qemu-e2k/cpu-all.h
Stefan Weil 8b3692d136 Remove qemu_host_page_bits
It was introduced with commit 54936004fddc52c321cb3f9a9a51140e782bed5d
as host_page_bits but never used.

Signed-off-by: Stefan Weil <weil@mail.berlios.de>
Signed-off-by: Stefan Hajnoczi <stefanha@linux.vnet.ibm.com>
2011-09-21 10:50:59 +01:00

586 lines
17 KiB
C

/*
* defines common to all virtual CPUs
*
* Copyright (c) 2003 Fabrice Bellard
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#ifndef CPU_ALL_H
#define CPU_ALL_H
#include "qemu-common.h"
#include "cpu-common.h"
/* some important defines:
*
* WORDS_ALIGNED : if defined, the host cpu can only make word aligned
* memory accesses.
*
* HOST_WORDS_BIGENDIAN : if defined, the host cpu is big endian and
* otherwise little endian.
*
* (TARGET_WORDS_ALIGNED : same for target cpu (not supported yet))
*
* TARGET_WORDS_BIGENDIAN : same for target cpu
*/
#if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
#define BSWAP_NEEDED
#endif
#ifdef BSWAP_NEEDED
static inline uint16_t tswap16(uint16_t s)
{
return bswap16(s);
}
static inline uint32_t tswap32(uint32_t s)
{
return bswap32(s);
}
static inline uint64_t tswap64(uint64_t s)
{
return bswap64(s);
}
static inline void tswap16s(uint16_t *s)
{
*s = bswap16(*s);
}
static inline void tswap32s(uint32_t *s)
{
*s = bswap32(*s);
}
static inline void tswap64s(uint64_t *s)
{
*s = bswap64(*s);
}
#else
static inline uint16_t tswap16(uint16_t s)
{
return s;
}
static inline uint32_t tswap32(uint32_t s)
{
return s;
}
static inline uint64_t tswap64(uint64_t s)
{
return s;
}
static inline void tswap16s(uint16_t *s)
{
}
static inline void tswap32s(uint32_t *s)
{
}
static inline void tswap64s(uint64_t *s)
{
}
#endif
#if TARGET_LONG_SIZE == 4
#define tswapl(s) tswap32(s)
#define tswapls(s) tswap32s((uint32_t *)(s))
#define bswaptls(s) bswap32s(s)
#else
#define tswapl(s) tswap64(s)
#define tswapls(s) tswap64s((uint64_t *)(s))
#define bswaptls(s) bswap64s(s)
#endif
/* CPU memory access without any memory or io remapping */
/*
* the generic syntax for the memory accesses is:
*
* load: ld{type}{sign}{size}{endian}_{access_type}(ptr)
*
* store: st{type}{size}{endian}_{access_type}(ptr, val)
*
* type is:
* (empty): integer access
* f : float access
*
* sign is:
* (empty): for floats or 32 bit size
* u : unsigned
* s : signed
*
* size is:
* b: 8 bits
* w: 16 bits
* l: 32 bits
* q: 64 bits
*
* endian is:
* (empty): target cpu endianness or 8 bit access
* r : reversed target cpu endianness (not implemented yet)
* be : big endian (not implemented yet)
* le : little endian (not implemented yet)
*
* access_type is:
* raw : host memory access
* user : user mode access using soft MMU
* kernel : kernel mode access using soft MMU
*/
/* target-endianness CPU memory access functions */
#if defined(TARGET_WORDS_BIGENDIAN)
#define lduw_p(p) lduw_be_p(p)
#define ldsw_p(p) ldsw_be_p(p)
#define ldl_p(p) ldl_be_p(p)
#define ldq_p(p) ldq_be_p(p)
#define ldfl_p(p) ldfl_be_p(p)
#define ldfq_p(p) ldfq_be_p(p)
#define stw_p(p, v) stw_be_p(p, v)
#define stl_p(p, v) stl_be_p(p, v)
#define stq_p(p, v) stq_be_p(p, v)
#define stfl_p(p, v) stfl_be_p(p, v)
#define stfq_p(p, v) stfq_be_p(p, v)
#else
#define lduw_p(p) lduw_le_p(p)
#define ldsw_p(p) ldsw_le_p(p)
#define ldl_p(p) ldl_le_p(p)
#define ldq_p(p) ldq_le_p(p)
#define ldfl_p(p) ldfl_le_p(p)
#define ldfq_p(p) ldfq_le_p(p)
#define stw_p(p, v) stw_le_p(p, v)
#define stl_p(p, v) stl_le_p(p, v)
#define stq_p(p, v) stq_le_p(p, v)
#define stfl_p(p, v) stfl_le_p(p, v)
#define stfq_p(p, v) stfq_le_p(p, v)
#endif
/* MMU memory access macros */
#if defined(CONFIG_USER_ONLY)
#include <assert.h>
#include "qemu-types.h"
/* On some host systems the guest address space is reserved on the host.
