qemu-e2k/target-ppc/hw.c
bellard 9a64fbe4d8 PowerPC system emulation (Jocelyn Mayer) - modified patch to use new TLB api
git-svn-id: svn://svn.savannah.nongnu.org/qemu/trunk@528 c046a42c-6fe2-441c-8c8c-71466251a162
2004-01-04 22:58:38 +00:00

936 lines
25 KiB
C

/*
* Hardware simulation for PPC target.
* For now, this is only a 'minimal' collection of hacks needed to boot Linux.
*/
#include <stdlib.h>
#include <stdio.h>
#include <stdarg.h>
#include <string.h>
#include <ctype.h>
#include <unistd.h>
#include <fcntl.h>
#include <inttypes.h>
#include <unistd.h>
#include <time.h>
#include "cpu.h"
#include "vl.h"
//#define HARD_DEBUG_PPC_IO
#define DEBUG_PPC_IO
extern int loglevel;
extern FILE *logfile;
#if defined (HARD_DEBUG_PPC_IO) && !defined (DEBUG_PPC_IO)
#define DEBUG_PPC_IO
#endif
#if defined (HARD_DEBUG_PPC_IO)
#define PPC_IO_DPRINTF(fmt, args...) \
do { \
if (loglevel > 0) { \
fprintf(logfile, "%s: " fmt, __func__ , ##args); \
} else { \
printf("%s : " fmt, __func__ , ##args); \
} \
} while (0)
#elif defined (DEBUG_PPC_IO)
#define PPC_IO_DPRINTF(fmt, args...) \
do { \
if (loglevel > 0) { \
fprintf(logfile, "%s: " fmt, __func__ , ##args); \
} \
} while (0)
#else
#define PPC_IO_DPRINTF(fmt, args...) do { } while (0)
#endif
#if defined (USE_OPEN_FIRMWARE)
#include "of.h"
#else
#define NVRAM_SIZE 0x2000
#endif
/* IO ports emulation */
#define PPC_IO_BASE 0x80000000
static void PPC_io_writeb (uint32_t addr, uint32_t value)
{
/* Don't polute serial port output */
if ((addr < 0x800003F0 || addr > 0x80000400) &&
(addr < 0x80000074 || addr > 0x80000077) &&
(addr < 0x80000020 || addr > 0x80000021) &&
(addr < 0x800000a0 || addr > 0x800000a1) &&
(addr < 0x800001f0 || addr > 0x800001f7) &&
(addr < 0x80000170 || addr > 0x80000177)) {
PPC_IO_DPRINTF("0x%08x => 0x%02x\n", addr - PPC_IO_BASE, value);
}
cpu_outb(NULL, addr - PPC_IO_BASE, value);
}
static uint32_t PPC_io_readb (uint32_t addr)
{
uint32_t ret = cpu_inb(NULL, addr - PPC_IO_BASE);
if ((addr < 0x800003F0 || addr > 0x80000400) &&
(addr < 0x80000074 || addr > 0x80000077) &&
(addr < 0x80000020 || addr > 0x80000021) &&
(addr < 0x800000a0 || addr > 0x800000a1) &&
(addr < 0x800001f0 || addr > 0x800001f7) &&
(addr < 0x80000170 || addr > 0x80000177) &&
(addr < 0x8000060 || addr > 0x8000064)) {
// PPC_IO_DPRINTF("0x%08x <= 0x%02x\n", addr - PPC_IO_BASE, ret);
}
return ret;
}
static void PPC_io_writew (uint32_t addr, uint32_t value)
{
if ((addr < 0x800001f0 || addr > 0x800001f7) &&
(addr < 0x80000170 || addr > 0x80000177)) {
PPC_IO_DPRINTF("0x%08x => 0x%04x\n", addr - PPC_IO_BASE, value);
}
cpu_outw(NULL, addr - PPC_IO_BASE, value);
}
static uint32_t PPC_io_readw (uint32_t addr)
{
uint32_t ret = cpu_inw(NULL, addr - PPC_IO_BASE);
if ((addr < 0x800001f0 || addr > 0x800001f7) &&
(addr < 0x80000170 || addr > 0x80000177)) {
PPC_IO_DPRINTF("0x%08x <= 0x%04x\n", addr - PPC_IO_BASE, ret);
}
return ret;
}
