
int i;
nbds = strlen(boot_device);
if (nbds > PC_MAX_BOOT_DEVICES) {
error_setg(errp, "Too many boot devices for PC");
return;
}
for (i = 0; i < nbds; i++) {
bds[i] = boot_device2nibble(boot_device[i]);
if (bds[i] == 0) {
error_setg(errp, "Invalid boot device for PC: '%c'",
boot_device[i]);
return;
}
}
rtc_set_memory(s, 0x3d, (bds[1] << 4) | bds[0]);
rtc_set_memory(s, 0x38, (bds[2] << 4) | (fd_bootchk ? 0x0 : 0x1));
}
static void pc_boot_set(void *opaque, const char *boot_device, Error **errp)
{
set_boot_dev(opaque, boot_device, errp);
}
static void pc_cmos_init_floppy(ISADevice *rtc_state, ISADevice *floppy)
{
int val, nb, i;
FDriveType fd_type[2] = { FDRIVE_DRV_NONE, FDRIVE_DRV_NONE };
/* floppy type */
if (floppy) {
for (i = 0; i < 2; i++) {
fd_type[i] = isa_fdc_get_drive_type(floppy, i);
}
}
val = (cmos_get_fd_drive_type(fd_type[0]) << 4) |
cmos_get_fd_drive_type(fd_type[1]);
rtc_set_memory(rtc_state, 0x10, val);
val = rtc_get_memory(rtc_state, REG_EQUIPMENT_BYTE);
nb = 0;
if (fd_type[0] < FDRIVE_DRV_NONE) {
nb++;
}
if (fd_type[1] < FDRIVE_DRV_NONE) {
nb++;
}
switch (nb) {
case 0:
break;
case 1:
val |= 0x01; /* 1 drive, ready for boot */
break;
case 2:
val |= 0x41; /* 2 drives, ready for boot */
break;
}
rtc_set_memory(rtc_state, REG_EQUIPMENT_BYTE, val);
}
typedef struct pc_cmos_init_late_arg {
ISADevice *rtc_state;
BusState *idebus[2];
} pc_cmos_init_late_arg;
typedef struct check_fdc_state {
ISADevice *floppy;
bool multiple;
} CheckFdcState;
static int check_fdc(Object *obj, void *opaque)
{
CheckFdcState *state = opaque;
Object *fdc;
uint32_t iobase;
Error *local_err = NULL;
fdc = object_dynamic_cast(obj, TYPE_ISA_FDC);
if (!fdc) {
return 0;
}
iobase = object_property_get_int(obj, "iobase", &local_err);
if (local_err || iobase != 0x3f0) {
error_free(local_err);
return 0;
}
if (state->floppy) {
state->multiple = true;
} else {
state->floppy = ISA_DEVICE(obj);
}
return 0;
}
static const char * const fdc_container_path[] = {
"/unattached", "/peripheral", "/peripheral-anon"
};
/*
* Locate the FDC at IO address 0x3f0, in order to configure the CMOS registers
* and ACPI objects.
*/
ISADevice *pc_find_fdc0(void)
{
int i;
Object *container;
CheckFdcState state = { 0 };
for (i = 0; i < ARRAY_SIZE(fdc_container_path); i++) {
container = container_get(qdev_get_machine(), fdc_container_path[i]);
object_child_foreach(container, check_fdc, &state);
}
if (state.multiple) {
error_report("warning: multiple floppy disk controllers with "
"iobase=0x3f0 have been found;\n"
"the one being picked for CMOS setup might not reflect "
"your intent");
}
return state.floppy;
}
static void pc_cmos_init_late(void *opaque)
{
pc_cmos_init_late_arg *arg = opaque;
ISADevice *s = arg->rtc_state;
int16_t cylinders;
int8_t heads, sectors;
int val;
int i, trans;
val = 0;
if (ide_get_geometry(arg->idebus[0], 0,
&cylinders, &heads, &sectors) >= 0) {
cmos_init_hd(s, 0x19, 0x1b, cylinders, heads, sectors);
val |= 0xf0;
}
if (ide_get_geometry(arg->idebus[0], 1,
&cylinders, &heads, &sectors) >= 0) {
cmos_init_hd(s, 0x1a, 0x24, cylinders, heads, sectors);
val |= 0x0f;
}
rtc_set_memory(s, 0x12, val);
val = 0;
for (i = 0; i < 4; i++) {
/* NOTE: ide_get_geometry() returns the physical
geometry. It is always such that: 1 <= sects <= 63, 1
<= heads <= 16, 1 <= cylinders <= 16383. The BIOS
geometry can be different if a translation is done. */
if (ide_get_geometry(arg->idebus[i / 2], i % 2,
&cylinders, &heads, &sectors) >= 0) {
trans = ide_get_bios_chs_trans(arg->idebus[i / 2], i % 2) - 1;
assert((trans & ~3) == 0);
val |= trans << (i * 2);
}
}
rtc_set_memory(s, 0x39, val);
pc_cmos_init_floppy(s, pc_find_fdc0());
qemu_unregister_reset(pc_cmos_init_late, opaque);
}
void pc_cmos_init(PCMachineState *pcms,
BusState *idebus0, BusState *idebus1,
ISADevice *s)
{
int val;
static pc_cmos_init_late_arg arg;
Error *local_err = NULL;
/* various important CMOS locations needed by PC/Bochs bios */
/* memory size */
/* base memory (first MiB) */
val = MIN(pcms->below_4g_mem_size / 1024, 640);
rtc_set_memory(s, 0x15, val);
rtc_set_memory(s, 0x16, val >> 8);
/* extended memory (next 64MiB) */
if (pcms->below_4g_mem_size > 1024 * 1024) {
val = (pcms->below_4g_mem_size - 1024 * 1024) / 1024;
} else {
val = 0;
}
if (val > 65535)
val = 65535;
rtc_set_memory(s, 0x17, val);
rtc_set_memory(s, 0x18, val >> 8);
rtc_set_memory(s, 0x30, val);
rtc_set_memory(s, 0x31, val >> 8);
/* memory between 16MiB and 4GiB */
if (pcms->below_4g_mem_size > 16 * 1024 * 1024) {
val = (pcms->below_4g_mem_size - 16 * 1024 * 1024) / 65536;
} else {
val = 0;
}
if (val > 65535)
val = 65535;
rtc_set_memory(s, 0x34, val);
rtc_set_memory(s, 0x35, val >> 8);
/* memory above 4GiB */
val = pcms->above_4g_mem_size / 65536;
rtc_set_memory(s, 0x5b, val);
rtc_set_memory(s, 0x5c, val >> 8);
rtc_set_memory(s, 0x5d, val >> 16);
/* set the number of CPU */
rtc_set_memory(s, 0x5f, smp_cpus - 1);
object_property_add_link(OBJECT(pcms), "rtc_state",
TYPE_ISA_DEVICE,
(Object **)&pcms->rtc,
object_property_allow_set_link,
OBJ_PROP_LINK_UNREF_ON_RELEASE, &error_abort);
object_property_set_link(OBJECT(pcms), OBJECT(s),
"rtc_state", &error_abort);
set_boot_dev(s, MACHINE(pcms)->boot_order, &local_err);
