qemu-e2k/hw/sparc/leon3.c
Aleksandar Markovic 6cdda0ff4b hw/core/loader: Let load_elf() populate a field with CPU-specific flags
While loading the executable, some platforms (like AVR) need to
detect CPU type that executable is built for - and, with this patch,
this is enabled by reading the field 'e_flags' of the ELF header of
the executable in question. The change expands functionality of
the following functions:

  - load_elf()
  - load_elf_as()
  - load_elf_ram()
  - load_elf_ram_sym()

The argument added to these functions is called 'pflags' and is of
type 'uint32_t*' (that matches 'pointer to 'elf_word'', 'elf_word'
being the type of the field 'e_flags', in both 32-bit and 64-bit
variants of ELF header). Callers are allowed to pass NULL as that
argument, and in such case no lookup to the field 'e_flags' will
happen, and no information will be returned, of course.

CC: Richard Henderson <rth@twiddle.net>
CC: Peter Maydell <peter.maydell@linaro.org>
CC: Edgar E. Iglesias <edgar.iglesias@gmail.com>
CC: Michael Walle <michael@walle.cc>
CC: Thomas Huth <huth@tuxfamily.org>
CC: Laurent Vivier <laurent@vivier.eu>
CC: Philippe Mathieu-Daudé <f4bug@amsat.org>
CC: Aleksandar Rikalo <aleksandar.rikalo@rt-rk.com>
CC: Aurelien Jarno <aurelien@aurel32.net>
CC: Jia Liu <proljc@gmail.com>
CC: David Gibson <david@gibson.dropbear.id.au>
CC: Mark Cave-Ayland <mark.cave-ayland@ilande.co.uk>
CC: BALATON Zoltan <balaton@eik.bme.hu>
CC: Christian Borntraeger <borntraeger@de.ibm.com>
CC: Thomas Huth <thuth@redhat.com>
CC: Artyom Tarasenko <atar4qemu@gmail.com>
CC: Fabien Chouteau <chouteau@adacore.com>
CC: KONRAD Frederic <frederic.konrad@adacore.com>
CC: Max Filippov <jcmvbkbc@gmail.com>

Reviewed-by: Aleksandar Rikalo <aleksandar.rikalo@rt-rk.com>
Signed-off-by: Michael Rolnik <mrolnik@gmail.com>
Signed-off-by: Philippe Mathieu-Daudé <f4bug@amsat.org>
Signed-off-by: Aleksandar Markovic <amarkovic@wavecomp.com>
Message-Id: <1580079311-20447-24-git-send-email-aleksandar.markovic@rt-rk.com>
2020-01-29 19:28:52 +01:00

364 lines
13 KiB
C

/*
* QEMU Leon3 System Emulator
*
* Copyright (c) 2010-2019 AdaCore
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "qemu/osdep.h"
#include "qemu/units.h"
#include "qemu/error-report.h"
#include "qapi/error.h"
#include "qemu-common.h"
#include "cpu.h"
#include "hw/irq.h"
#include "qemu/timer.h"
#include "hw/ptimer.h"
#include "hw/qdev-properties.h"
#include "sysemu/sysemu.h"
#include "sysemu/qtest.h"
#include "sysemu/reset.h"
#include "hw/boards.h"
#include "hw/loader.h"
#include "elf.h"
#include "trace.h"
#include "exec/address-spaces.h"
#include "hw/sparc/grlib.h"
#include "hw/misc/grlib_ahb_apb_pnp.h"
