qemu-e2k/target/ppc/kvm.c
Vladimir Sementsov-Ogievskiy cdcca22aab ppc: well form kvmppc_hint_smt_possible error hint helper
Make kvmppc_hint_smt_possible hint append helper well formed:
rename errp to errp_in, as it is IN-parameter here (which is unusual
for errp), rename function to be kvmppc_error_append_*_hint.

Signed-off-by: Vladimir Sementsov-Ogievskiy <vsementsov@virtuozzo.com>
Reviewed-by: Marc-André Lureau <marcandre.lureau@redhat.com>
Message-Id: <20191127191434.20945-1-vsementsov@virtuozzo.com>
Reviewed-by: Greg Kurz <groug@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
2019-12-17 10:39:48 +11:00

2903 lines
78 KiB
C

/*
* PowerPC implementation of KVM hooks
*
* Copyright IBM Corp. 2007
* Copyright (C) 2011 Freescale Semiconductor, Inc.
*
* Authors:
* Jerone Young <jyoung5@us.ibm.com>
* Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com>
* Hollis Blanchard <hollisb@us.ibm.com>
*
* This work is licensed under the terms of the GNU GPL, version 2 or later.
* See the COPYING file in the top-level directory.
*
*/
#include "qemu/osdep.h"
#include <dirent.h>
#include <sys/ioctl.h>
#include <sys/vfs.h>
#include <linux/kvm.h>
#include "qemu-common.h"
#include "qapi/error.h"
#include "qemu/error-report.h"
#include "cpu.h"
#include "cpu-models.h"
#include "qemu/timer.h"
#include "sysemu/hw_accel.h"
#include "kvm_ppc.h"
#include "sysemu/cpus.h"
#include "sysemu/device_tree.h"
#include "mmu-hash64.h"
#include "hw/sysbus.h"
#include "hw/ppc/spapr.h"
#include "hw/ppc/spapr_cpu_core.h"
#include "hw/hw.h"
#include "hw/ppc/ppc.h"
#include "migration/qemu-file-types.h"
#include "sysemu/watchdog.h"
#include "trace.h"
#include "exec/gdbstub.h"
#include "exec/memattrs.h"
#include "exec/ram_addr.h"
#include "sysemu/hostmem.h"
#include "qemu/cutils.h"
#include "qemu/main-loop.h"
#include "qemu/mmap-alloc.h"
#include "elf.h"
#include "sysemu/kvm_int.h"
#define PROC_DEVTREE_CPU "/proc/device-tree/cpus/"
const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
KVM_CAP_LAST_INFO
};
static int cap_interrupt_unset;
static int cap_segstate;
static int cap_booke_sregs;
static int cap_ppc_smt;
static int cap_ppc_smt_possible;
static int cap_spapr_tce;
static int cap_spapr_tce_64;
static int cap_spapr_multitce;
static int cap_spapr_vfio;
static int cap_hior;
static int cap_one_reg;
static int cap_epr;
static int cap_ppc_watchdog;
static int cap_papr;
static int cap_htab_fd;
static int cap_fixup_hcalls;
static int cap_htm; /* Hardware transactional memory support */
static int cap_mmu_radix;
static int cap_mmu_hash_v3;
static int cap_xive;
static int cap_resize_hpt;
static int cap_ppc_pvr_compat;
static int cap_ppc_safe_cache;
static int cap_ppc_safe_bounds_check;
static int cap_ppc_safe_indirect_branch;
static int cap_ppc_count_cache_flush_assist;
static int cap_ppc_nested_kvm_hv;
static int cap_large_decr;
static uint32_t debug_inst_opcode;
/*
* Check whether we are running with KVM-PR (instead of KVM-HV). This
* should only be used for fallback tests - generally we should use
* explicit capabilities for the features we want, rather than
* assuming what is/isn't available depending on the KVM variant.