if (local_err) {
error_report_err(local_err);
exit(1);
}
val = 0;
val |= 0x02; /* FPU is there */
val |= 0x04; /* PS/2 mouse installed */
rtc_set_memory(s, REG_EQUIPMENT_BYTE, val);
/* hard drives and FDC */
arg.rtc_state = s;
arg.idebus[0] = idebus0;
arg.idebus[1] = idebus1;
qemu_register_reset(pc_cmos_init_late, &arg);
}
#define TYPE_PORT92 "port92"
#define PORT92(obj) OBJECT_CHECK(Port92State, (obj), TYPE_PORT92)
/* port 92 stuff: could be split off */
typedef struct Port92State {
ISADevice parent_obj;
MemoryRegion io;
uint8_t outport;
qemu_irq *a20_out;
} Port92State;
static void port92_write(void *opaque, hwaddr addr, uint64_t val,
unsigned size)
{
Port92State *s = opaque;
int oldval = s->outport;
DPRINTF("port92: write 0x%02" PRIx64 "\n", val);
s->outport = val;
qemu_set_irq(*s->a20_out, (val >> 1) & 1);
if ((val & 1) && !(oldval & 1)) {
qemu_system_reset_request();
}
}
static uint64_t port92_read(void *opaque, hwaddr addr,
unsigned size)
{
Port92State *s = opaque;
uint32_t ret;
ret = s->outport;
DPRINTF("port92: read 0x%02x\n", ret);
return ret;
}
static void port92_init(ISADevice *dev, qemu_irq *a20_out)
{
Port92State *s = PORT92(dev);
s->a20_out = a20_out;
}
static const VMStateDescription vmstate_port92_isa = {
.name = "port92",
.version_id = 1,
.minimum_version_id = 1,
.fields = (VMStateField[]) {
VMSTATE_UINT8(outport, Port92State),
VMSTATE_END_OF_LIST()
}
};
static void port92_reset(DeviceState *d)
{
Port92State *s = PORT92(d);
s->outport &= ~1;
}
static const MemoryRegionOps port92_ops = {
.read = port92_read,
.write = port92_write,
.impl = {
.min_access_size = 1,
.max_access_size = 1,
},
.endianness = DEVICE_LITTLE_ENDIAN,
};
static void port92_initfn(Object *obj)
{
Port92State *s = PORT92(obj);
memory_region_init_io(&s->io, OBJECT(s), &port92_ops, s, "port92", 1);
s->outport = 0;
}
static void port92_realizefn(DeviceState *dev, Error **errp)
{
ISADevice *isadev = ISA_DEVICE(dev);
Port92State *s = PORT92(dev);
isa_register_ioport(isadev, &s->io, 0x92);
}
static void port92_class_initfn(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
dc->realize = port92_realizefn;
dc->reset = port92_reset;
dc->vmsd = &vmstate_port92_isa;
/*
* Reason: unlike ordinary ISA devices, this one needs additional
* wiring: its A20 output line needs to be wired up by
* port92_init().
*/
dc->cannot_instantiate_with_device_add_yet = true;
}
static const TypeInfo port92_info = {
.name = TYPE_PORT92,
.parent = TYPE_ISA_DEVICE,
.instance_size = sizeof(Port92State),
.instance_init = port92_initfn,
.class_init = port92_class_initfn,
};
static void port92_register_types(void)
{
type_register_static(&port92_info);
}
type_init(port92_register_types)
static void handle_a20_line_change(void *opaque, int irq, int level)
{
X86CPU *cpu = opaque;
/* XXX: send to all CPUs ? */
/* XXX: add logic to handle multiple A20 line sources */
x86_cpu_set_a20(cpu, level);
}
int e820_add_entry(uint64_t address, uint64_t length, uint32_t type)
{
int index = le32_to_cpu(e820_reserve.count);
struct e820_entry *entry;
if (type != E820_RAM) {
/* old FW_CFG_E820_TABLE entry -- reservations only */
if (index >= E820_NR_ENTRIES) {
return -EBUSY;
}
entry = &e820_reserve.entry[index++];
entry->address = cpu_to_le64(address);
entry->length = cpu_to_le64(length);
entry->type = cpu_to_le32(type);
e820_reserve.count = cpu_to_le32(index);
}
/* new "etc/e820" file -- include ram too */
e820_table = g_renew(struct e820_entry, e820_table, e820_entries + 1);
e820_table[e820_entries].address = cpu_to_le64(address);
e820_table[e820_entries].length = cpu_to_le64(length);
e820_table[e820_entries].type = cpu_to_le32(type);
e820_entries++;
return e820_entries;
}
int e820_get_num_entries(void)
{
return e820_entries;
}
bool e820_get_entry(int idx, uint32_t type, uint64_t *address, uint64_t *length)
{
if (idx < e820_entries && e820_table[idx].type == cpu_to_le32(type)) {
*address = le64_to_cpu(e820_table[idx].address);
*length = le64_to_cpu(e820_table[idx].length);
return true;
}
return false;
}
/* Enables contiguous-apic-ID mode, for compatibility */
static bool compat_apic_id_mode;
void enable_compat_apic_id_mode(void)
{
compat_apic_id_mode = true;
}
/* Calculates initial APIC ID for a specific CPU index
*
* Currently we need to be able to calculate the APIC ID from the CPU index
* alone (without requiring a CPU object), as the QEMU<->Seabios interfaces have
* no concept of "CPU index", and the NUMA tables on fw_cfg need the APIC ID of
* all CPUs up to max_cpus.
*/
static uint32_t x86_cpu_apic_id_from_index(unsigned int cpu_index)
{
uint32_t correct_id;
static bool warned;
correct_id = x86_apicid_from_cpu_idx(smp_cores, smp_threads, cpu_index);
if (compat_apic_id_mode) {
if (cpu_index != correct_id && !warned && !qtest_enabled()) {
error_report("APIC IDs set in compatibility mode, "
"CPU topology won't match the configuration");
warned = true;
}
return cpu_index;
} else {
return correct_id;
}
}
/* Calculates the limit to CPU APIC ID values
*
* This function returns the limit for the APIC ID value, so that all
* CPU APIC IDs are < pc_apic_id_limit().
*
* This is used for FW_CFG_MAX_CPUS. See comments on bochs_bios_init().
