qemu-e2k/util/qemu-sockets.c
Paolo Bonzini 58c652c08a qemu-sockets: simplify error handling
Just go always through the err label.  (Noticed because Coverity
complains that peer is always non-NULL in the error cleanup code,
but removing the "if" is arguably more prone to introducing the
opposite bug in the future).

Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Daniel P. Berrange <berrange@redhat.com>
Signed-off-by: Michael Tokarev <mjt@tls.msk.ru>
2016-02-11 15:15:46 +03:00

1133 lines
31 KiB
C

/*
* inet and unix socket functions for qemu
*
* (c) 2008 Gerd Hoffmann <kraxel@redhat.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; under version 2 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* Contributions after 2012-01-13 are licensed under the terms of the
* GNU GPL, version 2 or (at your option) any later version.
*/
#include "qemu/osdep.h"
#include "monitor/monitor.h"
#include "qemu/sockets.h"
#include "qemu/main-loop.h"
#include "qapi/qmp-input-visitor.h"
#include "qapi/qmp-output-visitor.h"
#include "qapi-visit.h"
#ifndef AI_ADDRCONFIG
# define AI_ADDRCONFIG 0
#endif
#ifndef AI_V4MAPPED
# define AI_V4MAPPED 0
#endif
static int inet_getport(struct addrinfo *e)
{
struct sockaddr_in *i4;
struct sockaddr_in6 *i6;
switch (e->ai_family) {
case PF_INET6:
i6 = (void*)e->ai_addr;
return ntohs(i6->sin6_port);
case PF_INET:
i4 = (void*)e->ai_addr;
return ntohs(i4->sin_port);
default:
return 0;
}
}
static void inet_setport(struct addrinfo *e, int port)
{
struct sockaddr_in *i4;
struct sockaddr_in6 *i6;
switch (e->ai_family) {
case PF_INET6:
i6 = (void*)e->ai_addr;
i6->sin6_port = htons(port);
break;
case PF_INET:
i4 = (void*)e->ai_addr;
i4->sin_port = htons(port);
break;
}
}
NetworkAddressFamily inet_netfamily(int family)
{
switch (family) {
case PF_INET6: return NETWORK_ADDRESS_FAMILY_IPV6;
case PF_INET: return NETWORK_ADDRESS_FAMILY_IPV4;
case PF_UNIX: return NETWORK_ADDRESS_FAMILY_UNIX;
}
return NETWORK_ADDRESS_FAMILY_UNKNOWN;
}
/*
* Matrix we're trying to apply
*
* ipv4 ipv6 family
* - - PF_UNSPEC
* - f PF_INET
* - t PF_INET6
* f - PF_INET6
* f f <error>
* f t PF_INET6
* t - PF_INET
* t f PF_INET
* t t PF_INET6
*
* NB, this matrix is only about getting the neccessary results
* from getaddrinfo(). Some of the cases require further work
* after reading results from getaddrinfo in order to fully
* apply the logic the end user wants. eg with the last case
* ipv4=t + ipv6=t + PF_INET6, getaddrinfo alone can only
* guarantee the ipv6=t part of the request - we need more
* checks to provide ipv4=t part of the guarantee. This is
* outside scope of this method and not currently handled by
* callers at all.