* This allows the guest address space to be offset to a convenient location.
*/
#if defined(CONFIG_USE_GUEST_BASE)
extern unsigned long guest_base;
extern int have_guest_base;
extern unsigned long reserved_va;
#define GUEST_BASE guest_base
#define RESERVED_VA reserved_va
#else
#define GUEST_BASE 0ul
#define RESERVED_VA 0ul
#endif
/* All direct uses of g2h and h2g need to go away for usermode softmmu. */
#define g2h(x) ((void *)((unsigned long)(x) + GUEST_BASE))
#if HOST_LONG_BITS <= TARGET_VIRT_ADDR_SPACE_BITS
#define h2g_valid(x) 1
#else
#define h2g_valid(x) ({ \
unsigned long __guest = (unsigned long)(x) - GUEST_BASE; \
__guest < (1ul << TARGET_VIRT_ADDR_SPACE_BITS); \
})
#endif
#define h2g(x) ({ \
unsigned long __ret = (unsigned long)(x) - GUEST_BASE; \
/* Check if given address fits target address space */ \
assert(h2g_valid(x)); \
(abi_ulong)__ret; \
})
#define saddr(x) g2h(x)
#define laddr(x) g2h(x)
#else /* !CONFIG_USER_ONLY */
/* NOTE: we use double casts if pointers and target_ulong have
different sizes */
#define saddr(x) (uint8_t *)(long)(x)
#define laddr(x) (uint8_t *)(long)(x)
#endif
#define ldub_raw(p) ldub_p(laddr((p)))
#define ldsb_raw(p) ldsb_p(laddr((p)))
#define lduw_raw(p) lduw_p(laddr((p)))
#define ldsw_raw(p) ldsw_p(laddr((p)))
#define ldl_raw(p) ldl_p(laddr((p)))
#define ldq_raw(p) ldq_p(laddr((p)))
#define ldfl_raw(p) ldfl_p(laddr((p)))
#define ldfq_raw(p) ldfq_p(laddr((p)))
#define stb_raw(p, v) stb_p(saddr((p)), v)
#define stw_raw(p, v) stw_p(saddr((p)), v)
#define stl_raw(p, v) stl_p(saddr((p)), v)
#define stq_raw(p, v) stq_p(saddr((p)), v)
#define stfl_raw(p, v) stfl_p(saddr((p)), v)
#define stfq_raw(p, v) stfq_p(saddr((p)), v)
#if defined(CONFIG_USER_ONLY)
/* if user mode, no other memory access functions */
#define ldub(p) ldub_raw(p)
#define ldsb(p) ldsb_raw(p)
#define lduw(p) lduw_raw(p)
#define ldsw(p) ldsw_raw(p)
#define ldl(p) ldl_raw(p)
#define ldq(p) ldq_raw(p)
#define ldfl(p) ldfl_raw(p)
#define ldfq(p) ldfq_raw(p)
#define stb(p, v) stb_raw(p, v)
#define stw(p, v) stw_raw(p, v)
#define stl(p, v) stl_raw(p, v)
#define stq(p, v) stq_raw(p, v)
#define stfl(p, v) stfl_raw(p, v)
#define stfq(p, v) stfq_raw(p, v)
#define ldub_code(p) ldub_raw(p)
#define ldsb_code(p) ldsb_raw(p)
#define lduw_code(p) lduw_raw(p)
#define ldsw_code(p) ldsw_raw(p)
#define ldl_code(p) ldl_raw(p)
#define ldq_code(p) ldq_raw(p)