*/
static unsigned int pc_apic_id_limit(unsigned int max_cpus)
{
return x86_cpu_apic_id_from_index(max_cpus - 1) + 1;
}
static void pc_build_smbios(FWCfgState *fw_cfg)
{
uint8_t *smbios_tables, *smbios_anchor;
size_t smbios_tables_len, smbios_anchor_len;
struct smbios_phys_mem_area *mem_array;
unsigned i, array_count;
smbios_tables = smbios_get_table_legacy(&smbios_tables_len);
if (smbios_tables) {
fw_cfg_add_bytes(fw_cfg, FW_CFG_SMBIOS_ENTRIES,
smbios_tables, smbios_tables_len);
}
/* build the array of physical mem area from e820 table */
mem_array = g_malloc0(sizeof(*mem_array) * e820_get_num_entries());
for (i = 0, array_count = 0; i < e820_get_num_entries(); i++) {
uint64_t addr, len;
if (e820_get_entry(i, E820_RAM, &addr, &len)) {
mem_array[array_count].address = addr;
mem_array[array_count].length = len;
array_count++;
}
}
smbios_get_tables(mem_array, array_count,
&smbios_tables, &smbios_tables_len,
&smbios_anchor, &smbios_anchor_len);
g_free(mem_array);
if (smbios_anchor) {
fw_cfg_add_file(fw_cfg, "etc/smbios/smbios-tables",
smbios_tables, smbios_tables_len);
fw_cfg_add_file(fw_cfg, "etc/smbios/smbios-anchor",
smbios_anchor, smbios_anchor_len);
}
}
static FWCfgState *bochs_bios_init(AddressSpace *as)
{
FWCfgState *fw_cfg;
uint64_t *numa_fw_cfg;
int i, j;
unsigned int apic_id_limit = pc_apic_id_limit(max_cpus);
fw_cfg = fw_cfg_init_io_dma(BIOS_CFG_IOPORT, BIOS_CFG_IOPORT + 4, as);
/* FW_CFG_MAX_CPUS is a bit confusing/problematic on x86:
*
* SeaBIOS needs FW_CFG_MAX_CPUS for CPU hotplug, but the CPU hotplug
* QEMU<->SeaBIOS interface is not based on the "CPU index", but on the APIC
* ID of hotplugged CPUs[1]. This means that FW_CFG_MAX_CPUS is not the
* "maximum number of CPUs", but the "limit to the APIC ID values SeaBIOS
* may see".
*
* So, this means we must not use max_cpus, here, but the maximum possible
* APIC ID value, plus one.
*
* [1] The only kind of "CPU identifier" used between SeaBIOS and QEMU is
* the APIC ID, not the "CPU index"
*/
fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, (uint16_t)apic_id_limit);
fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size);
fw_cfg_add_bytes(fw_cfg, FW_CFG_ACPI_TABLES,
acpi_tables, acpi_tables_len);
fw_cfg_add_i32(fw_cfg, FW_CFG_IRQ0_OVERRIDE, kvm_allows_irq0_override());
pc_build_smbios(fw_cfg);
fw_cfg_add_bytes(fw_cfg, FW_CFG_E820_TABLE,
&e820_reserve, sizeof(e820_reserve));
fw_cfg_add_file(fw_cfg, "etc/e820", e820_table,
sizeof(struct e820_entry) * e820_entries);
fw_cfg_add_bytes(fw_cfg, FW_CFG_HPET, &hpet_cfg, sizeof(hpet_cfg));
/* allocate memory for the NUMA channel: one (64bit) word for the number
* of nodes, one word for each VCPU->node and one word for each node to
* hold the amount of memory.
*/
numa_fw_cfg = g_new0(uint64_t, 1 + apic_id_limit + nb_numa_nodes);
numa_fw_cfg[0] = cpu_to_le64(nb_numa_nodes);
for (i = 0; i < max_cpus; i++) {
unsigned int apic_id = x86_cpu_apic_id_from_index(i);
assert(apic_id < apic_id_limit);
for (j = 0; j < nb_numa_nodes; j++) {
if (test_bit(i, numa_info[j].node_cpu)) {
numa_fw_cfg[apic_id + 1] = cpu_to_le64(j);
break;
}
}
}
for (i = 0; i < nb_numa_nodes; i++) {
numa_fw_cfg[apic_id_limit + 1 + i] = cpu_to_le64(numa_info[i].node_mem);
}
fw_cfg_add_bytes(fw_cfg, FW_CFG_NUMA, numa_fw_cfg,
(1 + apic_id_limit + nb_numa_nodes) *
sizeof(*numa_fw_cfg));
return fw_cfg;
}
static long get_file_size(FILE *f)
{
long where, size;
/* XXX: on Unix systems, using fstat() probably makes more sense */
where = ftell(f);
fseek(f, 0, SEEK_END);
size = ftell(f);
fseek(f, where, SEEK_SET);
return size;
}
static void load_linux(PCMachineState *pcms,
FWCfgState *fw_cfg)
{
uint16_t protocol;
int setup_size, kernel_size, initrd_size = 0, cmdline_size;
uint32_t initrd_max;
uint8_t header[8192], *setup, *kernel, *initrd_data;
hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0;
FILE *f;
char *vmode;
MachineState *machine = MACHINE(pcms);
PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
const char *kernel_filename = machine->kernel_filename;
const char *initrd_filename = machine->initrd_filename;
const char *kernel_cmdline = machine->kernel_cmdline;
/* Align to 16 bytes as a paranoia measure */
cmdline_size = (strlen(kernel_cmdline)+16) & ~15;
/* load the kernel header */
f = fopen(kernel_filename, "rb");
if (!f || !(kernel_size = get_file_size(f)) ||
fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) !=
MIN(ARRAY_SIZE(header), kernel_size)) {
fprintf(stderr, "qemu: could not load kernel '%s': %s\n",
kernel_filename, strerror(errno));
exit(1);
}
/* kernel protocol version */
#if 0
fprintf(stderr, "header magic: %#x\n", ldl_p(header+0x202));
#endif
if (ldl_p(header+0x202) == 0x53726448) {
protocol = lduw_p(header+0x206);
} else {
/* This looks like a multiboot kernel. If it is, let's stop
treating it like a Linux kernel. */
if (load_multiboot(fw_cfg, f, kernel_filename, initrd_filename,
kernel_cmdline, kernel_size, header)) {
return;
}
protocol = 0;
}
if (protocol < 0x200 || !(header[0x211] & 0x01)) {
/* Low kernel */
real_addr = 0x90000;
cmdline_addr = 0x9a000 - cmdline_size;
prot_addr = 0x10000;
} else if (protocol < 0x202) {
/* High but ancient kernel */
real_addr = 0x90000;
cmdline_addr = 0x9a000 - cmdline_size;
prot_addr = 0x100000;
} else {
/* High and recent kernel */
real_addr = 0x10000;
cmdline_addr = 0x20000;
prot_addr = 0x100000;
}
#if 0
fprintf(stderr,
"qemu: real_addr = 0x" TARGET_FMT_plx "\n"
"qemu: cmdline_addr = 0x" TARGET_FMT_plx "\n"
"qemu: prot_addr = 0x" TARGET_FMT_plx "\n",
real_addr,
cmdline_addr,
prot_addr);
#endif
/* highest address for loading the initrd */
if (protocol >= 0x203) {
initrd_max = ldl_p(header+0x22c);
} else {
initrd_max = 0x37ffffff;
}
if (initrd_max >= pcms->below_4g_mem_size - pcmc->acpi_data_size) {
initrd_max = pcms->below_4g_mem_size - pcmc->acpi_data_size - 1;
}
fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr);
fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline)+1);
fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
if (protocol >= 0x202) {
stl_p(header+0x228, cmdline_addr);
} else {
stw_p(header+0x20, 0xA33F);
stw_p(header+0x22, cmdline_addr-real_addr);
}
/* handle vga= parameter */
vmode = strstr(kernel_cmdline, "vga=");
if (vmode) {
unsigned int video_mode;
/* skip "vga=" */
vmode += 4;
if (!strncmp(vmode, "normal", 6)) {
video_mode = 0xffff;
} else if (!strncmp(vmode, "ext", 3)) {
video_mode = 0xfffe;
} else if (!strncmp(vmode, "ask", 3)) {
video_mode = 0xfffd;
} else {
video_mode = strtol(vmode, NULL, 0);
}
stw_p(header+0x1fa, video_mode);
}
/* loader type */
/* High nybble = B reserved for QEMU; low nybble is revision number.