*/
static int inet_ai_family_from_address(InetSocketAddress *addr,
Error **errp)
{
if (addr->has_ipv6 && addr->has_ipv4 &&
!addr->ipv6 && !addr->ipv4) {
error_setg(errp, "Cannot disable IPv4 and IPv6 at same time");
return PF_UNSPEC;
}
if ((addr->has_ipv6 && addr->ipv6) || (addr->has_ipv4 && !addr->ipv4)) {
return PF_INET6;
}
if ((addr->has_ipv4 && addr->ipv4) || (addr->has_ipv6 && !addr->ipv6)) {
return PF_INET;
}
return PF_UNSPEC;
}
static int inet_listen_saddr(InetSocketAddress *saddr,
int port_offset,
bool update_addr,
Error **errp)
{
struct addrinfo ai,*res,*e;
char port[33];
char uaddr[INET6_ADDRSTRLEN+1];
char uport[33];
int slisten, rc, port_min, port_max, p;
Error *err = NULL;
memset(&ai,0, sizeof(ai));
ai.ai_flags = AI_PASSIVE;
ai.ai_family = inet_ai_family_from_address(saddr, &err);
ai.ai_socktype = SOCK_STREAM;
if (err) {
error_propagate(errp, err);
return -1;
}
if (saddr->host == NULL) {
error_setg(errp, "host not specified");
return -1;
}
if (saddr->port != NULL) {
pstrcpy(port, sizeof(port), saddr->port);
} else {
port[0] = '\0';
}
/* lookup */
if (port_offset) {
unsigned long long baseport;
if (strlen(port) == 0) {
error_setg(errp, "port not specified");
return -1;
}
if (parse_uint_full(port, &baseport, 10) < 0) {
error_setg(errp, "can't convert to a number: %s", port);
return -1;
}
if (baseport > 65535 ||
baseport + port_offset > 65535) {
error_setg(errp, "port %s out of range", port);
return -1;
}
snprintf(port, sizeof(port), "%d", (int)baseport + port_offset);
}
rc = getaddrinfo(strlen(saddr->host) ? saddr->host : NULL,
strlen(port) ? port : NULL, &ai, &res);
if (rc != 0) {
error_setg(errp, "address resolution failed for %s:%s: %s",
saddr->host, port, gai_strerror(rc));
return -1;
}
/* create socket + bind */
for (e = res; e != NULL; e = e->ai_next) {
getnameinfo((struct sockaddr*)e->ai_addr,e->ai_addrlen,
uaddr,INET6_ADDRSTRLEN,uport,32,
NI_NUMERICHOST | NI_NUMERICSERV);
slisten = qemu_socket(e->ai_family, e->ai_socktype, e->ai_protocol);
if (slisten < 0) {
if (!e->ai_next) {
error_setg_errno(errp, errno, "Failed to create socket");
}
continue;
}
socket_set_fast_reuse(slisten);
#ifdef IPV6_V6ONLY
if (e->ai_family == PF_INET6) {
/* listen on both ipv4 and ipv6 */
const int off = 0;
qemu_setsockopt(slisten, IPPROTO_IPV6, IPV6_V6ONLY, &off,
sizeof(off));
}
#endif
port_min = inet_getport(e);
port_max = saddr->has_to ? saddr->to + port_offset : port_min;
for (p = port_min; p <= port_max; p++) {
inet_setport(e, p);
if (bind(slisten, e->ai_addr, e->ai_addrlen) == 0) {
goto listen;
}
if (p == port_max) {
if (!e->ai_next) {
error_setg_errno(errp, errno, "Failed to bind socket");
}
}
}
closesocket(slisten);
}
freeaddrinfo(res);
return -1;
listen:
if (listen(slisten,1) != 0) {
error_setg_errno(errp, errno, "Failed to listen on socket");
closesocket(slisten);
freeaddrinfo(res);
return -1;
}
if (update_addr) {
g_free(saddr->host);
saddr->host = g_strdup(uaddr);
g_free(saddr->port);
saddr->port = g_strdup_printf("%d",
inet_getport(e) - port_offset);
saddr->has_ipv6 = saddr->ipv6 = e->ai_family == PF_INET6;
saddr->has_ipv4 = saddr->ipv4 = e->ai_family != PF_INET6;
}
freeaddrinfo(res);
return slisten;
}
#ifdef _WIN32
#define QEMU_SOCKET_RC_INPROGRESS(rc) \
((rc) == -EINPROGRESS || (rc) == -EWOULDBLOCK || (rc) == -WSAEALREADY)
#else
#define QEMU_SOCKET_RC_INPROGRESS(rc) \
((rc) == -EINPROGRESS)
#endif