static void PPC_io_writel (uint32_t addr, uint32_t value)
{
PPC_IO_DPRINTF("0x%08x => 0x%08x\n", addr - PPC_IO_BASE, value);
cpu_outl(NULL, addr - PPC_IO_BASE, value);
}
static uint32_t PPC_io_readl (uint32_t addr)
{
uint32_t ret = cpu_inl(NULL, addr - PPC_IO_BASE);
PPC_IO_DPRINTF("0x%08x <= 0x%08x\n", addr - PPC_IO_BASE, ret);
return ret;
}
static CPUWriteMemoryFunc *PPC_io_write[] = {
&PPC_io_writeb,
&PPC_io_writew,
&PPC_io_writel,
};
static CPUReadMemoryFunc *PPC_io_read[] = {
&PPC_io_readb,
&PPC_io_readw,
&PPC_io_readl,
};
uint32_t pic_intack_read(CPUState *env);
/* Read-only register (?) */
static void _PPC_ioB_write (uint32_t addr, uint32_t value)
{
PPC_IO_DPRINTF("0x%08x => 0x%08x\n", addr, value);
}
static uint32_t _PPC_ioB_read (uint32_t addr)
{
uint32_t retval = 0;
if (addr == 0xBFFFFFF0)
retval = pic_intack_read(NULL);
PPC_IO_DPRINTF("0x%08x <= 0x%08x\n", addr, retval);
return retval;
}
static CPUWriteMemoryFunc *PPC_ioB_write[] = {
&_PPC_ioB_write,
&_PPC_ioB_write,
&_PPC_ioB_write,
};
static CPUReadMemoryFunc *PPC_ioB_read[] = {
&_PPC_ioB_read,
&_PPC_ioB_read,
&_PPC_ioB_read,
};
#if 0
static CPUWriteMemoryFunc *PPC_io3_write[] = {
&PPC_io3_writeb,
&PPC_io3_writew,
&PPC_io3_writel,
};
static CPUReadMemoryFunc *PPC_io3_read[] = {
&PPC_io3_readb,
&PPC_io3_readw,
&PPC_io3_readl,
};
#endif
/* Fake super-io ports for PREP platform (Intel 82378ZB) */
static uint8_t PREP_fake_io[2];
static uint8_t NVRAM_lock;
static void PREP_io_write (CPUState *env, uint32_t addr, uint32_t val)
{
PREP_fake_io[addr - 0x0398] = val;
}
static uint32_t PREP_io_read (CPUState *env, uint32_t addr)
{
return PREP_fake_io[addr - 0x0398];
}
static uint8_t syscontrol;
static void PREP_io_800_writeb (CPUState *env, uint32_t addr, uint32_t val)
{
switch (addr) {
case 0x0092:
/* Special port 92 */
/* Check soft reset asked */
if (val & 0x80) {
printf("Soft reset asked... Stop emulation\n");
abort();
}
/* Check LE mode */
if (val & 0x40) {
printf("Little Endian mode isn't supported (yet ?)\n");
abort();
}
break;
case 0x0808:
/* Hardfile light register: don't care */
break;
case 0x0810:
/* Password protect 1 register */
NVRAM_lock ^= 0x01;
break;
case 0x0812:
/* Password protect 2 register */
NVRAM_lock ^= 0x02;
break;
case 0x0814:
/* L2 invalidate register: don't care */
break;
case 0x081C:
/* system control register */
syscontrol = val;
break;
case 0x0850:
/* I/O map type register */
if (val & 0x80) {
printf("No support for non-continuous I/O map mode\n");
abort();
}
break;
default:
break;
}
}
static uint32_t PREP_io_800_readb (CPUState *env, uint32_t addr)
{
uint32_t retval = 0xFF;
switch (addr) {
case 0x0092:
/* Special port 92 */
retval = 0x40;
break;
case 0x080C:
/* Equipment present register:
* no L2 cache
* no upgrade processor
* no cards in PCI slots
* SCSI fuse is bad
*/
retval = 0xFC;
break;
case 0x0818:
/* Keylock */
retval = 0x00;
break;
case 0x081C:
/* system control register
* 7 - 6 / 1 - 0: L2 cache enable
*/
retval = syscontrol;
break;
case 0x0823:
/* */
retval = 0x03; /* no L2 cache */
break;
case 0x0850:
/* I/O map type register */
retval = 0x00;
break;
default:
break;
}
return retval;
}
/* M48T59 NVRAM/RTC emulation */
static uint8_t NVRAM[NVRAM_SIZE];
/* RTC */
static time_t time_offset;
time_t get_time (void)
{
return time(NULL) + time_offset;
}
void set_time_offset (time_t new_time)
{
time_t now = time(NULL);
time_offset = new_time - now;
}
static void NVRAM_init (void)
{
/* NVRAM header */
/* 0x00: NVRAM size in kB */
NVRAM[0x00] = (NVRAM_SIZE >> 12) & 0xFF;
NVRAM[0x01] = (NVRAM_SIZE >> 10) & 0xFF;
/* 0x02: NVRAM version */
NVRAM[0x02] = 0x01;
/* 0x03: NVRAM revision */
NVRAM[0x03] = 0x00;
/* 0x04: checksum 0 => OS area */
/* 0x06: checksum of config area */
/* 0x08: last OS */
NVRAM[0x08] = 0x00; /* Unknown */
/* 0x09: endian */
NVRAM[0x09] = 'B';
/* 0x0B: PM mode */
NVRAM[0x0B] = 0x00;
/* Restart block description record */
/* 0x0C: restart block version */
NVRAM[0x0C] = 0x00;
NVRAM[0x0D] = 0x01;
/* 0x0E: restart block revision */
NVRAM[0x0E] = 0x00;
NVRAM[0x0F] = 0x00;
/* 0x1C: checksum of restart block */
/* 0x20: restart address */
NVRAM[0x20] = 0x00;
NVRAM[0x21] = 0x00;
NVRAM[0x22] = 0x00;
NVRAM[0x23] = 0x00;
/* 0x24: save area address */
NVRAM[0x24] = 0x00;
NVRAM[0x25] = 0x00;
NVRAM[0x26] = 0x00;
NVRAM[0x27] = 0x00;
/* 0x28: save area length */
NVRAM[0x28] = 0x00;
NVRAM[0x29] = 0x00;
NVRAM[0x2A] = 0x00;
NVRAM[0x2B] = 0x00;
/* Security section */
/* Set all to zero */
/* 0xC4: pointer to global environment area */
NVRAM[0xC4] = 0x00;
NVRAM[0xC5] = 0x00;
NVRAM[0xC6] = 0x01;
NVRAM[0xC7] = 0x00;
/* 0xC8: size of global environment area */
NVRAM[0xC8] = 0x00;
NVRAM[0xC9] = 0x00;
NVRAM[0xCA] = 0x07;
NVRAM[0xCB] = 0x00;
/* 0xD4: pointer to configuration area */
NVRAM[0xD4] = 0x00;
NVRAM[0xD5] = 0x00;
NVRAM[0xD6] = 0x08;
NVRAM[0xD7] = 0x00;
/* 0xD8: size of configuration area */
NVRAM[0xD8] = 0x00;
NVRAM[0xD9] = 0x00;
NVRAM[0xDA] = 0x08;
NVRAM[0xDB] = 0x00;
/* 0xE8: pointer to OS specific area */
NVRAM[0xE8] = 0x00;
NVRAM[0xE9] = 0x00;
NVRAM[0xEA] = 0x10;
NVRAM[0xEB] = 0x00;
/* 0xD8: size of OS specific area */
NVRAM[0xEC] = 0x00;
NVRAM[0xED] = 0x00;
NVRAM[0xEE] = 0x0F;
NVRAM[0xEF] = 0xF0;
/* CRC */
/* RTC init */
NVRAM[0x1FFC] = 0x50;
}
static uint16_t NVRAM_addr;
/* Direct access to NVRAM */
void NVRAM_write (CPUState *env, uint32_t addr, uint32_t val)
{
switch (addr) {
case 0x1FF0:
/* flags register */
break;
case 0x1FF1:
/* unused */
break;
case 0x1FF2:
/* alarm seconds */
break;
case 0x1FF3:
/* alarm minutes */
break;
case 0x1FF4:
/* alarm hours */
break;
case 0x1FF5:
/* alarm date */
break;
case 0x1FF6:
/* interrupts */
break;
case 0x1FF7:
/* watchdog */
break;
case 0x1FF8:
/* control */
break;
case 0x1FF9:
/* seconds (BCD) */
break;
case 0x1FFA:
/* minutes (BCD) */
break;