/* Default system clock. */
#define CPU_CLK (40 * 1000 * 1000)
#define LEON3_PROM_FILENAME "u-boot.bin"
#define LEON3_PROM_OFFSET (0x00000000)
#define LEON3_RAM_OFFSET (0x40000000)
#define MAX_PILS 16
#define LEON3_UART_OFFSET (0x80000100)
#define LEON3_UART_IRQ (3)
#define LEON3_IRQMP_OFFSET (0x80000200)
#define LEON3_TIMER_OFFSET (0x80000300)
#define LEON3_TIMER_IRQ (6)
#define LEON3_TIMER_COUNT (2)
#define LEON3_APB_PNP_OFFSET (0x800FF000)
#define LEON3_AHB_PNP_OFFSET (0xFFFFF000)
typedef struct ResetData {
SPARCCPU *cpu;
uint32_t entry; /* save kernel entry in case of reset */
target_ulong sp; /* initial stack pointer */
} ResetData;
static uint32_t *gen_store_u32(uint32_t *code, hwaddr addr, uint32_t val)
{
stl_p(code++, 0x82100000); /* mov %g0, %g1 */
stl_p(code++, 0x84100000); /* mov %g0, %g2 */
stl_p(code++, 0x03000000 +
extract32(addr, 10, 22));
/* sethi %hi(addr), %g1 */
stl_p(code++, 0x82106000 +
extract32(addr, 0, 10));
/* or %g1, addr, %g1 */
stl_p(code++, 0x05000000 +
extract32(val, 10, 22));
/* sethi %hi(val), %g2 */
stl_p(code++, 0x8410a000 +
extract32(val, 0, 10));
/* or %g2, val, %g2 */
stl_p(code++, 0xc4204000); /* st %g2, [ %g1 ] */
return code;
}
/*
* When loading a kernel in RAM the machine is expected to be in a different
* state (eg: initialized by the bootloader). This little code reproduces
* this behavior.
*/
static void write_bootloader(CPUSPARCState *env, uint8_t *base,
hwaddr kernel_addr)
{
uint32_t *p = (uint32_t *) base;
/* Initialize the UARTs */
/* *UART_CONTROL = UART_RECEIVE_ENABLE | UART_TRANSMIT_ENABLE; */
p = gen_store_u32(p, 0x80000108, 3);
/* Initialize the TIMER 0 */
/* *GPTIMER_SCALER_RELOAD = 40 - 1; */
p = gen_store_u32(p, 0x80000304, 39);
/* *GPTIMER0_COUNTER_RELOAD = 0xFFFE; */
p = gen_store_u32(p, 0x80000314, 0xFFFFFFFE);
/* *GPTIMER0_CONFIG = GPTIMER_ENABLE | GPTIMER_RESTART; */
p = gen_store_u32(p, 0x80000318, 3);
/* JUMP to the entry point */
stl_p(p++, 0x82100000); /* mov %g0, %g1 */
stl_p(p++, 0x03000000 + extract32(kernel_addr, 10, 22));
/* sethi %hi(kernel_addr), %g1 */
stl_p(p++, 0x82106000 + extract32(kernel_addr, 0, 10));
/* or kernel_addr, %g1 */
stl_p(p++, 0x81c04000); /* jmp %g1 */
stl_p(p++, 0x01000000); /* nop */
}
static void main_cpu_reset(void *opaque)
{
ResetData *s = (ResetData *)opaque;
CPUState *cpu = CPU(s->cpu);
CPUSPARCState *env = &s->cpu->env;
cpu_reset(cpu);
cpu->halted = 0;
env->pc = s->entry;
env->npc = s->entry + 4;
env->regbase[6] = s->sp;
}
void leon3_irq_ack(void *irq_manager, int intno)
{
grlib_irqmp_ack((DeviceState *)irq_manager, intno);
}
/*
* This device assumes that the incoming 'level' value on the
* qemu_irq is the interrupt number, not just a simple 0/1 level.