*/
static bool kvmppc_is_pr(KVMState *ks)
{
/* Assume KVM-PR if the GET_PVINFO capability is available */
return kvm_vm_check_extension(ks, KVM_CAP_PPC_GET_PVINFO) != 0;
}
static int kvm_ppc_register_host_cpu_type(void);
static void kvmppc_get_cpu_characteristics(KVMState *s);
static int kvmppc_get_dec_bits(void);
int kvm_arch_init(MachineState *ms, KVMState *s)
{
cap_interrupt_unset = kvm_check_extension(s, KVM_CAP_PPC_UNSET_IRQ);
cap_segstate = kvm_check_extension(s, KVM_CAP_PPC_SEGSTATE);
cap_booke_sregs = kvm_check_extension(s, KVM_CAP_PPC_BOOKE_SREGS);
cap_ppc_smt_possible = kvm_vm_check_extension(s, KVM_CAP_PPC_SMT_POSSIBLE);
cap_spapr_tce = kvm_check_extension(s, KVM_CAP_SPAPR_TCE);
cap_spapr_tce_64 = kvm_check_extension(s, KVM_CAP_SPAPR_TCE_64);
cap_spapr_multitce = kvm_check_extension(s, KVM_CAP_SPAPR_MULTITCE);
cap_spapr_vfio = kvm_vm_check_extension(s, KVM_CAP_SPAPR_TCE_VFIO);
cap_one_reg = kvm_check_extension(s, KVM_CAP_ONE_REG);
cap_hior = kvm_check_extension(s, KVM_CAP_PPC_HIOR);
cap_epr = kvm_check_extension(s, KVM_CAP_PPC_EPR);
cap_ppc_watchdog = kvm_check_extension(s, KVM_CAP_PPC_BOOKE_WATCHDOG);
/*
* Note: we don't set cap_papr here, because this capability is
* only activated after this by kvmppc_set_papr()
*/
cap_htab_fd = kvm_vm_check_extension(s, KVM_CAP_PPC_HTAB_FD);
cap_fixup_hcalls = kvm_check_extension(s, KVM_CAP_PPC_FIXUP_HCALL);
cap_ppc_smt = kvm_vm_check_extension(s, KVM_CAP_PPC_SMT);
cap_htm = kvm_vm_check_extension(s, KVM_CAP_PPC_HTM);
cap_mmu_radix = kvm_vm_check_extension(s, KVM_CAP_PPC_MMU_RADIX);
cap_mmu_hash_v3 = kvm_vm_check_extension(s, KVM_CAP_PPC_MMU_HASH_V3);
cap_xive = kvm_vm_check_extension(s, KVM_CAP_PPC_IRQ_XIVE);
cap_resize_hpt = kvm_vm_check_extension(s, KVM_CAP_SPAPR_RESIZE_HPT);
kvmppc_get_cpu_characteristics(s);
cap_ppc_nested_kvm_hv = kvm_vm_check_extension(s, KVM_CAP_PPC_NESTED_HV);
cap_large_decr = kvmppc_get_dec_bits();
/*
* Note: setting it to false because there is not such capability
* in KVM at this moment.
*
* TODO: call kvm_vm_check_extension() with the right capability
* after the kernel starts implementing it.
*/
cap_ppc_pvr_compat = false;
if (!kvm_check_extension(s, KVM_CAP_PPC_IRQ_LEVEL)) {
error_report("KVM: Host kernel doesn't have level irq capability");
exit(1);
}
kvm_ppc_register_host_cpu_type();
return 0;
}
int kvm_arch_irqchip_create(MachineState *ms, KVMState *s)
{
return 0;
}
static int kvm_arch_sync_sregs(PowerPCCPU *cpu)
{
CPUPPCState *cenv = &cpu->env;
CPUState *cs = CPU(cpu);
struct kvm_sregs sregs;
int ret;
if (cenv->excp_model == POWERPC_EXCP_BOOKE) {
/*
* What we're really trying to say is "if we're on BookE, we
* use the native PVR for now". This is the only sane way to
* check it though, so we potentially confuse users that they
* can run BookE guests on BookS. Let's hope nobody dares
* enough :)
*/
return 0;
} else {
if (!cap_segstate) {
fprintf(stderr, "kvm error: missing PVR setting capability\n");
return -ENOSYS;
}
}