#define ldub_kernel(p) ldub_raw(p)
#define ldsb_kernel(p) ldsb_raw(p)
#define lduw_kernel(p) lduw_raw(p)
#define ldsw_kernel(p) ldsw_raw(p)
#define ldl_kernel(p) ldl_raw(p)
#define ldq_kernel(p) ldq_raw(p)
#define ldfl_kernel(p) ldfl_raw(p)
#define ldfq_kernel(p) ldfq_raw(p)
#define stb_kernel(p, v) stb_raw(p, v)
#define stw_kernel(p, v) stw_raw(p, v)
#define stl_kernel(p, v) stl_raw(p, v)
#define stq_kernel(p, v) stq_raw(p, v)
#define stfl_kernel(p, v) stfl_raw(p, v)
#define stfq_kernel(p, vt) stfq_raw(p, v)
#endif /* defined(CONFIG_USER_ONLY) */
/* page related stuff */
#define TARGET_PAGE_SIZE (1 << TARGET_PAGE_BITS)
#define TARGET_PAGE_MASK ~(TARGET_PAGE_SIZE - 1)
#define TARGET_PAGE_ALIGN(addr) (((addr) + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK)
/* ??? These should be the larger of unsigned long and target_ulong. */
extern unsigned long qemu_real_host_page_size;
extern unsigned long qemu_host_page_size;
extern unsigned long qemu_host_page_mask;
#define HOST_PAGE_ALIGN(addr) (((addr) + qemu_host_page_size - 1) & qemu_host_page_mask)
/* same as PROT_xxx */
#define PAGE_READ 0x0001
#define PAGE_WRITE 0x0002
#define PAGE_EXEC 0x0004
#define PAGE_BITS (PAGE_READ | PAGE_WRITE | PAGE_EXEC)
#define PAGE_VALID 0x0008
/* original state of the write flag (used when tracking self-modifying
code */
#define PAGE_WRITE_ORG 0x0010
#if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
/* FIXME: Code that sets/uses this is broken and needs to go away. */
#define PAGE_RESERVED 0x0020
#endif
#if defined(CONFIG_USER_ONLY)
void page_dump(FILE *f);
typedef int (*walk_memory_regions_fn)(void *, abi_ulong,
abi_ulong, unsigned long);
int walk_memory_regions(void *, walk_memory_regions_fn);
int page_get_flags(target_ulong address);
void page_set_flags(target_ulong start, target_ulong end, int flags);
int page_check_range(target_ulong start, target_ulong len, int flags);
#endif
CPUState *cpu_copy(CPUState *env);
CPUState *qemu_get_cpu(int cpu);
#define CPU_DUMP_CODE 0x00010000
void cpu_dump_state(CPUState *env, FILE *f, fprintf_function cpu_fprintf,
int flags);
void cpu_dump_statistics(CPUState *env, FILE *f, fprintf_function cpu_fprintf,
int flags);
void QEMU_NORETURN cpu_abort(CPUState *env, const char *fmt, ...)
GCC_FMT_ATTR(2, 3);
extern CPUState *first_cpu;
extern CPUState *cpu_single_env;
/* Flags for use in ENV->INTERRUPT_PENDING.