*/
static void leon3_set_pil_in(void *opaque, int n, int level)
{
CPUSPARCState *env = opaque;
uint32_t pil_in = level;
CPUState *cs;
assert(env != NULL);
env->pil_in = pil_in;
if (env->pil_in && (env->interrupt_index == 0 ||
(env->interrupt_index & ~15) == TT_EXTINT)) {
unsigned int i;
for (i = 15; i > 0; i--) {
if (env->pil_in & (1 << i)) {
int old_interrupt = env->interrupt_index;
env->interrupt_index = TT_EXTINT | i;
if (old_interrupt != env->interrupt_index) {
cs = env_cpu(env);
trace_leon3_set_irq(i);
cpu_interrupt(cs, CPU_INTERRUPT_HARD);
}
break;
}
}
} else if (!env->pil_in && (env->interrupt_index & ~15) == TT_EXTINT) {
cs = env_cpu(env);
trace_leon3_reset_irq(env->interrupt_index & 15);
env->interrupt_index = 0;
cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
}
}
static void leon3_generic_hw_init(MachineState *machine)
{
ram_addr_t ram_size = machine->ram_size;
const char *kernel_filename = machine->kernel_filename;
SPARCCPU *cpu;
CPUSPARCState *env;
MemoryRegion *address_space_mem = get_system_memory();
MemoryRegion *ram = g_new(MemoryRegion, 1);
MemoryRegion *prom = g_new(MemoryRegion, 1);
int ret;
char *filename;
qemu_irq *cpu_irqs = NULL;
int bios_size;
int prom_size;
ResetData *reset_info;
DeviceState *dev;
int i;
AHBPnp *ahb_pnp;
APBPnp *apb_pnp;
/* Init CPU */
cpu = SPARC_CPU(cpu_create(machine->cpu_type));
env = &cpu->env;
cpu_sparc_set_id(env, 0);
/* Reset data */
reset_info = g_malloc0(sizeof(ResetData));
reset_info->cpu = cpu;
reset_info->sp = LEON3_RAM_OFFSET + ram_size;
qemu_register_reset(main_cpu_reset, reset_info);
ahb_pnp = GRLIB_AHB_PNP(object_new(TYPE_GRLIB_AHB_PNP));
object_property_set_bool(OBJECT(ahb_pnp), true, "realized", &error_fatal);
sysbus_mmio_map(SYS_BUS_DEVICE(ahb_pnp), 0, LEON3_AHB_PNP_OFFSET);
grlib_ahb_pnp_add_entry(ahb_pnp, 0, 0, GRLIB_VENDOR_GAISLER,
GRLIB_LEON3_DEV, GRLIB_AHB_MASTER,
GRLIB_CPU_AREA);
apb_pnp = GRLIB_APB_PNP(object_new(TYPE_GRLIB_APB_PNP));
object_property_set_bool(OBJECT(apb_pnp), true, "realized", &error_fatal);
sysbus_mmio_map(SYS_BUS_DEVICE(apb_pnp), 0, LEON3_APB_PNP_OFFSET);
grlib_ahb_pnp_add_entry(ahb_pnp, LEON3_APB_PNP_OFFSET, 0xFFF,
GRLIB_VENDOR_GAISLER, GRLIB_APBMST_DEV,
GRLIB_AHB_SLAVE, GRLIB_AHBMEM_AREA);
/* Allocate IRQ manager */
dev = qdev_create(NULL, TYPE_GRLIB_IRQMP);
qdev_init_gpio_in_named_with_opaque(DEVICE(cpu), leon3_set_pil_in,
env, "pil", 1);
qdev_connect_gpio_out_named(dev, "grlib-irq", 0,
qdev_get_gpio_in_named(DEVICE(cpu), "pil", 0));
qdev_init_nofail(dev);
sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, LEON3_IRQMP_OFFSET);
env->irq_manager = dev;
env->qemu_irq_ack = leon3_irq_manager;
cpu_irqs = qemu_allocate_irqs(grlib_irqmp_set_irq, dev, MAX_PILS);
grlib_apb_pnp_add_entry(apb_pnp, LEON3_IRQMP_OFFSET, 0xFFF,
GRLIB_VENDOR_GAISLER, GRLIB_IRQMP_DEV,
2, 0, GRLIB_APBIO_AREA);
/* Allocate RAM */
if (ram_size > 1 * GiB) {
error_report("Too much memory for this machine: %" PRId64 "MB,"
" maximum 1G",
ram_size / MiB);
exit(1);
}
memory_region_allocate_system_memory(ram, NULL, "leon3.ram", ram_size);