ret = kvm_vcpu_ioctl(cs, KVM_GET_SREGS, &sregs);
if (ret) {
return ret;
}
sregs.pvr = cenv->spr[SPR_PVR];
return kvm_vcpu_ioctl(cs, KVM_SET_SREGS, &sregs);
}
/* Set up a shared TLB array with KVM */
static int kvm_booke206_tlb_init(PowerPCCPU *cpu)
{
CPUPPCState *env = &cpu->env;
CPUState *cs = CPU(cpu);
struct kvm_book3e_206_tlb_params params = {};
struct kvm_config_tlb cfg = {};
unsigned int entries = 0;
int ret, i;
if (!kvm_enabled() ||
!kvm_check_extension(cs->kvm_state, KVM_CAP_SW_TLB)) {
return 0;
}
assert(ARRAY_SIZE(params.tlb_sizes) == BOOKE206_MAX_TLBN);
for (i = 0; i < BOOKE206_MAX_TLBN; i++) {
params.tlb_sizes[i] = booke206_tlb_size(env, i);
params.tlb_ways[i] = booke206_tlb_ways(env, i);
entries += params.tlb_sizes[i];
}
assert(entries == env->nb_tlb);
assert(sizeof(struct kvm_book3e_206_tlb_entry) == sizeof(ppcmas_tlb_t));
env->tlb_dirty = true;
cfg.array = (uintptr_t)env->tlb.tlbm;
cfg.array_len = sizeof(ppcmas_tlb_t) * entries;
cfg.params = (uintptr_t)&params;
cfg.mmu_type = KVM_MMU_FSL_BOOKE_NOHV;
ret = kvm_vcpu_enable_cap(cs, KVM_CAP_SW_TLB, 0, (uintptr_t)&cfg);
if (ret < 0) {
fprintf(stderr, "%s: couldn't enable KVM_CAP_SW_TLB: %s\n",
__func__, strerror(-ret));
return ret;
}
env->kvm_sw_tlb = true;
return 0;
}
#if defined(TARGET_PPC64)
static void kvm_get_smmu_info(struct kvm_ppc_smmu_info *info, Error **errp)
{
int ret;
assert(kvm_state != NULL);
if (!kvm_check_extension(kvm_state, KVM_CAP_PPC_GET_SMMU_INFO)) {
error_setg(errp, "KVM doesn't expose the MMU features it supports");
error_append_hint(errp, "Consider switching to a newer KVM\n");
return;
}
ret = kvm_vm_ioctl(kvm_state, KVM_PPC_GET_SMMU_INFO, info);
if (ret == 0) {
return;
}
error_setg_errno(errp, -ret,
"KVM failed to provide the MMU features it supports");
}
struct ppc_radix_page_info *kvm_get_radix_page_info(void)
{
KVMState *s = KVM_STATE(current_machine->accelerator);
struct ppc_radix_page_info *radix_page_info;
struct kvm_ppc_rmmu_info rmmu_info;
int i;
if (!kvm_check_extension(s, KVM_CAP_PPC_MMU_RADIX)) {
return NULL;
}
if (kvm_vm_ioctl(s, KVM_PPC_GET_RMMU_INFO, &rmmu_info)) {
return NULL;
}
radix_page_info = g_malloc0(sizeof(*radix_page_info));
radix_page_info->count = 0;
for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
if (rmmu_info.ap_encodings[i]) {
radix_page_info->entries[i] = rmmu_info.ap_encodings[i];
radix_page_info->count++;
}
}
return radix_page_info;
}
target_ulong kvmppc_configure_v3_mmu(PowerPCCPU *cpu,
bool radix, bool gtse,
uint64_t proc_tbl)
{
CPUState *cs = CPU(cpu);
int ret;
uint64_t flags = 0;
struct kvm_ppc_mmuv3_cfg cfg = {
.process_table = proc_tbl,
};
if (radix) {
flags |= KVM_PPC_MMUV3_RADIX;
}
if (gtse) {
flags |= KVM_PPC_MMUV3_GTSE;
}
cfg.flags = flags;
ret = kvm_vm_ioctl(cs->kvm_state, KVM_PPC_CONFIGURE_V3_MMU, &cfg);
switch (ret) {
case 0:
return H_SUCCESS;
case -EINVAL:
return H_PARAMETER;
case -ENODEV:
return H_NOT_AVAILABLE;
default:
return H_HARDWARE;
}
}
bool kvmppc_hpt_needs_host_contiguous_pages(void)