/* Struct to store connect state for non blocking connect */
typedef struct ConnectState {
int fd;
struct addrinfo *addr_list;
struct addrinfo *current_addr;
NonBlockingConnectHandler *callback;
void *opaque;
} ConnectState;
static int inet_connect_addr(struct addrinfo *addr, bool *in_progress,
ConnectState *connect_state, Error **errp);
static void wait_for_connect(void *opaque)
{
ConnectState *s = opaque;
int val = 0, rc = 0;
socklen_t valsize = sizeof(val);
bool in_progress;
Error *err = NULL;
qemu_set_fd_handler(s->fd, NULL, NULL, NULL);
do {
rc = qemu_getsockopt(s->fd, SOL_SOCKET, SO_ERROR, &val, &valsize);
} while (rc == -1 && socket_error() == EINTR);
/* update rc to contain error */
if (!rc && val) {
rc = -1;
errno = val;
}
/* connect error */
if (rc < 0) {
error_setg_errno(&err, errno, "Error connecting to socket");
closesocket(s->fd);
s->fd = rc;
}
/* try to connect to the next address on the list */
if (s->current_addr) {
while (s->current_addr->ai_next != NULL && s->fd < 0) {
s->current_addr = s->current_addr->ai_next;
s->fd = inet_connect_addr(s->current_addr, &in_progress, s, NULL);
if (s->fd < 0) {
error_free(err);
err = NULL;
error_setg_errno(&err, errno, "Unable to start socket connect");
}
/* connect in progress */
if (in_progress) {
goto out;
}
}
freeaddrinfo(s->addr_list);
}
if (s->callback) {
s->callback(s->fd, err, s->opaque);
}
g_free(s);
out:
error_free(err);
}
static int inet_connect_addr(struct addrinfo *addr, bool *in_progress,
ConnectState *connect_state, Error **errp)
{
int sock, rc;
*in_progress = false;
sock = qemu_socket(addr->ai_family, addr->ai_socktype, addr->ai_protocol);
if (sock < 0) {
error_setg_errno(errp, errno, "Failed to create socket");
return -1;
}
socket_set_fast_reuse(sock);
if (connect_state != NULL) {
qemu_set_nonblock(sock);
}
/* connect to peer */
do {
rc = 0;
if (connect(sock, addr->ai_addr, addr->ai_addrlen) < 0) {
rc = -socket_error();
}
} while (rc == -EINTR);
if (connect_state != NULL && QEMU_SOCKET_RC_INPROGRESS(rc)) {
connect_state->fd = sock;
qemu_set_fd_handler(sock, NULL, wait_for_connect, connect_state);
*in_progress = true;
} else if (rc < 0) {
error_setg_errno(errp, errno, "Failed to connect socket");
closesocket(sock);
return -1;
}
return sock;
}
static struct addrinfo *inet_parse_connect_saddr(InetSocketAddress *saddr,
Error **errp)
{
struct addrinfo ai, *res;
int rc;
Error *err = NULL;
memset(&ai, 0, sizeof(ai));
ai.ai_flags = AI_CANONNAME | AI_V4MAPPED | AI_ADDRCONFIG;
ai.ai_family = inet_ai_family_from_address(saddr, &err);
ai.ai_socktype = SOCK_STREAM;
if (err) {
error_propagate(errp, err);
return NULL;
}
if (saddr->host == NULL || saddr->port == NULL) {
error_setg(errp, "host and/or port not specified");
return NULL;
}
/* lookup */
rc = getaddrinfo(saddr->host, saddr->port, &ai, &res);
if (rc != 0) {
error_setg(errp, "address resolution failed for %s:%s: %s",
saddr->host, saddr->port, gai_strerror(rc));
return NULL;
}
return res;
}
/**
* Create a socket and connect it to an address.
*
* @saddr: Inet socket address specification
* @errp: set on error
* @callback: callback function for non-blocking connect
* @opaque: opaque for callback function
*
* Returns: -1 on error, file descriptor on success.
*
* If @callback is non-null, the connect is non-blocking. If this
* function succeeds, callback will be called when the connection
* completes, with the file descriptor on success, or -1 on error.