If this code is substantially changed, you may want to consider
incrementing the revision. */
if (protocol >= 0x200) {
header[0x210] = 0xB0;
}
/* heap */
if (protocol >= 0x201) {
header[0x211] |= 0x80; /* CAN_USE_HEAP */
stw_p(header+0x224, cmdline_addr-real_addr-0x200);
}
/* load initrd */
if (initrd_filename) {
if (protocol < 0x200) {
fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n");
exit(1);
}
initrd_size = get_image_size(initrd_filename);
if (initrd_size < 0) {
fprintf(stderr, "qemu: error reading initrd %s: %s\n",
initrd_filename, strerror(errno));
exit(1);
}
initrd_addr = (initrd_max-initrd_size) & ~4095;
initrd_data = g_malloc(initrd_size);
load_image(initrd_filename, initrd_data);
fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size);
stl_p(header+0x218, initrd_addr);
stl_p(header+0x21c, initrd_size);
}
/* load kernel and setup */
setup_size = header[0x1f1];
if (setup_size == 0) {
setup_size = 4;
}
setup_size = (setup_size+1)*512;
if (setup_size > kernel_size) {
fprintf(stderr, "qemu: invalid kernel header\n");
exit(1);
}
kernel_size -= setup_size;
setup = g_malloc(setup_size);
kernel = g_malloc(kernel_size);
fseek(f, 0, SEEK_SET);
if (fread(setup, 1, setup_size, f) != setup_size) {
fprintf(stderr, "fread() failed\n");
exit(1);
}
if (fread(kernel, 1, kernel_size, f) != kernel_size) {
fprintf(stderr, "fread() failed\n");
exit(1);
}
fclose(f);
memcpy(setup, header, MIN(sizeof(header), setup_size));
fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr);
fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size);
fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr);
fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size);
fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size);
option_rom[nb_option_roms].name = "linuxboot.bin";
option_rom[nb_option_roms].bootindex = 0;
nb_option_roms++;
}
#define NE2000_NB_MAX 6
static const int ne2000_io[NE2000_NB_MAX] = { 0x300, 0x320, 0x340, 0x360,
0x280, 0x380 };
static const int ne2000_irq[NE2000_NB_MAX] = { 9, 10, 11, 3, 4, 5 };
void pc_init_ne2k_isa(ISABus *bus, NICInfo *nd)
{
static int nb_ne2k = 0;
if (nb_ne2k == NE2000_NB_MAX)
return;
isa_ne2000_init(bus, ne2000_io[nb_ne2k],
ne2000_irq[nb_ne2k], nd);
nb_ne2k++;
}
DeviceState *cpu_get_current_apic(void)
{
if (current_cpu) {
X86CPU *cpu = X86_CPU(current_cpu);
return cpu->apic_state;
} else {
return NULL;
}
}
void pc_acpi_smi_interrupt(void *opaque, int irq, int level)
{
X86CPU *cpu = opaque;
if (level) {
cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
}
}
static X86CPU *pc_new_cpu(const char *cpu_model, int64_t apic_id,
Error **errp)
{
X86CPU *cpu = NULL;
Error *local_err = NULL;
cpu = cpu_x86_create(cpu_model, &local_err);
if (local_err != NULL) {
goto out;
}
object_property_set_int(OBJECT(cpu), apic_id, "apic-id", &local_err);
object_property_set_bool(OBJECT(cpu), true, "realized", &local_err);
out:
if (local_err) {
error_propagate(errp, local_err);
object_unref(OBJECT(cpu));
cpu = NULL;
}
return cpu;
}
void pc_hot_add_cpu(const int64_t id, Error **errp)
{
X86CPU *cpu;
MachineState *machine = MACHINE(qdev_get_machine());
int64_t apic_id = x86_cpu_apic_id_from_index(id);
Error *local_err = NULL;
if (id < 0) {
error_setg(errp, "Invalid CPU id: %" PRIi64, id);
return;
}
if (cpu_exists(apic_id)) {
error_setg(errp, "Unable to add CPU: %" PRIi64
", it already exists", id);
return;
}
if (id >= max_cpus) {
error_setg(errp, "Unable to add CPU: %" PRIi64
", max allowed: %d", id, max_cpus - 1);
return;
}
if (apic_id >= ACPI_CPU_HOTPLUG_ID_LIMIT) {
error_setg(errp, "Unable to add CPU: %" PRIi64
", resulting APIC ID (%" PRIi64 ") is too large",
id, apic_id);
return;
}
cpu = pc_new_cpu(machine->cpu_model, apic_id, &local_err);
if (local_err) {
error_propagate(errp, local_err);
return;
}
object_unref(OBJECT(cpu));
}
void pc_cpus_init(PCMachineState *pcms)
{
int i;
X86CPU *cpu = NULL;
MachineState *machine = MACHINE(pcms);
Error *error = NULL;
unsigned long apic_id_limit;
/* init CPUs */
if (machine->cpu_model == NULL) {
#ifdef TARGET_X86_64
machine->cpu_model = "qemu64";
#else
machine->cpu_model = "qemu32";
#endif
}
apic_id_limit = pc_apic_id_limit(max_cpus);
if (apic_id_limit > ACPI_CPU_HOTPLUG_ID_LIMIT) {
error_report("max_cpus is too large. APIC ID of last CPU is %lu",
apic_id_limit - 1);
exit(1);
}
for (i = 0; i < smp_cpus; i++) {
cpu = pc_new_cpu(machine->cpu_model, x86_cpu_apic_id_from_index(i),