{
static struct kvm_ppc_smmu_info smmu_info;
if (!kvm_enabled()) {
return false;
}
kvm_get_smmu_info(&smmu_info, &error_fatal);
return !!(smmu_info.flags & KVM_PPC_PAGE_SIZES_REAL);
}
void kvm_check_mmu(PowerPCCPU *cpu, Error **errp)
{
struct kvm_ppc_smmu_info smmu_info;
int iq, ik, jq, jk;
Error *local_err = NULL;
/* For now, we only have anything to check on hash64 MMUs */
if (!cpu->hash64_opts || !kvm_enabled()) {
return;
}
kvm_get_smmu_info(&smmu_info, &local_err);
if (local_err) {
error_propagate(errp, local_err);
return;
}
if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)
&& !(smmu_info.flags & KVM_PPC_1T_SEGMENTS)) {
error_setg(errp,
"KVM does not support 1TiB segments which guest expects");
return;
}
if (smmu_info.slb_size < cpu->hash64_opts->slb_size) {
error_setg(errp, "KVM only supports %u SLB entries, but guest needs %u",
smmu_info.slb_size, cpu->hash64_opts->slb_size);
return;
}
/*
* Verify that every pagesize supported by the cpu model is
* supported by KVM with the same encodings
*/
for (iq = 0; iq < ARRAY_SIZE(cpu->hash64_opts->sps); iq++) {
PPCHash64SegmentPageSizes *qsps = &cpu->hash64_opts->sps[iq];
struct kvm_ppc_one_seg_page_size *ksps;
for (ik = 0; ik < ARRAY_SIZE(smmu_info.sps); ik++) {
if (qsps->page_shift == smmu_info.sps[ik].page_shift) {
break;
}
}
if (ik >= ARRAY_SIZE(smmu_info.sps)) {
error_setg(errp, "KVM doesn't support for base page shift %u",
qsps->page_shift);
return;
}
ksps = &smmu_info.sps[ik];
if (ksps->slb_enc != qsps->slb_enc) {
error_setg(errp,
"KVM uses SLB encoding 0x%x for page shift %u, but guest expects 0x%x",
ksps->slb_enc, ksps->page_shift, qsps->slb_enc);
return;
}
for (jq = 0; jq < ARRAY_SIZE(qsps->enc); jq++) {
for (jk = 0; jk < ARRAY_SIZE(ksps->enc); jk++) {
if (qsps->enc[jq].page_shift == ksps->enc[jk].page_shift) {
break;
}
}
if (jk >= ARRAY_SIZE(ksps->enc)) {
error_setg(errp, "KVM doesn't support page shift %u/%u",
qsps->enc[jq].page_shift, qsps->page_shift);
return;
}
if (qsps->enc[jq].pte_enc != ksps->enc[jk].pte_enc) {
error_setg(errp,
"KVM uses PTE encoding 0x%x for page shift %u/%u, but guest expects 0x%x",
ksps->enc[jk].pte_enc, qsps->enc[jq].page_shift,
qsps->page_shift, qsps->enc[jq].pte_enc);
return;
}
}
}
if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) {
/*
* Mostly what guest pagesizes we can use are related to the
* host pages used to map guest RAM, which is handled in the
* platform code. Cache-Inhibited largepages (64k) however are
* used for I/O, so if they're mapped to the host at all it
* will be a normal mapping, not a special hugepage one used
* for RAM.
*/
if (qemu_real_host_page_size < 0x10000) {
error_setg(errp,
"KVM can't supply 64kiB CI pages, which guest expects");
}
}
}
#endif /* !defined (TARGET_PPC64) */
unsigned long kvm_arch_vcpu_id(CPUState *cpu)
{
return POWERPC_CPU(cpu)->vcpu_id;
}
/*
* e500 supports 2 h/w breakpoint and 2 watchpoint. book3s supports
* only 1 watchpoint, so array size of 4 is sufficient for now.