case 0x1FFB:
/* hours (BCD) */
break;
case 0x1FFC:
/* day of the week / century */
NVRAM[0x1FFC] = val & 0x50;
break;
case 0x1FFD:
/* date */
break;
case 0x1FFE:
/* month */
break;
case 0x1FFF:
/* year */
break;
default:
if (addr < NVRAM_SIZE)
NVRAM[addr] = val & 0xFF;
break;
}
}
uint32_t NVRAM_read (CPUState *env, uint32_t addr)
{
struct tm tm;
time_t t;
uint32_t retval = 0xFF;
switch (addr) {
case 0x1FF0:
/* flags register */
break;
case 0x1FF1:
/* unused */
break;
case 0x1FF2:
/* alarm seconds */
break;
case 0x1FF3:
/* alarm minutes */
break;
case 0x1FF4:
/* alarm hours */
break;
case 0x1FF5:
/* alarm date */
break;
case 0x1FF6:
/* interrupts */
break;
case 0x1FF7:
/* watchdog */
break;
case 0x1FF8:
/* control */
break;
case 0x1FF9:
/* seconds (BCD) */
t = get_time();
localtime_r(&t, &tm);
retval = ((tm.tm_sec / 10) << 4) | (tm.tm_sec % 10);
// printf("return seconds=%d\n", tm.tm_sec);
break;
case 0x1FFA:
/* minutes (BCD) */
t = get_time();
localtime_r(&t, &tm);
retval = ((tm.tm_min / 10) << 4) | (tm.tm_min % 10);
break;
case 0x1FFB:
/* hours (BCD) */
t = get_time();
localtime_r(&t, &tm);
retval = ((tm.tm_hour / 10) << 4) | (tm.tm_hour % 10);
break;
case 0x1FFC:
/* day of the week / century */
t = get_time();
localtime_r(&t, &tm);
retval = (NVRAM[0x1FFC] & 0x50) | tm.tm_wday;
break;
case 0x1FFD:
/* date */
t = get_time();
localtime_r(&t, &tm);
retval = ((tm.tm_mday / 10) << 4) | (tm.tm_mday % 10);
break;
case 0x1FFE:
/* month */
t = get_time();
localtime_r(&t, &tm);
retval = ((tm.tm_mon / 10) << 4) | (tm.tm_mon % 10);
break;
case 0x1FFF:
/* year */
t = get_time();
localtime_r(&t, &tm);
retval = ((tm.tm_year / 10) << 4) | (tm.tm_year % 10);
break;
default:
if (NVRAM_addr < NVRAM_SIZE)
retval = NVRAM[NVRAM_addr];
break;
}
return retval;
}
/* IO access to NVRAM */
static void NVRAM_writeb (CPUState *env, uint32_t addr, uint32_t val)
{
switch (addr) {
case 0x74:
NVRAM_addr &= ~0x00FF;
NVRAM_addr |= val;
break;
case 0x75:
NVRAM_addr &= ~0xFF00;
NVRAM_addr |= val << 8;
break;
case 0x77:
NVRAM_write(env, NVRAM_addr, val);
NVRAM_addr = 0x0000;
break;
default:
break;
}
}
static uint32_t NVRAM_readb (CPUState *env, uint32_t addr)
{
if (addr == 0x77)
return NVRAM_read(env, NVRAM_addr);
return 0xFF;
}
int load_initrd (const char *filename, uint8_t *addr)
{
int fd, size;
printf("Load initrd\n");
fd = open(filename, O_RDONLY);
if (fd < 0)
return -1;
size = read(fd, addr, 16 * 1024 * 1024);
if (size < 0)
goto fail;
close(fd);
printf("Load initrd: %d\n", size);
return size;
fail:
close(fd);
printf("Load initrd failed\n");
return -1;
}
/* Quick hack for PPC memory infos... */
static void put_long (void *addr, uint32_t l)
{
char *pos = addr;
pos[0] = (l >> 24) & 0xFF;
pos[1] = (l >> 16) & 0xFF;
pos[2] = (l >> 8) & 0xFF;
pos[3] = l & 0xFF;
}
/* bootloader infos are in the form:
* uint32_t TAG
* uint32_t TAG_size (from TAG to next TAG).
* datas
* ....