*/
static int inet_connect_saddr(InetSocketAddress *saddr, Error **errp,
NonBlockingConnectHandler *callback, void *opaque)
{
Error *local_err = NULL;
struct addrinfo *res, *e;
int sock = -1;
bool in_progress;
ConnectState *connect_state = NULL;
res = inet_parse_connect_saddr(saddr, errp);
if (!res) {
return -1;
}
if (callback != NULL) {
connect_state = g_malloc0(sizeof(*connect_state));
connect_state->addr_list = res;
connect_state->callback = callback;
connect_state->opaque = opaque;
}
for (e = res; e != NULL; e = e->ai_next) {
error_free(local_err);
local_err = NULL;
if (connect_state != NULL) {
connect_state->current_addr = e;
}
sock = inet_connect_addr(e, &in_progress, connect_state, &local_err);
if (sock >= 0) {
break;
}
}
if (sock < 0) {
error_propagate(errp, local_err);
} else if (in_progress) {
/* wait_for_connect() will do the rest */
return sock;
} else {
if (callback) {
callback(sock, NULL, opaque);
}
}
g_free(connect_state);
freeaddrinfo(res);
return sock;
}
static int inet_dgram_saddr(InetSocketAddress *sraddr,
InetSocketAddress *sladdr,
Error **errp)
{
struct addrinfo ai, *peer = NULL, *local = NULL;
const char *addr;
const char *port;
int sock = -1, rc;
Error *err = NULL;
/* lookup peer addr */
memset(&ai,0, sizeof(ai));
ai.ai_flags = AI_CANONNAME | AI_V4MAPPED | AI_ADDRCONFIG;
ai.ai_family = inet_ai_family_from_address(sraddr, &err);
ai.ai_socktype = SOCK_DGRAM;
if (err) {
error_propagate(errp, err);
goto err;
}
addr = sraddr->host;
port = sraddr->port;
if (addr == NULL || strlen(addr) == 0) {
addr = "localhost";
}
if (port == NULL || strlen(port) == 0) {
error_setg(errp, "remote port not specified");
goto err;
}
if (0 != (rc = getaddrinfo(addr, port, &ai, &peer))) {
error_setg(errp, "address resolution failed for %s:%s: %s", addr, port,
gai_strerror(rc));
goto err;
}
/* lookup local addr */
memset(&ai,0, sizeof(ai));
ai.ai_flags = AI_PASSIVE;
ai.ai_family = peer->ai_family;
ai.ai_socktype = SOCK_DGRAM;
if (sladdr) {
addr = sladdr->host;
port = sladdr->port;
if (addr == NULL || strlen(addr) == 0) {
addr = NULL;
}
if (!port || strlen(port) == 0) {
port = "0";
}
} else {
addr = NULL;
port = "0";
}
if (0 != (rc = getaddrinfo(addr, port, &ai, &local))) {
error_setg(errp, "address resolution failed for %s:%s: %s", addr, port,
gai_strerror(rc));
goto err;
}
/* create socket */
sock = qemu_socket(peer->ai_family, peer->ai_socktype, peer->ai_protocol);
if (sock < 0) {
error_setg_errno(errp, errno, "Failed to create socket");
goto err;
}
socket_set_fast_reuse(sock);
/* bind socket */
if (bind(sock, local->ai_addr, local->ai_addrlen) < 0) {
error_setg_errno(errp, errno, "Failed to bind socket");
goto err;
}
/* connect to peer */
if (connect(sock,peer->ai_addr,peer->ai_addrlen) < 0) {
error_setg_errno(errp, errno, "Failed to connect socket");
goto err;
}
freeaddrinfo(local);
freeaddrinfo(peer);
return sock;
err:
if (-1 != sock)
closesocket(sock);
if (local)
freeaddrinfo(local);
if (peer)
freeaddrinfo(peer);
return -1;
}
/* compatibility wrapper */
InetSocketAddress *inet_parse(const char *str, Error **errp)
{
InetSocketAddress *addr;
const char *optstr, *h;
char host[65];
char port[33];
int to;
int pos;
addr = g_new0(InetSocketAddress, 1);
/* parse address */
if (str[0] == ':') {
/* no host given */
host[0] = '\0';
if (1 != sscanf(str, ":%32[^,]%n", port, &pos)) {
error_setg(errp, "error parsing port in address '%s'", str);
goto fail;
}
} else if (str[0] == '[') {
/* IPv6 addr */