&error);
if (error) {
error_report_err(error);
exit(1);
}
object_unref(OBJECT(cpu));
}
/* tell smbios about cpuid version and features */
smbios_set_cpuid(cpu->env.cpuid_version, cpu->env.features[FEAT_1_EDX]);
}
/* pci-info ROM file. Little endian format */
typedef struct PcRomPciInfo {
uint64_t w32_min;
uint64_t w32_max;
uint64_t w64_min;
uint64_t w64_max;
} PcRomPciInfo;
typedef struct PcGuestInfoState {
PcGuestInfo info;
Notifier machine_done;
} PcGuestInfoState;
static
void pc_guest_info_machine_done(Notifier *notifier, void *data)
{
PcGuestInfoState *guest_info_state = container_of(notifier,
PcGuestInfoState,
machine_done);
PCIBus *bus = PC_MACHINE(qdev_get_machine())->bus;
if (bus) {
int extra_hosts = 0;
QLIST_FOREACH(bus, &bus->child, sibling) {
/* look for expander root buses */
if (pci_bus_is_root(bus)) {
extra_hosts++;
}
}
if (extra_hosts && guest_info_state->info.fw_cfg) {
uint64_t *val = g_malloc(sizeof(*val));
*val = cpu_to_le64(extra_hosts);
fw_cfg_add_file(guest_info_state->info.fw_cfg,
"etc/extra-pci-roots", val, sizeof(*val));
}
}
acpi_setup(&guest_info_state->info);
}
PcGuestInfo *pc_guest_info_init(PCMachineState *pcms)
{
PcGuestInfoState *guest_info_state = g_malloc0(sizeof *guest_info_state);
PcGuestInfo *guest_info = &guest_info_state->info;
int i, j;
guest_info->ram_size_below_4g = pcms->below_4g_mem_size;
guest_info->ram_size = pcms->below_4g_mem_size + pcms->above_4g_mem_size;
guest_info->apic_id_limit = pc_apic_id_limit(max_cpus);
guest_info->apic_xrupt_override = kvm_allows_irq0_override();
guest_info->numa_nodes = nb_numa_nodes;
guest_info->node_mem = g_malloc0(guest_info->numa_nodes *
sizeof *guest_info->node_mem);
for (i = 0; i < nb_numa_nodes; i++) {
guest_info->node_mem[i] = numa_info[i].node_mem;
}
guest_info->node_cpu = g_malloc0(guest_info->apic_id_limit *
sizeof *guest_info->node_cpu);
for (i = 0; i < max_cpus; i++) {
unsigned int apic_id = x86_cpu_apic_id_from_index(i);
assert(apic_id < guest_info->apic_id_limit);
for (j = 0; j < nb_numa_nodes; j++) {
if (test_bit(i, numa_info[j].node_cpu)) {
guest_info->node_cpu[apic_id] = j;
break;
}
}
}
guest_info_state->machine_done.notify = pc_guest_info_machine_done;
qemu_add_machine_init_done_notifier(&guest_info_state->machine_done);
return guest_info;
}
/* setup pci memory address space mapping into system address space */
void pc_pci_as_mapping_init(Object *owner, MemoryRegion *system_memory,
MemoryRegion *pci_address_space)
{
/* Set to lower priority than RAM */
memory_region_add_subregion_overlap(system_memory, 0x0,
pci_address_space, -1);
}
void pc_acpi_init(const char *default_dsdt)
{
char *filename;
if (acpi_tables != NULL) {
/* manually set via -acpitable, leave it alone */
return;
}
filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, default_dsdt);
if (filename == NULL) {
fprintf(stderr, "WARNING: failed to find %s\n", default_dsdt);
} else {
QemuOpts *opts = qemu_opts_create(qemu_find_opts("acpi"), NULL, 0,
&error_abort);
Error *err = NULL;
qemu_opt_set(opts, "file", filename, &error_abort);
acpi_table_add_builtin(opts, &err);
if (err) {
error_report("WARNING: failed to load %s: %s", filename,
error_get_pretty(err));
error_free(err);
}
g_free(filename);
}
}
FWCfgState *xen_load_linux(PCMachineState *pcms,
PcGuestInfo *guest_info)
{
int i;
FWCfgState *fw_cfg;
assert(MACHINE(pcms)->kernel_filename != NULL);
fw_cfg = fw_cfg_init_io(BIOS_CFG_IOPORT);
rom_set_fw(fw_cfg);
load_linux(pcms, fw_cfg);
for (i = 0; i < nb_option_roms; i++) {
assert(!strcmp(option_rom[i].name, "linuxboot.bin") ||
!strcmp(option_rom[i].name, "multiboot.bin"));
rom_add_option(option_rom[i].name, option_rom[i].bootindex);
}
guest_info->fw_cfg = fw_cfg;
return fw_cfg;
}
FWCfgState *pc_memory_init(PCMachineState *pcms,
MemoryRegion *system_memory,
MemoryRegion *rom_memory,
MemoryRegion **ram_memory,
PcGuestInfo *guest_info)
{
int linux_boot, i;
MemoryRegion *ram, *option_rom_mr;
MemoryRegion *ram_below_4g, *ram_above_4g;
FWCfgState *fw_cfg;
MachineState *machine = MACHINE(pcms);
PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
assert(machine->ram_size == pcms->below_4g_mem_size +
pcms->above_4g_mem_size);
linux_boot = (machine->kernel_filename != NULL);
/* Allocate RAM. We allocate it as a single memory region and use
* aliases to address portions of it, mostly for backwards compatibility
* with older qemus that used qemu_ram_alloc().