*/
#if !defined (USE_OPEN_FIRMWARE)
static void *set_bootinfo_tag (void *addr, uint32_t tag, uint32_t size,
void *data)
{
char *pos = addr;
put_long(pos, tag);
pos += 4;
put_long(pos, size + 8);
pos += 4;
memcpy(pos, data, size);
pos += size;
return pos;
}
#endif
typedef struct boot_dev_t {
const unsigned char *name;
int major;
int minor;
} boot_dev_t;
static boot_dev_t boot_devs[] =
{
{ "/dev/fd0", 2, 0, },
{ "/dev/fd1", 2, 1, },
{ "/dev/hda1", 3, 1, },
// { "/dev/ide/host0/bus0/target0/lun0/part1", 3, 1, },
{ "/dev/hdc", 22, 0, },
{ "/dev/ram0 init=/linuxrc", 1, 0, },
};
/* BATU:
* BEPI : bloc virtual address
* BL : area size bits (128 kB is 0, 256 1, 512 3, ...
* Vs/Vp
* BATL:
* BPRN : bloc real address align on 4MB boundary
* WIMG : cache access mode : not used
* PP : protection bits
*/
static void setup_BAT (CPUPPCState *env, int BAT,
uint32_t virtual, uint32_t physical,
uint32_t size, int Vs, int Vp, int PP)
{
uint32_t sz_bits, tmp_sz, align, tmp;
sz_bits = 0;
align = 131072;
for (tmp_sz = size / 131072; tmp_sz != 1; tmp_sz = tmp_sz >> 1) {
sz_bits = (sz_bits << 1) + 1;
align = align << 1;
}
tmp = virtual & ~(align - 1); /* Align virtual area start */
tmp |= sz_bits << 2; /* Fix BAT size */
tmp |= Vs << 1; /* Supervisor access */
tmp |= Vp; /* User access */
env->DBAT[0][BAT] = tmp;
env->IBAT[0][BAT] = tmp;
tmp = physical & ~(align - 1); /* Align physical area start */
tmp |= 0; /* Don't care about WIMG */
tmp |= PP; /* Protection */
env->DBAT[1][BAT] = tmp;
env->IBAT[1][BAT] = tmp;
printf("Set BATU0 to 0x%08x BATL0 to 0x%08x\n",
env->DBAT[0][BAT], env->DBAT[1][BAT]);
}
static void VGA_printf (uint8_t *s)
{
uint16_t *arg_ptr;
unsigned int format_width, i;
int in_format;
uint16_t arg, digit, nibble;
uint8_t c;
arg_ptr = (uint16_t *)(&s);
in_format = 0;
format_width = 0;
while ((c = *s) != '\0') {
if (c == '%') {
in_format = 1;
format_width = 0;
} else if (in_format) {
if ((c >= '0') && (c <= '9')) {
format_width = (format_width * 10) + (c - '0');
} else if (c == 'x') {
arg_ptr++; // increment to next arg
arg = *arg_ptr;
if (format_width == 0)
format_width = 4;
digit = format_width - 1;
for (i = 0; i < format_width; i++) {
nibble = (arg >> (4 * digit)) & 0x000f;
if (nibble <= 9)
PPC_io_writeb(PPC_IO_BASE + 0x500, nibble + '0');
else
PPC_io_writeb(PPC_IO_BASE + 0x500, nibble + 'A');
digit--;
}
in_format = 0;
}
//else if (c == 'd') {
// in_format = 0;
// }
} else {
PPC_io_writeb(PPC_IO_BASE + 0x500, c);
}
s++;
}
}
static void VGA_init (void)
{
/* Basic VGA init, inspired by plex86 VGAbios */
printf("Init VGA...\n");
/* switch to color mode and enable CPU access 480 lines */
PPC_io_writeb(PPC_IO_BASE + 0x3C2, 0xC3);
/* more than 64k 3C4/04 */
PPC_io_writeb(PPC_IO_BASE + 0x3C4, 0x04);
PPC_io_writeb(PPC_IO_BASE + 0x3C5, 0x02);
VGA_printf("PPC VGA BIOS...\n");
}
void PPC_init_hw (CPUPPCState *env, uint32_t mem_size,
uint32_t kernel_addr, uint32_t kernel_size,
uint32_t stack_addr, int boot_device)
{
char *p;
#if !defined (USE_OPEN_FIRMWARE)
char *tmp;
uint32_t tmpi[2];
#endif
int PPC_io_memory;
#if defined (USE_OPEN_FIRMWARE)