if (2 != sscanf(str, "[%64[^]]]:%32[^,]%n", host, port, &pos)) {
error_setg(errp, "error parsing IPv6 address '%s'", str);
goto fail;
}
addr->ipv6 = addr->has_ipv6 = true;
} else {
/* hostname or IPv4 addr */
if (2 != sscanf(str, "%64[^:]:%32[^,]%n", host, port, &pos)) {
error_setg(errp, "error parsing address '%s'", str);
goto fail;
}
if (host[strspn(host, "0123456789.")] == '\0') {
addr->ipv4 = addr->has_ipv4 = true;
}
}
addr->host = g_strdup(host);
addr->port = g_strdup(port);
/* parse options */
optstr = str + pos;
h = strstr(optstr, ",to=");
if (h) {
h += 4;
if (sscanf(h, "%d%n", &to, &pos) != 1 ||
(h[pos] != '\0' && h[pos] != ',')) {
error_setg(errp, "error parsing to= argument");
goto fail;
}
addr->has_to = true;
addr->to = to;
}
if (strstr(optstr, ",ipv4")) {
addr->ipv4 = addr->has_ipv4 = true;
}
if (strstr(optstr, ",ipv6")) {
addr->ipv6 = addr->has_ipv6 = true;
}
return addr;
fail:
qapi_free_InetSocketAddress(addr);
return NULL;
}
int inet_listen(const char *str, char *ostr, int olen,
int socktype, int port_offset, Error **errp)
{
char *optstr;
int sock = -1;
InetSocketAddress *addr;
addr = inet_parse(str, errp);
if (addr != NULL) {
sock = inet_listen_saddr(addr, port_offset, true, errp);
if (sock != -1 && ostr) {
optstr = strchr(str, ',');
if (addr->ipv6) {
snprintf(ostr, olen, "[%s]:%s%s",
addr->host,
addr->port,
optstr ? optstr : "");
} else {
snprintf(ostr, olen, "%s:%s%s",
addr->host,
addr->port,
optstr ? optstr : "");
}
}
qapi_free_InetSocketAddress(addr);
}
return sock;
}
/**
* Create a blocking socket and connect it to an address.
*
* @str: address string
* @errp: set in case of an error
*
* Returns -1 in case of error, file descriptor on success
**/
int inet_connect(const char *str, Error **errp)
{
int sock = -1;
InetSocketAddress *addr;
addr = inet_parse(str, errp);
if (addr != NULL) {
sock = inet_connect_saddr(addr, errp, NULL, NULL);
qapi_free_InetSocketAddress(addr);
}
return sock;
}
/**
* Create a non-blocking socket and connect it to an address.
* Calls the callback function with fd in case of success or -1 in case of
* error.
*
* @str: address string
* @callback: callback function that is called when connect completes,
* cannot be NULL.
* @opaque: opaque for callback function
* @errp: set in case of an error
*
* Returns: -1 on immediate error, file descriptor on success.
**/
int inet_nonblocking_connect(const char *str,
NonBlockingConnectHandler *callback,
void *opaque, Error **errp)
{
int sock = -1;
InetSocketAddress *addr;
g_assert(callback != NULL);
addr = inet_parse(str, errp);
if (addr != NULL) {
sock = inet_connect_saddr(addr, errp, callback, opaque);
qapi_free_InetSocketAddress(addr);
}
return sock;
}
#ifndef _WIN32
static int unix_listen_saddr(UnixSocketAddress *saddr,
bool update_addr,
Error **errp)
{
struct sockaddr_un un;
int sock, fd;
sock = qemu_socket(PF_UNIX, SOCK_STREAM, 0);
if (sock < 0) {
error_setg_errno(errp, errno, "Failed to create Unix socket");
return -1;
}
memset(&un, 0, sizeof(un));
un.sun_family = AF_UNIX;
if (saddr->path && strlen(saddr->path)) {
snprintf(un.sun_path, sizeof(un.sun_path), "%s", saddr->path);
} else {
const char *tmpdir = getenv("TMPDIR");
tmpdir = tmpdir ? tmpdir : "/tmp";
if (snprintf(un.sun_path, sizeof(un.sun_path), "%s/qemu-socket-XXXXXX",
tmpdir) >= sizeof(un.sun_path)) {
error_setg_errno(errp, errno,
"TMPDIR environment variable (%s) too large", tmpdir);
goto err;
}
/*
* This dummy fd usage silences the mktemp() unsecure warning.