*/
ram = g_malloc(sizeof(*ram));
memory_region_allocate_system_memory(ram, NULL, "pc.ram",
machine->ram_size);
*ram_memory = ram;
ram_below_4g = g_malloc(sizeof(*ram_below_4g));
memory_region_init_alias(ram_below_4g, NULL, "ram-below-4g", ram,
0, pcms->below_4g_mem_size);
memory_region_add_subregion(system_memory, 0, ram_below_4g);
e820_add_entry(0, pcms->below_4g_mem_size, E820_RAM);
if (pcms->above_4g_mem_size > 0) {
ram_above_4g = g_malloc(sizeof(*ram_above_4g));
memory_region_init_alias(ram_above_4g, NULL, "ram-above-4g", ram,
pcms->below_4g_mem_size,
pcms->above_4g_mem_size);
memory_region_add_subregion(system_memory, 0x100000000ULL,
ram_above_4g);
e820_add_entry(0x100000000ULL, pcms->above_4g_mem_size, E820_RAM);
}
if (!guest_info->has_reserved_memory &&
(machine->ram_slots ||
(machine->maxram_size > machine->ram_size))) {
MachineClass *mc = MACHINE_GET_CLASS(machine);
error_report("\"-memory 'slots|maxmem'\" is not supported by: %s",
mc->name);
exit(EXIT_FAILURE);
}
/* initialize hotplug memory address space */
if (guest_info->has_reserved_memory &&
(machine->ram_size < machine->maxram_size)) {
ram_addr_t hotplug_mem_size =
machine->maxram_size - machine->ram_size;
if (machine->ram_slots > ACPI_MAX_RAM_SLOTS) {
error_report("unsupported amount of memory slots: %"PRIu64,
machine->ram_slots);
exit(EXIT_FAILURE);
}
if (QEMU_ALIGN_UP(machine->maxram_size,
TARGET_PAGE_SIZE) != machine->maxram_size) {
error_report("maximum memory size must by aligned to multiple of "
"%d bytes", TARGET_PAGE_SIZE);
exit(EXIT_FAILURE);
}
pcms->hotplug_memory.base =
ROUND_UP(0x100000000ULL + pcms->above_4g_mem_size, 1ULL << 30);
if (pcmc->enforce_aligned_dimm) {
/* size hotplug region assuming 1G page max alignment per slot */
hotplug_mem_size += (1ULL << 30) * machine->ram_slots;
}
if ((pcms->hotplug_memory.base + hotplug_mem_size) <
hotplug_mem_size) {
error_report("unsupported amount of maximum memory: " RAM_ADDR_FMT,
machine->maxram_size);
exit(EXIT_FAILURE);
}
memory_region_init(&pcms->hotplug_memory.mr, OBJECT(pcms),
"hotplug-memory", hotplug_mem_size);
memory_region_add_subregion(system_memory, pcms->hotplug_memory.base,
&pcms->hotplug_memory.mr);
}
/* Initialize PC system firmware */
pc_system_firmware_init(rom_memory, guest_info->isapc_ram_fw);
option_rom_mr = g_malloc(sizeof(*option_rom_mr));
memory_region_init_ram(option_rom_mr, NULL, "pc.rom", PC_ROM_SIZE,
&error_fatal);
vmstate_register_ram_global(option_rom_mr);
memory_region_add_subregion_overlap(rom_memory,
PC_ROM_MIN_VGA,
option_rom_mr,
1);
fw_cfg = bochs_bios_init(&address_space_memory);
rom_set_fw(fw_cfg);
if (guest_info->has_reserved_memory && pcms->hotplug_memory.base) {
uint64_t *val = g_malloc(sizeof(*val));
PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
uint64_t res_mem_end = pcms->hotplug_memory.base;
if (!pcmc->broken_reserved_end) {
res_mem_end += memory_region_size(&pcms->hotplug_memory.mr);
}
*val = cpu_to_le64(ROUND_UP(res_mem_end, 0x1ULL << 30));
fw_cfg_add_file(fw_cfg, "etc/reserved-memory-end", val, sizeof(*val));
}
if (linux_boot) {
load_linux(pcms, fw_cfg);
}
for (i = 0; i < nb_option_roms; i++) {
rom_add_option(option_rom[i].name, option_rom[i].bootindex);
}
guest_info->fw_cfg = fw_cfg;
return fw_cfg;
}
qemu_irq pc_allocate_cpu_irq(void)
{
return qemu_allocate_irq(pic_irq_request, NULL, 0);
}
DeviceState *pc_vga_init(ISABus *isa_bus, PCIBus *pci_bus)
{
DeviceState *dev = NULL;
if (pci_bus) {
PCIDevice *pcidev = pci_vga_init(pci_bus);
dev = pcidev ? &pcidev->qdev : NULL;
} else if (isa_bus) {
ISADevice *isadev = isa_vga_init(isa_bus);
dev = isadev ? DEVICE(isadev) : NULL;
}
return dev;
}
static const MemoryRegionOps ioport80_io_ops = {
.write = ioport80_write,
.read = ioport80_read,
.endianness = DEVICE_NATIVE_ENDIAN,
.impl = {
.min_access_size = 1,
.max_access_size = 1,
},
};
static const MemoryRegionOps ioportF0_io_ops = {
.write = ioportF0_write,
.read = ioportF0_read,
.endianness = DEVICE_NATIVE_ENDIAN,
.impl = {
.min_access_size = 1,
.max_access_size = 1,
},
};
void pc_basic_device_init(ISABus *isa_bus, qemu_irq *gsi,
ISADevice **rtc_state,
bool create_fdctrl,
bool no_vmport,
uint32 hpet_irqs)
{
int i;
DriveInfo *fd[MAX_FD];
DeviceState *hpet = NULL;
int pit_isa_irq = 0;
qemu_irq pit_alt_irq = NULL;
qemu_irq rtc_irq = NULL;
qemu_irq *a20_line;
ISADevice *i8042, *port92, *vmmouse, *pit = NULL;
MemoryRegion *ioport80_io = g_new(MemoryRegion, 1);
MemoryRegion *ioportF0_io = g_new(MemoryRegion, 1);
memory_region_init_io(ioport80_io, NULL, &ioport80_io_ops, NULL, "ioport80", 1);
memory_region_add_subregion(isa_bus->address_space_io, 0x80, ioport80_io);
memory_region_init_io(ioportF0_io, NULL, &ioportF0_io_ops, NULL, "ioportF0", 1);
memory_region_add_subregion(isa_bus->address_space_io, 0xf0, ioportF0_io);
/*
* Check if an HPET shall be created.
*
* Without KVM_CAP_PIT_STATE2, we cannot switch off the in-kernel PIT
* when the HPET wants to take over. Thus we have to disable the latter.
*/
if (!no_hpet && (!kvm_irqchip_in_kernel() || kvm_has_pit_state2())) {
/* In order to set property, here not using sysbus_try_create_simple */
hpet = qdev_try_create(NULL, TYPE_HPET);
if (hpet) {
/* For pc-piix-*, hpet's intcap is always IRQ2. For pc-q35-1.7
* and earlier, use IRQ2 for compat. Otherwise, use IRQ16~23,
* IRQ8 and IRQ2.