memory_region_add_subregion(address_space_mem, LEON3_RAM_OFFSET, ram);
/* Allocate BIOS */
prom_size = 8 * MiB;
memory_region_init_ram(prom, NULL, "Leon3.bios", prom_size, &error_fatal);
memory_region_set_readonly(prom, true);
memory_region_add_subregion(address_space_mem, LEON3_PROM_OFFSET, prom);
/* Load boot prom */
if (bios_name == NULL) {
bios_name = LEON3_PROM_FILENAME;
}
filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
if (filename) {
bios_size = get_image_size(filename);
} else {
bios_size = -1;
}
if (bios_size > prom_size) {
error_report("could not load prom '%s': file too big", filename);
exit(1);
}
if (bios_size > 0) {
ret = load_image_targphys(filename, LEON3_PROM_OFFSET, bios_size);
if (ret < 0 || ret > prom_size) {
error_report("could not load prom '%s'", filename);
exit(1);
}
} else if (kernel_filename == NULL && !qtest_enabled()) {
error_report("Can't read bios image '%s'", filename
? filename
: LEON3_PROM_FILENAME);
exit(1);
}
g_free(filename);
/* Can directly load an application. */
if (kernel_filename != NULL) {
long kernel_size;
uint64_t entry;
kernel_size = load_elf(kernel_filename, NULL, NULL, NULL,
&entry, NULL, NULL, NULL,
1 /* big endian */, EM_SPARC, 0, 0);
if (kernel_size < 0) {
kernel_size = load_uimage(kernel_filename, NULL, &entry,
NULL, NULL, NULL);
}
if (kernel_size < 0) {
error_report("could not load kernel '%s'", kernel_filename);
exit(1);
}
if (bios_size <= 0) {
/*
* If there is no bios/monitor just start the application but put
* the machine in an initialized state through a little
* bootloader.
*/
uint8_t *bootloader_entry;
bootloader_entry = memory_region_get_ram_ptr(prom);
write_bootloader(env, bootloader_entry, entry);
env->pc = LEON3_PROM_OFFSET;
env->npc = LEON3_PROM_OFFSET + 4;
reset_info->entry = LEON3_PROM_OFFSET;
}
}
/* Allocate timers */
dev = qdev_create(NULL, TYPE_GRLIB_GPTIMER);
qdev_prop_set_uint32(dev, "nr-timers", LEON3_TIMER_COUNT);
qdev_prop_set_uint32(dev, "frequency", CPU_CLK);
qdev_prop_set_uint32(dev, "irq-line", LEON3_TIMER_IRQ);
qdev_init_nofail(dev);
sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, LEON3_TIMER_OFFSET);
for (i = 0; i < LEON3_TIMER_COUNT; i++) {
sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
cpu_irqs[LEON3_TIMER_IRQ + i]);
}
grlib_apb_pnp_add_entry(apb_pnp, LEON3_TIMER_OFFSET, 0xFFF,
GRLIB_VENDOR_GAISLER, GRLIB_GPTIMER_DEV,
0, LEON3_TIMER_IRQ, GRLIB_APBIO_AREA);
/* Allocate uart */
if (serial_hd(0)) {
dev = qdev_create(NULL, TYPE_GRLIB_APB_UART);
qdev_prop_set_chr(dev, "chrdev", serial_hd(0));
qdev_init_nofail(dev);
sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, LEON3_UART_OFFSET);
sysbus_connect_irq(SYS_BUS_DEVICE(dev), 0, cpu_irqs[LEON3_UART_IRQ]);
grlib_apb_pnp_add_entry(apb_pnp, LEON3_UART_OFFSET, 0xFFF,
GRLIB_VENDOR_GAISLER, GRLIB_APBUART_DEV, 1,
LEON3_UART_IRQ, GRLIB_APBIO_AREA);
}
}
static void leon3_generic_machine_init(MachineClass *mc)
{
mc->desc = "Leon-3 generic";
mc->init = leon3_generic_hw_init;
mc->default_cpu_type = SPARC_CPU_TYPE_NAME("LEON3");
}
DEFINE_MACHINE("leon3_generic", leon3_generic_machine_init)