*/
#define MAX_HW_BKPTS 4
static struct HWBreakpoint {
target_ulong addr;
int type;
} hw_debug_points[MAX_HW_BKPTS];
static CPUWatchpoint hw_watchpoint;
/* Default there is no breakpoint and watchpoint supported */
static int max_hw_breakpoint;
static int max_hw_watchpoint;
static int nb_hw_breakpoint;
static int nb_hw_watchpoint;
static void kvmppc_hw_debug_points_init(CPUPPCState *cenv)
{
if (cenv->excp_model == POWERPC_EXCP_BOOKE) {
max_hw_breakpoint = 2;
max_hw_watchpoint = 2;
}
if ((max_hw_breakpoint + max_hw_watchpoint) > MAX_HW_BKPTS) {
fprintf(stderr, "Error initializing h/w breakpoints\n");
return;
}
}
int kvm_arch_init_vcpu(CPUState *cs)
{
PowerPCCPU *cpu = POWERPC_CPU(cs);
CPUPPCState *cenv = &cpu->env;
int ret;
/* Synchronize sregs with kvm */
ret = kvm_arch_sync_sregs(cpu);
if (ret) {
if (ret == -EINVAL) {
error_report("Register sync failed... If you're using kvm-hv.ko,"
" only \"-cpu host\" is possible");
}
return ret;
}
switch (cenv->mmu_model) {
case POWERPC_MMU_BOOKE206:
/* This target supports access to KVM's guest TLB */
ret = kvm_booke206_tlb_init(cpu);
break;
case POWERPC_MMU_2_07:
if (!cap_htm && !kvmppc_is_pr(cs->kvm_state)) {
/*
* KVM-HV has transactional memory on POWER8 also without
* the KVM_CAP_PPC_HTM extension, so enable it here
* instead as long as it's availble to userspace on the
* host.
*/
if (qemu_getauxval(AT_HWCAP2) & PPC_FEATURE2_HAS_HTM) {
cap_htm = true;
}
}
break;
default:
break;
}
kvm_get_one_reg(cs, KVM_REG_PPC_DEBUG_INST, &debug_inst_opcode);
kvmppc_hw_debug_points_init(cenv);
return ret;
}
int kvm_arch_destroy_vcpu(CPUState *cs)
{
return 0;
}
static void kvm_sw_tlb_put(PowerPCCPU *cpu)
{
CPUPPCState *env = &cpu->env;
CPUState *cs = CPU(cpu);
struct kvm_dirty_tlb dirty_tlb;
unsigned char *bitmap;
int ret;
if (!env->kvm_sw_tlb) {
return;
}
bitmap = g_malloc((env->nb_tlb + 7) / 8);
memset(bitmap, 0xFF, (env->nb_tlb + 7) / 8);
dirty_tlb.bitmap = (uintptr_t)bitmap;
dirty_tlb.num_dirty = env->nb_tlb;
ret = kvm_vcpu_ioctl(cs, KVM_DIRTY_TLB, &dirty_tlb);
if (ret) {
fprintf(stderr, "%s: KVM_DIRTY_TLB: %s\n",
__func__, strerror(-ret));
}
g_free(bitmap);
}
static void kvm_get_one_spr(CPUState *cs, uint64_t id, int spr)
{
PowerPCCPU *cpu = POWERPC_CPU(cs);
CPUPPCState *env = &cpu->env;
union {
uint32_t u32;
uint64_t u64;
} val;
struct kvm_one_reg reg = {
.id = id,
.addr = (uintptr_t) &val,
};
int ret;
ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
if (ret != 0) {
trace_kvm_failed_spr_get(spr, strerror(errno));
} else {
switch (id & KVM_REG_SIZE_MASK) {
case KVM_REG_SIZE_U32:
env->spr[spr] = val.u32;
break;
case KVM_REG_SIZE_U64:
env->spr[spr] = val.u64;
break;
default:
/* Don't handle this size yet */
abort();
}
}
}
static void kvm_put_one_spr(CPUState *cs, uint64_t id, int spr)
{
PowerPCCPU *cpu = POWERPC_CPU(cs);
CPUPPCState *env = &cpu->env;
union {
uint32_t u32;
uint64_t u64;
} val;
struct kvm_one_reg reg = {
.id = id,
.addr = (uintptr_t) &val,
};
int ret;
switch (id & KVM_REG_SIZE_MASK) {
case KVM_REG_SIZE_U32:
val.u32 = env->spr[spr];
break;
case KVM_REG_SIZE_U64:
val.u64 = env->spr[spr];
break;
default:
/* Don't handle this size yet */
abort();
}
ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
if (ret != 0) {
trace_kvm_failed_spr_set(spr, strerror(errno));
}
}
static int kvm_put_fp(CPUState *cs)
{
PowerPCCPU *cpu = POWERPC_CPU(cs);
CPUPPCState *env = &cpu->env;
struct kvm_one_reg reg;
int i;
int ret;
if (env->insns_flags & PPC_FLOAT) {
uint64_t fpscr = env->fpscr;
bool vsx = !!(env->insns_flags2 & PPC2_VSX);
reg.id = KVM_REG_PPC_FPSCR;
reg.addr = (uintptr_t)&fpscr;
ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
if (ret < 0) {
trace_kvm_failed_fpscr_set(strerror(errno));
return ret;
}
for (i = 0; i < 32; i++) {
uint64_t vsr[2];
uint64_t *fpr = cpu_fpr_ptr(&cpu->env, i);
uint64_t *vsrl = cpu_vsrl_ptr(&cpu->env, i);
#ifdef HOST_WORDS_BIGENDIAN
vsr[0] = float64_val(*fpr);
vsr[1] = *vsrl;
#else
vsr[0] = *vsrl;
vsr[1] = float64_val(*fpr);
#endif
reg.addr = (uintptr_t) &vsr;
reg.id = vsx ? KVM_REG_PPC_VSR(i) : KVM_REG_PPC_FPR(i);
ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
if (ret < 0) {
trace_kvm_failed_fp_set(vsx ? "VSR" : "FPR", i,
strerror(errno));
return ret;
}
}
}
if (env->insns_flags & PPC_ALTIVEC) {
reg.id = KVM_REG_PPC_VSCR;
reg.addr = (uintptr_t)&env->vscr;
ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
if (ret < 0) {
trace_kvm_failed_vscr_set(strerror(errno));
return ret;
}
for (i = 0; i < 32; i++) {
reg.id = KVM_REG_PPC_VR(i);
reg.addr = (uintptr_t)cpu_avr_ptr(env, i);
ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
if (ret < 0) {
trace_kvm_failed_vr_set(i, strerror(errno));
return ret;
}
}
}
return 0;
}
static int kvm_get_fp(CPUState *cs)
{
PowerPCCPU *cpu = POWERPC_CPU(cs);
CPUPPCState *env = &cpu->env;
struct kvm_one_reg reg;
int i;
int ret;
if (env->insns_flags & PPC_FLOAT) {
uint64_t fpscr;
bool vsx = !!(env->insns_flags2 & PPC2_VSX);
reg.id = KVM_REG_PPC_FPSCR;
reg.addr = (uintptr_t)&fpscr;
ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
if (ret < 0) {
trace_kvm_failed_fpscr_get(strerror(errno));
return ret;
} else {
env->fpscr = fpscr;
}
for (i = 0; i < 32; i++) {
uint64_t vsr[2];
uint64_t *fpr = cpu_fpr_ptr(&cpu->env, i);
uint64_t *vsrl = cpu_vsrl_ptr(&cpu->env, i);
reg.addr = (uintptr_t) &vsr;
reg.id = vsx ? KVM_REG_PPC_VSR(i) : KVM_REG_PPC_FPR(i);
ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
if (ret < 0) {
trace_kvm_failed_fp_get(vsx ? "VSR" : "FPR", i,
strerror(errno));
return ret;
} else {
#ifdef HOST_WORDS_BIGENDIAN
*fpr = vsr[0];
if (vsx) {
*vsrl = vsr[1];
}
#else
*fpr = vsr[1];
if (vsx) {
*vsrl = vsr[0];
}
#endif
}
}
}
if (env->insns_flags & PPC_ALTIVEC) {
reg.id = KVM_REG_PPC_VSCR;
reg.addr = (uintptr_t)&env->vscr;
ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
if (ret < 0) {
trace_kvm_failed_vscr_get(strerror(errno));
return ret;
}
for (i = 0; i < 32; i++) {
reg.id = KVM_REG_PPC_VR(i);
reg.addr = (uintptr_t)cpu_avr_ptr(env, i);
ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
if (ret < 0) {