*/
uint8_t compat = object_property_get_int(OBJECT(hpet),
HPET_INTCAP, NULL);
if (!compat) {
qdev_prop_set_uint32(hpet, HPET_INTCAP, hpet_irqs);
}
qdev_init_nofail(hpet);
sysbus_mmio_map(SYS_BUS_DEVICE(hpet), 0, HPET_BASE);
for (i = 0; i < GSI_NUM_PINS; i++) {
sysbus_connect_irq(SYS_BUS_DEVICE(hpet), i, gsi[i]);
}
pit_isa_irq = -1;
pit_alt_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_PIT_INT);
rtc_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_RTC_INT);
}
}
*rtc_state = rtc_init(isa_bus, 2000, rtc_irq);
qemu_register_boot_set(pc_boot_set, *rtc_state);
if (!xen_enabled()) {
if (kvm_pit_in_kernel()) {
pit = kvm_pit_init(isa_bus, 0x40);
} else {
pit = pit_init(isa_bus, 0x40, pit_isa_irq, pit_alt_irq);
}
if (hpet) {
/* connect PIT to output control line of the HPET */
qdev_connect_gpio_out(hpet, 0, qdev_get_gpio_in(DEVICE(pit), 0));
}
pcspk_init(isa_bus, pit);
}
serial_hds_isa_init(isa_bus, MAX_SERIAL_PORTS);
parallel_hds_isa_init(isa_bus, MAX_PARALLEL_PORTS);
a20_line = qemu_allocate_irqs(handle_a20_line_change, first_cpu, 2);
i8042 = isa_create_simple(isa_bus, "i8042");
i8042_setup_a20_line(i8042, &a20_line[0]);
if (!no_vmport) {
vmport_init(isa_bus);
vmmouse = isa_try_create(isa_bus, "vmmouse");
} else {
vmmouse = NULL;
}
if (vmmouse) {
DeviceState *dev = DEVICE(vmmouse);
qdev_prop_set_ptr(dev, "ps2_mouse", i8042);
qdev_init_nofail(dev);
}
port92 = isa_create_simple(isa_bus, "port92");
port92_init(port92, &a20_line[1]);
DMA_init(0);
for(i = 0; i < MAX_FD; i++) {
fd[i] = drive_get(IF_FLOPPY, 0, i);
create_fdctrl |= !!fd[i];
}
if (create_fdctrl) {
fdctrl_init_isa(isa_bus, fd);
}
}
void pc_nic_init(ISABus *isa_bus, PCIBus *pci_bus)
{
int i;
for (i = 0; i < nb_nics; i++) {
NICInfo *nd = &nd_table[i];
if (!pci_bus || (nd->model && strcmp(nd->model, "ne2k_isa") == 0)) {
pc_init_ne2k_isa(isa_bus, nd);
} else {
pci_nic_init_nofail(nd, pci_bus, "e1000", NULL);
}
}
}
void pc_pci_device_init(PCIBus *pci_bus)
{
int max_bus;
int bus;
max_bus = drive_get_max_bus(IF_SCSI);
for (bus = 0; bus <= max_bus; bus++) {
pci_create_simple(pci_bus, -1, "lsi53c895a");
}
}
void ioapic_init_gsi(GSIState *gsi_state, const char *parent_name)
{
DeviceState *dev;
SysBusDevice *d;
unsigned int i;
if (kvm_ioapic_in_kernel()) {
dev = qdev_create(NULL, "kvm-ioapic");
} else {
dev = qdev_create(NULL, "ioapic");
}
if (parent_name) {
object_property_add_child(object_resolve_path(parent_name, NULL),
"ioapic", OBJECT(dev), NULL);
}
qdev_init_nofail(dev);
d = SYS_BUS_DEVICE(dev);
sysbus_mmio_map(d, 0, IO_APIC_DEFAULT_ADDRESS);
for (i = 0; i < IOAPIC_NUM_PINS; i++) {
gsi_state->ioapic_irq[i] = qdev_get_gpio_in(dev, i);
}
}
static void pc_dimm_plug(HotplugHandler *hotplug_dev,
DeviceState *dev, Error **errp)
{
HotplugHandlerClass *hhc;
Error *local_err = NULL;
PCMachineState *pcms = PC_MACHINE(hotplug_dev);
PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
PCDIMMDevice *dimm = PC_DIMM(dev);
PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
MemoryRegion *mr = ddc->get_memory_region(dimm);
uint64_t align = TARGET_PAGE_SIZE;
if (memory_region_get_alignment(mr) && pcmc->enforce_aligned_dimm) {
align = memory_region_get_alignment(mr);
}
if (!pcms->acpi_dev) {
error_setg(&local_err,
"memory hotplug is not enabled: missing acpi device");
goto out;
}
pc_dimm_memory_plug(dev, &pcms->hotplug_memory, mr, align, &local_err);
if (local_err) {
goto out;
}
hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
hhc->plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &error_abort);
out:
error_propagate(errp, local_err);
}
static void pc_dimm_unplug_request(HotplugHandler *hotplug_dev,
DeviceState *dev, Error **errp)
{
HotplugHandlerClass *hhc;
Error *local_err = NULL;
PCMachineState *pcms = PC_MACHINE(hotplug_dev);
if (!pcms->acpi_dev) {
error_setg(&local_err,
"memory hotplug is not enabled: missing acpi device");
goto out;
}
hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
hhc->unplug_request(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
out:
error_propagate(errp, local_err);
}
static void pc_dimm_unplug(HotplugHandler *hotplug_dev,
DeviceState *dev, Error **errp)
{
PCMachineState *pcms = PC_MACHINE(hotplug_dev);
PCDIMMDevice *dimm = PC_DIMM(dev);
PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
MemoryRegion *mr = ddc->get_memory_region(dimm);
HotplugHandlerClass *hhc;
Error *local_err = NULL;
hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
hhc->unplug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
if (local_err) {
goto out;
}
pc_dimm_memory_unplug(dev, &pcms->hotplug_memory, mr);
object_unparent(OBJECT(dev));
out:
error_propagate(errp, local_err);
}
static void pc_cpu_plug(HotplugHandler *hotplug_dev,
DeviceState *dev, Error **errp)
{
HotplugHandlerClass *hhc;
Error *local_err = NULL;
PCMachineState *pcms = PC_MACHINE(hotplug_dev);
if (!dev->hotplugged) {
goto out;
}
if (!pcms->acpi_dev) {
error_setg(&local_err,
"cpu hotplug is not enabled: missing acpi device");
goto out;
}
hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
hhc->plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
if (local_err) {
goto out;
}
/* increment the number of CPUs */
rtc_set_memory(pcms->rtc, 0x5f, rtc_get_memory(pcms->rtc, 0x5f) + 1);
out:
error_propagate(errp, local_err);
}
static void pc_machine_device_plug_cb(HotplugHandler *hotplug_dev,
DeviceState *dev, Error **errp)
{
if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
pc_dimm_plug(hotplug_dev, dev, errp);
} else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
pc_cpu_plug(hotplug_dev, dev, errp);
}
}
static void pc_machine_device_unplug_request_cb(HotplugHandler *hotplug_dev,
DeviceState *dev, Error **errp)
{
if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
pc_dimm_unplug_request(hotplug_dev, dev, errp);
} else {
error_setg(errp, "acpi: device unplug request for not supported device"
" type: %s", object_get_typename(OBJECT(dev)));
}
}
static void pc_machine_device_unplug_cb(HotplugHandler *hotplug_dev,
DeviceState *dev, Error **errp)
{
if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
pc_dimm_unplug(hotplug_dev, dev, errp);
} else {
error_setg(errp, "acpi: device unplug for not supported device"
" type: %s", object_get_typename(OBJECT(dev)));
}
}
static HotplugHandler *pc_get_hotpug_handler(MachineState *machine,
DeviceState *dev)
{
PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(machine);
if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
return HOTPLUG_HANDLER(machine);
}
return pcmc->get_hotplug_handler ?