setup_memory(env, mem_size);
#endif
/* Register 64 kB of IO space */
PPC_io_memory = cpu_register_io_memory(0, PPC_io_read, PPC_io_write);
cpu_register_physical_memory(0x80000000, 0x10000, PPC_io_memory);
/* Register fake IO ports for PREP */
register_ioport_read(0x398, 2, PREP_io_read, 1);
register_ioport_write(0x398, 2, PREP_io_write, 1);
/* System control ports */
register_ioport_write(0x0092, 0x1, PREP_io_800_writeb, 1);
register_ioport_read(0x0800, 0x52, PREP_io_800_readb, 1);
register_ioport_write(0x0800, 0x52, PREP_io_800_writeb, 1);
/* PCI intack location */
PPC_io_memory = cpu_register_io_memory(0, PPC_ioB_read, PPC_ioB_write);
cpu_register_physical_memory(0xBFFFFFF0, 0x4, PPC_io_memory);
/* NVRAM ports */
NVRAM_init();
register_ioport_read(0x0074, 0x04, NVRAM_readb, 1);
register_ioport_write(0x0074, 0x04, NVRAM_writeb, 1);
/* Fake bootloader */
env->nip = kernel_addr + (3 * sizeof(uint32_t));
/* Set up msr according to PREP specification */
msr_ee = 0;
msr_fp = 1;
msr_pr = 0; /* Start in supervisor mode */
msr_me = 1;
msr_fe0 = msr_fe1 = 0;
msr_ip = 0;
msr_ir = msr_dr = 1;
// msr_sf = 0;
msr_le = msr_ile = 0;
env->gpr[1] = stack_addr; /* Let's have a stack */
env->gpr[2] = 0;
env->gpr[8] = kernel_addr;
/* There is a bug in 2.4 kernels:
* if a decrementer exception is pending when it enables msr_ee,
* it's not ready to handle it...
*/
env->decr = 0xFFFFFFFF;
p = (void *)(phys_ram_base + kernel_addr);
#if !defined (USE_OPEN_FIRMWARE)
/* Let's register the whole memory available only in supervisor mode */
setup_BAT(env, 0, 0x00000000, 0x00000000, mem_size, 1, 0, 2);
/* Avoid open firmware init call (to get a console)
* This will make the kernel think we are a PREP machine...
*/
put_long(p, 0xdeadc0de);
/* Build a real stack room */
p = (void *)(phys_ram_base + stack_addr);
put_long(p, stack_addr);
p -= 32;
env->gpr[1] -= 32;
/* Pretend there are no residual data */
env->gpr[3] = 0;
#if 1
{
int size;
env->gpr[4] = 0x00800000;
size = load_initrd("initrd",
(void *)((uint32_t)phys_ram_base + env->gpr[4]));
if (size < 0) {
/* No initrd */
env->gpr[4] = env->gpr[5] = 0;
} else {
env->gpr[5] = size;
boot_device = 'e';
}
printf("Initrd loaded at 0x%08x (%d)\n", env->gpr[4], env->gpr[5]);
}
#else
env->gpr[4] = env->gpr[5] = 0;
#endif
/* We have to put bootinfos after the BSS
* The BSS starts after the kernel end.
*/
#if 0
p = (void *)(((uint32_t)phys_ram_base + kernel_addr +
kernel_size + (1 << 20) - 1) & ~((1 << 20) - 1));
#else
p = (void *)((uint32_t)phys_ram_base + kernel_addr + 0x400000);
#endif
if (loglevel > 0) {
fprintf(logfile, "bootinfos: %p 0x%08x\n",
p, (uint32_t)p - (uint32_t)phys_ram_base);
} else {
printf("bootinfos: %p 0x%08x\n",
p, (uint32_t)p - (uint32_t)phys_ram_base);
}
/* Command line: let's put it after bootinfos */
#if 0
sprintf(p + 0x1000, "console=ttyS0,9600 root=%02x%02x mem=%dM",
boot_devs[boot_device - 'a'].major,
boot_devs[boot_device - 'a'].minor,
phys_ram_size >> 20);
#else
sprintf(p + 0x1000, "console=ttyS0,9600 console=tty0 root=%s mem=%dM load_ramdisk=1",
boot_devs[boot_device - 'a'].name,