* Using mkstemp() doesn't make things more secure here
* though. bind() complains about existing files, so we have
* to unlink first and thus re-open the race window. The
* worst case possible is bind() failing, i.e. a DoS attack.
*/
fd = mkstemp(un.sun_path);
if (fd < 0) {
error_setg_errno(errp, errno,
"Failed to make a temporary socket name in %s", tmpdir);
goto err;
}
close(fd);
if (update_addr) {
g_free(saddr->path);
saddr->path = g_strdup(un.sun_path);
}
}
if (unlink(un.sun_path) < 0 && errno != ENOENT) {
error_setg_errno(errp, errno,
"Failed to unlink socket %s", un.sun_path);
goto err;
}
if (bind(sock, (struct sockaddr*) &un, sizeof(un)) < 0) {
error_setg_errno(errp, errno, "Failed to bind socket to %s", un.sun_path);
goto err;
}
if (listen(sock, 1) < 0) {
error_setg_errno(errp, errno, "Failed to listen on socket");
goto err;
}
return sock;
err:
closesocket(sock);
return -1;
}
static int unix_connect_saddr(UnixSocketAddress *saddr, Error **errp,
NonBlockingConnectHandler *callback, void *opaque)
{
struct sockaddr_un un;
ConnectState *connect_state = NULL;
int sock, rc;
if (saddr->path == NULL) {
error_setg(errp, "unix connect: no path specified");
return -1;
}
sock = qemu_socket(PF_UNIX, SOCK_STREAM, 0);
if (sock < 0) {
error_setg_errno(errp, errno, "Failed to create socket");
return -1;
}
if (callback != NULL) {
connect_state = g_malloc0(sizeof(*connect_state));
connect_state->callback = callback;
connect_state->opaque = opaque;
qemu_set_nonblock(sock);
}
memset(&un, 0, sizeof(un));
un.sun_family = AF_UNIX;
snprintf(un.sun_path, sizeof(un.sun_path), "%s", saddr->path);
/* connect to peer */
do {
rc = 0;
if (connect(sock, (struct sockaddr *) &un, sizeof(un)) < 0) {
rc = -socket_error();
}
} while (rc == -EINTR);
if (connect_state != NULL && QEMU_SOCKET_RC_INPROGRESS(rc)) {
connect_state->fd = sock;
qemu_set_fd_handler(sock, NULL, wait_for_connect, connect_state);
return sock;
} else if (rc >= 0) {
/* non blocking socket immediate success, call callback */
if (callback != NULL) {
callback(sock, NULL, opaque);
}
}
if (rc < 0) {
error_setg_errno(errp, -rc, "Failed to connect socket");
close(sock);
sock = -1;
}
g_free(connect_state);
return sock;
}
#else
static int unix_listen_saddr(UnixSocketAddress *saddr,
bool update_addr,
Error **errp)
{
error_setg(errp, "unix sockets are not available on windows");
errno = ENOTSUP;
return -1;
}
static int unix_connect_saddr(UnixSocketAddress *saddr, Error **errp,
NonBlockingConnectHandler *callback, void *opaque)
{
error_setg(errp, "unix sockets are not available on windows");
errno = ENOTSUP;
return -1;
}
#endif
/* compatibility wrapper */
int unix_listen(const char *str, char *ostr, int olen, Error **errp)
{
char *path, *optstr;
int sock, len;
UnixSocketAddress *saddr;
saddr = g_new0(UnixSocketAddress, 1);
optstr = strchr(str, ',');
if (optstr) {
len = optstr - str;
if (len) {
path = g_malloc(len+1);