pcmc->get_hotplug_handler(machine, dev) : NULL;
}
static void
pc_machine_get_hotplug_memory_region_size(Object *obj, Visitor *v, void *opaque,
const char *name, Error **errp)
{
PCMachineState *pcms = PC_MACHINE(obj);
int64_t value = memory_region_size(&pcms->hotplug_memory.mr);
visit_type_int(v, &value, name, errp);
}
static void pc_machine_get_max_ram_below_4g(Object *obj, Visitor *v,
void *opaque, const char *name,
Error **errp)
{
PCMachineState *pcms = PC_MACHINE(obj);
uint64_t value = pcms->max_ram_below_4g;
visit_type_size(v, &value, name, errp);
}
static void pc_machine_set_max_ram_below_4g(Object *obj, Visitor *v,
void *opaque, const char *name,
Error **errp)
{
PCMachineState *pcms = PC_MACHINE(obj);
Error *error = NULL;
uint64_t value;
visit_type_size(v, &value, name, &error);
if (error) {
error_propagate(errp, error);
return;
}
if (value > (1ULL << 32)) {
error_setg(&error,
"Machine option 'max-ram-below-4g=%"PRIu64
"' expects size less than or equal to 4G", value);
error_propagate(errp, error);
return;
}
if (value < (1ULL << 20)) {
error_report("Warning: small max_ram_below_4g(%"PRIu64
") less than 1M. BIOS may not work..",
value);
}
pcms->max_ram_below_4g = value;
}
static void pc_machine_get_vmport(Object *obj, Visitor *v, void *opaque,
const char *name, Error **errp)
{
PCMachineState *pcms = PC_MACHINE(obj);
OnOffAuto vmport = pcms->vmport;
visit_type_OnOffAuto(v, &vmport, name, errp);
}
static void pc_machine_set_vmport(Object *obj, Visitor *v, void *opaque,
const char *name, Error **errp)
{
PCMachineState *pcms = PC_MACHINE(obj);
visit_type_OnOffAuto(v, &pcms->vmport, name, errp);
}
bool pc_machine_is_smm_enabled(PCMachineState *pcms)
{
bool smm_available = false;
if (pcms->smm == ON_OFF_AUTO_OFF) {
return false;
}
if (tcg_enabled() || qtest_enabled()) {
smm_available = true;
} else if (kvm_enabled()) {
smm_available = kvm_has_smm();
}
if (smm_available) {
return true;
}
if (pcms->smm == ON_OFF_AUTO_ON) {
error_report("System Management Mode not supported by this hypervisor.");
exit(1);
}
return false;
}
static void pc_machine_get_smm(Object *obj, Visitor *v, void *opaque,
const char *name, Error **errp)
{
PCMachineState *pcms = PC_MACHINE(obj);
OnOffAuto smm = pcms->smm;
visit_type_OnOffAuto(v, &smm, name, errp);
}
static void pc_machine_set_smm(Object *obj, Visitor *v, void *opaque,
const char *name, Error **errp)
{
PCMachineState *pcms = PC_MACHINE(obj);
visit_type_OnOffAuto(v, &pcms->smm, name, errp);
}
static bool pc_machine_get_nvdimm(Object *obj, Error **errp)
{
PCMachineState *pcms = PC_MACHINE(obj);
return pcms->nvdimm;
}
static void pc_machine_set_nvdimm(Object *obj, bool value, Error **errp)
{
PCMachineState *pcms = PC_MACHINE(obj);
pcms->nvdimm = value;
}
static void pc_machine_initfn(Object *obj)
{
PCMachineState *pcms = PC_MACHINE(obj);
object_property_add(obj, PC_MACHINE_MEMHP_REGION_SIZE, "int",
pc_machine_get_hotplug_memory_region_size,
NULL, NULL, NULL, &error_abort);
pcms->max_ram_below_4g = 1ULL << 32; /* 4G */
object_property_add(obj, PC_MACHINE_MAX_RAM_BELOW_4G, "size",
pc_machine_get_max_ram_below_4g,
pc_machine_set_max_ram_below_4g,
NULL, NULL, &error_abort);
object_property_set_description(obj, PC_MACHINE_MAX_RAM_BELOW_4G,
"Maximum ram below the 4G boundary (32bit boundary)",
&error_abort);
pcms->smm = ON_OFF_AUTO_AUTO;
object_property_add(obj, PC_MACHINE_SMM, "OnOffAuto",
pc_machine_get_smm,
pc_machine_set_smm,
NULL, NULL, &error_abort);
object_property_set_description(obj, PC_MACHINE_SMM,
"Enable SMM (pc & q35)",
&error_abort);
pcms->vmport = ON_OFF_AUTO_AUTO;
object_property_add(obj, PC_MACHINE_VMPORT, "OnOffAuto",
pc_machine_get_vmport,
pc_machine_set_vmport,
NULL, NULL, &error_abort);
object_property_set_description(obj, PC_MACHINE_VMPORT,
"Enable vmport (pc & q35)",
&error_abort);
/* nvdimm is disabled on default. */
pcms->nvdimm = false;
object_property_add_bool(obj, PC_MACHINE_NVDIMM, pc_machine_get_nvdimm,
pc_machine_set_nvdimm, &error_abort);
}
static void pc_machine_reset(void)
{
CPUState *cs;
X86CPU *cpu;
qemu_devices_reset();
/* Reset APIC after devices have been reset to cancel
* any changes that qemu_devices_reset() might have done.
*/
CPU_FOREACH(cs) {
cpu = X86_CPU(cs);
if (cpu->apic_state) {
device_reset(cpu->apic_state);
}
}
}
static unsigned pc_cpu_index_to_socket_id(unsigned cpu_index)
{
X86CPUTopoInfo topo;
x86_topo_ids_from_idx(smp_cores, smp_threads, cpu_index,
&topo);
return topo.pkg_id;
}
static void pc_machine_class_init(ObjectClass *oc, void *data)
{
MachineClass *mc = MACHINE_CLASS(oc);
PCMachineClass *pcmc = PC_MACHINE_CLASS(oc);
HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
pcmc->get_hotplug_handler = mc->get_hotplug_handler;
pcmc->pci_enabled = true;
pcmc->has_acpi_build = true;
pcmc->rsdp_in_ram = true;
pcmc->smbios_defaults = true;
pcmc->smbios_uuid_encoded = true;
pcmc->gigabyte_align = true;
pcmc->has_reserved_memory = true;
pcmc->kvmclock_enabled = true;
pcmc->enforce_aligned_dimm = true;
/* BIOS ACPI tables: 128K. Other BIOS datastructures: less than 4K reported
* to be used at the moment, 32K should be enough for a while. */
pcmc->acpi_data_size = 0x20000 + 0x8000;
mc->get_hotplug_handler = pc_get_hotpug_handler;
mc->cpu_index_to_socket_id = pc_cpu_index_to_socket_id;
mc->default_boot_order = "cad";
mc->hot_add_cpu = pc_hot_add_cpu;
mc->max_cpus = 255;
mc->reset = pc_machine_reset;
hc->plug = pc_machine_device_plug_cb;
hc->unplug_request = pc_machine_device_unplug_request_cb;
hc->unplug = pc_machine_device_unplug_cb;
}
static const TypeInfo pc_machine_info = {
.name = TYPE_PC_MACHINE,
.parent = TYPE_MACHINE,
.abstract = true,
.instance_size = sizeof(PCMachineState),
.instance_init = pc_machine_initfn,
.class_size = sizeof(PCMachineClass),
.class_init = pc_machine_class_init,
.interfaces = (InterfaceInfo[]) {
{ TYPE_HOTPLUG_HANDLER },
{ }
},
};
static void pc_machine_register_types(void)
{
type_register_static(&pc_machine_info);
}
type_init(pc_machine_register_types)