phys_ram_size >> 20);
#endif
env->gpr[6] = (uint32_t)p + 0x1000 - (uint32_t)phys_ram_base;
env->gpr[7] = env->gpr[6] + strlen(p + 0x1000);
if (loglevel > 0) {
fprintf(logfile, "cmdline: %p 0x%08x [%s]\n",
p + 0x1000, env->gpr[6], p + 0x1000);
} else {
printf("cmdline: %p 0x%08x [%s]\n",
p + 0x1000, env->gpr[6], p + 0x1000);
}
/* BI_FIRST */
p = set_bootinfo_tag(p, 0x1010, 0, 0);
/* BI_CMD_LINE */
p = set_bootinfo_tag(p, 0x1012, env->gpr[7] - env->gpr[6],
(void *)(env->gpr[6] + (uint32_t)phys_ram_base));
/* BI_MEM_SIZE */
tmp = (void *)tmpi;
tmp[0] = (phys_ram_size >> 24) & 0xFF;
tmp[1] = (phys_ram_size >> 16) & 0xFF;
tmp[2] = (phys_ram_size >> 8) & 0xFF;
tmp[3] = phys_ram_size & 0xFF;
p = set_bootinfo_tag(p, 0x1017, 4, tmpi);
/* BI_INITRD */
tmp[0] = (env->gpr[4] >> 24) & 0xFF;
tmp[1] = (env->gpr[4] >> 16) & 0xFF;
tmp[2] = (env->gpr[4] >> 8) & 0xFF;
tmp[3] = env->gpr[4] & 0xFF;
tmp[4] = (env->gpr[5] >> 24) & 0xFF;
tmp[5] = (env->gpr[5] >> 16) & 0xFF;
tmp[6] = (env->gpr[5] >> 8) & 0xFF;
tmp[7] = env->gpr[5] & 0xFF;
p = set_bootinfo_tag(p, 0x1014, 8, tmpi);
/* BI_LAST */
p = set_bootinfo_tag(p, 0x1011, 0, 0);
#else
/* Set up MMU:
* kernel is loaded at kernel_addr and wants to be seen at 0x01000000
*/
setup_BAT(env, 0, 0x01000000, kernel_addr, 0x00400000, 1, 0, 2);
{
#if 0
uint32_t offset =
*((uint32_t *)((uint32_t)phys_ram_base + kernel_addr));
#else
uint32_t offset = 12;
#endif
env->nip = 0x01000000 | (kernel_addr + offset);
printf("Start address: 0x%08x\n", env->nip);
}
env->gpr[1] = env->nip + (1 << 22);
p = (void *)(phys_ram_base + stack_addr);
put_long(p - 32, stack_addr);
env->gpr[1] -= 32;
printf("Kernel starts at 0x%08x stack 0x%08x\n", env->nip, env->gpr[1]);
/* We want all lower address not to be translated */
setup_BAT(env, 1, 0x00000000, 0x00000000, 0x010000000, 1, 1, 2);
/* We also need a BAT to access OF */
setup_BAT(env, 2, 0xFFFE0000, mem_size - 131072, 131072, 1, 0, 1);
/* Setup OF entry point */
{
char *p;
p = (char *)phys_ram_base + mem_size - 131072;
/* Special opcode to call OF */
*p++ = 0x18; *p++ = 0x00; *p++ = 0x00; *p++ = 0x02;
/* blr */
*p++ = 0x4E; *p++ = 0x80; *p++ = 0x00; *p++ = 0x20;
}
env->gpr[5] = 0xFFFE0000;
/* Register translations */
{
OF_transl_t translations[3] = {
{ 0x01000000, 0x00400000, kernel_addr, 0x00000002, },
{ 0x00000000, 0x01000000, 0x00000000, 0x00000002, },
{ 0xFFFE0000, 0x00020000, mem_size - (128 * 1024),
0x00000001, },
};
OF_register_translations(3, translations);
}
/* Quite artificial, for now */
OF_register_bus("isa", "isa");
OF_register_serial("isa", "serial", 4, 0x3f8);
OF_register_stdio("serial", "serial");
/* Set up RTAS service */
RTAS_init();
/* Command line: let's put it just over the stack */
#if 1
sprintf(p, "console=ttyS0,9600 root=%02x%02x mem=%dM",
boot_devs[boot_device - 'a'].major,
boot_devs[boot_device - 'a'].minor,
phys_ram_size >> 20);
#else
sprintf(p, "console=ttyS0,9600 root=%s mem=%dM ne2000=0x300,9",
boot_devs[boot_device - 'a'].name,
phys_ram_size >> 20);
#endif
OF_register_bootargs(p);
#endif
}
void PPC_end_init (void)
{
VGA_init();
}