snprintf(path, len+1, "%.*s", len, str);
saddr->path = path;
}
} else {
saddr->path = g_strdup(str);
}
sock = unix_listen_saddr(saddr, true, errp);
if (sock != -1 && ostr)
snprintf(ostr, olen, "%s%s", saddr->path, optstr ? optstr : "");
qapi_free_UnixSocketAddress(saddr);
return sock;
}
int unix_connect(const char *path, Error **errp)
{
UnixSocketAddress *saddr;
int sock;
saddr = g_new0(UnixSocketAddress, 1);
saddr->path = g_strdup(path);
sock = unix_connect_saddr(saddr, errp, NULL, NULL);
qapi_free_UnixSocketAddress(saddr);
return sock;
}
int unix_nonblocking_connect(const char *path,
NonBlockingConnectHandler *callback,
void *opaque, Error **errp)
{
UnixSocketAddress *saddr;
int sock = -1;
g_assert(callback != NULL);
saddr = g_new0(UnixSocketAddress, 1);
saddr->path = g_strdup(path);
sock = unix_connect_saddr(saddr, errp, callback, opaque);
qapi_free_UnixSocketAddress(saddr);
return sock;
}
SocketAddress *socket_parse(const char *str, Error **errp)
{
SocketAddress *addr;
addr = g_new0(SocketAddress, 1);
if (strstart(str, "unix:", NULL)) {
if (str[5] == '\0') {
error_setg(errp, "invalid Unix socket address");
goto fail;
} else {
addr->type = SOCKET_ADDRESS_KIND_UNIX;
addr->u.q_unix = g_new(UnixSocketAddress, 1);
addr->u.q_unix->path = g_strdup(str + 5);
}
} else if (strstart(str, "fd:", NULL)) {
if (str[3] == '\0') {
error_setg(errp, "invalid file descriptor address");
goto fail;
} else {
addr->type = SOCKET_ADDRESS_KIND_FD;
addr->u.fd = g_new(String, 1);
addr->u.fd->str = g_strdup(str + 3);
}
} else {
addr->type = SOCKET_ADDRESS_KIND_INET;
addr->u.inet = inet_parse(str, errp);
if (addr->u.inet == NULL) {
goto fail;
}
}
return addr;
fail:
qapi_free_SocketAddress(addr);
return NULL;
}
int socket_connect(SocketAddress *addr, Error **errp,
NonBlockingConnectHandler *callback, void *opaque)
{
int fd;
switch (addr->type) {
case SOCKET_ADDRESS_KIND_INET:
fd = inet_connect_saddr(addr->u.inet, errp, callback, opaque);
break;
case SOCKET_ADDRESS_KIND_UNIX:
fd = unix_connect_saddr(addr->u.q_unix, errp, callback, opaque);
break;
case SOCKET_ADDRESS_KIND_FD:
fd = monitor_get_fd(cur_mon, addr->u.fd->str, errp);
if (fd >= 0 && callback) {
qemu_set_nonblock(fd);
callback(fd, NULL, opaque);
}
break;
default:
abort();
}
return fd;
}
int socket_listen(SocketAddress *addr, Error **errp)
{
int fd;
switch (addr->type) {
case SOCKET_ADDRESS_KIND_INET:
fd = inet_listen_saddr(addr->u.inet, 0, false, errp);
break;
case SOCKET_ADDRESS_KIND_UNIX:
fd = unix_listen_saddr(addr->u.q_unix, false, errp);
break;
case SOCKET_ADDRESS_KIND_FD:
fd = monitor_get_fd(cur_mon, addr->u.fd->str, errp);
break;
default:
abort();
}
return fd;
}
int socket_dgram(SocketAddress *remote, SocketAddress *local, Error **errp)
{
int fd;
switch (remote->type) {
case SOCKET_ADDRESS_KIND_INET:
fd = inet_dgram_saddr(remote->u.inet, local ? local->u.inet : NULL, errp);
break;
default:
error_setg(errp, "socket type unsupported for datagram");