The numbers assigned here are non-sequential in order to preserve
binary compatibility with the vmstate dump. Bit 0 (0x0001) was
previously used for CPU_INTERRUPT_EXIT, and is cleared when loading
the vmstate dump. */
/* External hardware interrupt pending. This is typically used for
interrupts from devices. */
#define CPU_INTERRUPT_HARD 0x0002
/* Exit the current TB. This is typically used when some system-level device
makes some change to the memory mapping. E.g. the a20 line change. */
#define CPU_INTERRUPT_EXITTB 0x0004
/* Halt the CPU. */
#define CPU_INTERRUPT_HALT 0x0020
/* Debug event pending. */
#define CPU_INTERRUPT_DEBUG 0x0080
/* Several target-specific external hardware interrupts. Each target/cpu.h
should define proper names based on these defines. */
#define CPU_INTERRUPT_TGT_EXT_0 0x0008
#define CPU_INTERRUPT_TGT_EXT_1 0x0010
#define CPU_INTERRUPT_TGT_EXT_2 0x0040
#define CPU_INTERRUPT_TGT_EXT_3 0x0200
#define CPU_INTERRUPT_TGT_EXT_4 0x1000
/* Several target-specific internal interrupts. These differ from the
preceeding target-specific interrupts in that they are intended to
originate from within the cpu itself, typically in response to some
instruction being executed. These, therefore, are not masked while
single-stepping within the debugger. */
#define CPU_INTERRUPT_TGT_INT_0 0x0100
#define CPU_INTERRUPT_TGT_INT_1 0x0400
#define CPU_INTERRUPT_TGT_INT_2 0x0800
/* First unused bit: 0x2000. */
/* The set of all bits that should be masked when single-stepping. */
#define CPU_INTERRUPT_SSTEP_MASK \
(CPU_INTERRUPT_HARD \
| CPU_INTERRUPT_TGT_EXT_0 \
| CPU_INTERRUPT_TGT_EXT_1 \
| CPU_INTERRUPT_TGT_EXT_2 \
| CPU_INTERRUPT_TGT_EXT_3 \
| CPU_INTERRUPT_TGT_EXT_4)
#ifndef CONFIG_USER_ONLY
typedef void (*CPUInterruptHandler)(CPUState *, int);
extern CPUInterruptHandler cpu_interrupt_handler;
static inline void cpu_interrupt(CPUState *s, int mask)
{
cpu_interrupt_handler(s, mask);
}
#else /* USER_ONLY */
void cpu_interrupt(CPUState *env, int mask);
#endif /* USER_ONLY */
void cpu_reset_interrupt(CPUState *env, int mask);
void cpu_exit(CPUState *s);
bool qemu_cpu_has_work(CPUState *env);
/* Breakpoint/watchpoint flags */
#define BP_MEM_READ 0x01
#define BP_MEM_WRITE 0x02
#define BP_MEM_ACCESS (BP_MEM_READ | BP_MEM_WRITE)
#define BP_STOP_BEFORE_ACCESS 0x04
#define BP_WATCHPOINT_HIT 0x08
#define BP_GDB 0x10
#define BP_CPU 0x20
int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags,
CPUBreakpoint **breakpoint);
int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags);
void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint);
void cpu_breakpoint_remove_all(CPUState *env, int mask);
int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
int flags, CPUWatchpoint **watchpoint);
int cpu_watchpoint_remove(CPUState *env, target_ulong addr,
target_ulong len, int flags);
void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint);
void cpu_watchpoint_remove_all(CPUState *env, int mask);
#define SSTEP_ENABLE 0x1 /* Enable simulated HW single stepping */
#define SSTEP_NOIRQ 0x2 /* Do not use IRQ while single stepping */
#define SSTEP_NOTIMER 0x4 /* Do not Timers while single stepping */
void cpu_single_step(CPUState *env, int enabled);
void cpu_reset(CPUState *s);
int cpu_is_stopped(CPUState *env);
void run_on_cpu(CPUState *env, void (*func)(void *data), void *data);
#define CPU_LOG_TB_OUT_ASM (1 << 0)
#define CPU_LOG_TB_IN_ASM (1 << 1)
#define CPU_LOG_TB_OP (1 << 2)
#define CPU_LOG_TB_OP_OPT (1 << 3)
#define CPU_LOG_INT (1 << 4)
#define CPU_LOG_EXEC (1 << 5)
#define CPU_LOG_PCALL (1 << 6)
#define CPU_LOG_IOPORT (1 << 7)