fd = -1;
}
return fd;
}
static SocketAddress *
socket_sockaddr_to_address_inet(struct sockaddr_storage *sa,
socklen_t salen,
Error **errp)
{
char host[NI_MAXHOST];
char serv[NI_MAXSERV];
SocketAddress *addr;
int ret;
ret = getnameinfo((struct sockaddr *)sa, salen,
host, sizeof(host),
serv, sizeof(serv),
NI_NUMERICHOST | NI_NUMERICSERV);
if (ret != 0) {
error_setg(errp, "Cannot format numeric socket address: %s",
gai_strerror(ret));
return NULL;
}
addr = g_new0(SocketAddress, 1);
addr->type = SOCKET_ADDRESS_KIND_INET;
addr->u.inet = g_new0(InetSocketAddress, 1);
addr->u.inet->host = g_strdup(host);
addr->u.inet->port = g_strdup(serv);
if (sa->ss_family == AF_INET) {
addr->u.inet->has_ipv4 = addr->u.inet->ipv4 = true;
} else {
addr->u.inet->has_ipv6 = addr->u.inet->ipv6 = true;
}
return addr;
}
#ifndef WIN32
static SocketAddress *
socket_sockaddr_to_address_unix(struct sockaddr_storage *sa,
socklen_t salen,
Error **errp)
{
SocketAddress *addr;
struct sockaddr_un *su = (struct sockaddr_un *)sa;
addr = g_new0(SocketAddress, 1);
addr->type = SOCKET_ADDRESS_KIND_UNIX;
addr->u.q_unix = g_new0(UnixSocketAddress, 1);
if (su->sun_path[0]) {
addr->u.q_unix->path = g_strndup(su->sun_path,
sizeof(su->sun_path));
}
return addr;
}
#endif /* WIN32 */
SocketAddress *
socket_sockaddr_to_address(struct sockaddr_storage *sa,
socklen_t salen,
Error **errp)
{
switch (sa->ss_family) {
case AF_INET:
case AF_INET6:
return socket_sockaddr_to_address_inet(sa, salen, errp);
#ifndef WIN32
case AF_UNIX:
return socket_sockaddr_to_address_unix(sa, salen, errp);
#endif /* WIN32 */
default:
error_setg(errp, "socket family %d unsupported",
sa->ss_family);
return NULL;
}
return 0;
}
SocketAddress *socket_local_address(int fd, Error **errp)
{
struct sockaddr_storage ss;
socklen_t sslen = sizeof(ss);
if (getsockname(fd, (struct sockaddr *)&ss, &sslen) < 0) {
error_setg_errno(errp, socket_error(), "%s",
"Unable to query local socket address");
return NULL;
}
return socket_sockaddr_to_address(&ss, sslen, errp);
}
SocketAddress *socket_remote_address(int fd, Error **errp)
{
struct sockaddr_storage ss;
socklen_t sslen = sizeof(ss);
if (getpeername(fd, (struct sockaddr *)&ss, &sslen) < 0) {
error_setg_errno(errp, socket_error(), "%s",
"Unable to query remote socket address");
return NULL;
}
return socket_sockaddr_to_address(&ss, sslen, errp);
}
void qapi_copy_SocketAddress(SocketAddress **p_dest,
SocketAddress *src)
{
QmpOutputVisitor *qov;
QmpInputVisitor *qiv;
Visitor *ov, *iv;
QObject *obj;
*p_dest = NULL;
qov = qmp_output_visitor_new();
ov = qmp_output_get_visitor(qov);
visit_type_SocketAddress(ov, NULL, &src, &error_abort);
obj = qmp_output_get_qobject(qov);
qmp_output_visitor_cleanup(qov);
if (!obj) {
return;
}
qiv = qmp_input_visitor_new(obj);
iv = qmp_input_get_visitor(qiv);
visit_type_SocketAddress(iv, NULL, p_dest, &error_abort);
qmp_input_visitor_cleanup(qiv);
qobject_decref(obj);
}