#define CPU_LOG_TB_CPU (1 << 8)
#define CPU_LOG_RESET (1 << 9)
/* define log items */
typedef struct CPULogItem {
int mask;
const char *name;
const char *help;
} CPULogItem;
extern const CPULogItem cpu_log_items[];
void cpu_set_log(int log_flags);
void cpu_set_log_filename(const char *filename);
int cpu_str_to_log_mask(const char *str);
#if !defined(CONFIG_USER_ONLY)
/* Return the physical page corresponding to a virtual one. Use it
only for debugging because no protection checks are done. Return -1
if no page found. */
target_phys_addr_t cpu_get_phys_page_debug(CPUState *env, target_ulong addr);
/* memory API */
extern int phys_ram_fd;
extern ram_addr_t ram_size;
/* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
#define RAM_PREALLOC_MASK (1 << 0)
typedef struct RAMBlock {
uint8_t *host;
ram_addr_t offset;
ram_addr_t length;
uint32_t flags;
char idstr[256];
QLIST_ENTRY(RAMBlock) next;
#if defined(__linux__) && !defined(TARGET_S390X)
int fd;
#endif
} RAMBlock;
typedef struct RAMList {
uint8_t *phys_dirty;
QLIST_HEAD(, RAMBlock) blocks;
} RAMList;
extern RAMList ram_list;
extern const char *mem_path;
extern int mem_prealloc;
/* physical memory access */
/* MMIO pages are identified by a combination of an IO device index and
3 flags. The ROMD code stores the page ram offset in iotlb entry,
so only a limited number of ids are avaiable. */
#define IO_MEM_NB_ENTRIES (1 << (TARGET_PAGE_BITS - IO_MEM_SHIFT))
/* Flags stored in the low bits of the TLB virtual address. These are
defined so that fast path ram access is all zeros. */
/* Zero if TLB entry is valid. */
#define TLB_INVALID_MASK (1 << 3)
/* Set if TLB entry references a clean RAM page. The iotlb entry will
contain the page physical address. */
#define TLB_NOTDIRTY (1 << 4)
/* Set if TLB entry is an IO callback. */
#define TLB_MMIO (1 << 5)
#define VGA_DIRTY_FLAG 0x01
#define CODE_DIRTY_FLAG 0x02
#define MIGRATION_DIRTY_FLAG 0x08
/* read dirty bit (return 0 or 1) */
static inline int cpu_physical_memory_is_dirty(ram_addr_t addr)
{
return ram_list.phys_dirty[addr >> TARGET_PAGE_BITS] == 0xff;
}
static inline int cpu_physical_memory_get_dirty_flags(ram_addr_t addr)
{
return ram_list.phys_dirty[addr >> TARGET_PAGE_BITS];
}
static inline int cpu_physical_memory_get_dirty(ram_addr_t addr,
int dirty_flags)
{
return ram_list.phys_dirty[addr >> TARGET_PAGE_BITS] & dirty_flags;
}
static inline void cpu_physical_memory_set_dirty(ram_addr_t addr)
{
ram_list.phys_dirty[addr >> TARGET_PAGE_BITS] = 0xff;
}
static inline int cpu_physical_memory_set_dirty_flags(ram_addr_t addr,
int dirty_flags)
{
return ram_list.phys_dirty[addr >> TARGET_PAGE_BITS] |= dirty_flags;
}
static inline void cpu_physical_memory_mask_dirty_range(ram_addr_t start,
int length,
int dirty_flags)
{
int i, mask, len;
uint8_t *p;
len = length >> TARGET_PAGE_BITS;
mask = ~dirty_flags;
p = ram_list.phys_dirty + (start >> TARGET_PAGE_BITS);
for (i = 0; i < len; i++) {
p[i] &= mask;
}
}
void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
int dirty_flags);
void cpu_tlb_update_dirty(CPUState *env);
int cpu_physical_memory_set_dirty_tracking(int enable);
int cpu_physical_memory_get_dirty_tracking(void);
int cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
target_phys_addr_t end_addr);
int cpu_physical_log_start(target_phys_addr_t start_addr,
ram_addr_t size);
int cpu_physical_log_stop(target_phys_addr_t start_addr,
ram_addr_t size);
void dump_exec_info(FILE *f, fprintf_function cpu_fprintf);
#endif /* !CONFIG_USER_ONLY */
int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
uint8_t *buf, int len, int is_write);
#endif /* CPU_ALL_H */