trace_kvm_failed_vr_get(i, strerror(errno));
return ret;
}
}
}
return 0;
}
#if defined(TARGET_PPC64)
static int kvm_get_vpa(CPUState *cs)
{
PowerPCCPU *cpu = POWERPC_CPU(cs);
SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
struct kvm_one_reg reg;
int ret;
reg.id = KVM_REG_PPC_VPA_ADDR;
reg.addr = (uintptr_t)&spapr_cpu->vpa_addr;
ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
if (ret < 0) {
trace_kvm_failed_vpa_addr_get(strerror(errno));
return ret;
}
assert((uintptr_t)&spapr_cpu->slb_shadow_size
== ((uintptr_t)&spapr_cpu->slb_shadow_addr + 8));
reg.id = KVM_REG_PPC_VPA_SLB;
reg.addr = (uintptr_t)&spapr_cpu->slb_shadow_addr;
ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
if (ret < 0) {
trace_kvm_failed_slb_get(strerror(errno));
return ret;
}
assert((uintptr_t)&spapr_cpu->dtl_size
== ((uintptr_t)&spapr_cpu->dtl_addr + 8));
reg.id = KVM_REG_PPC_VPA_DTL;
reg.addr = (uintptr_t)&spapr_cpu->dtl_addr;
ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
if (ret < 0) {
trace_kvm_failed_dtl_get(strerror(errno));
return ret;
}
return 0;
}
static int kvm_put_vpa(CPUState *cs)
{
PowerPCCPU *cpu = POWERPC_CPU(cs);
SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
struct kvm_one_reg reg;
int ret;
/*
* SLB shadow or DTL can't be registered unless a master VPA is
* registered. That means when restoring state, if a VPA *is*
* registered, we need to set that up first. If not, we need to
* deregister the others before deregistering the master VPA
*/
assert(spapr_cpu->vpa_addr
|| !(spapr_cpu->slb_shadow_addr || spapr_cpu->dtl_addr));
if (spapr_cpu->vpa_addr) {
reg.id = KVM_REG_PPC_VPA_ADDR;
reg.addr = (uintptr_t)&spapr_cpu->vpa_addr;
ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
if (ret < 0) {
trace_kvm_failed_vpa_addr_set(strerror(errno));
return ret;
}
}
assert((uintptr_t)&spapr_cpu->slb_shadow_size
== ((uintptr_t)&spapr_cpu->slb_shadow_addr + 8));
reg.id = KVM_REG_PPC_VPA_SLB;
reg.addr = (uintptr_t)&spapr_cpu->slb_shadow_addr;
ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
if (ret < 0) {
trace_kvm_failed_slb_set(strerror(errno));
return ret;
}
assert((uintptr_t)&spapr_cpu->dtl_size
== ((uintptr_t)&spapr_cpu->dtl_addr + 8));
reg.id = KVM_REG_PPC_VPA_DTL;
reg.addr = (uintptr_t)&spapr_cpu->dtl_addr;
ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
if (ret < 0) {
trace_kvm_failed_dtl_set(strerror(errno));
return ret;
}
if (!spapr_cpu->vpa_addr) {
reg.id = KVM_REG_PPC_VPA_ADDR;
reg.addr = (uintptr_t)&spapr_cpu->vpa_addr;
ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
if (ret < 0) {
trace_kvm_failed_null_vpa_addr_set(strerror(errno));
return ret;
}
}
return 0;
}
#endif /* TARGET_PPC64 */
int kvmppc_put_books_sregs(PowerPCCPU *cpu)
{
CPUPPCState *env = &cpu->env;
struct kvm_sregs sregs;
int i;
sregs.pvr = env->spr[SPR_PVR];
if (cpu->vhyp) {
PPCVirtualHypervisorClass *vhc =
PPC_VIRTUAL_HYPERVISOR_GET_CLASS(cpu->vhyp);
sregs.u.s.sdr1 = vhc->encode_hpt_for_kvm_pr(cpu->vhyp);
} else {
sregs.u.s.sdr1 = env->spr[SPR_SDR1];
}
/* Sync SLB */
#ifdef TARGET_PPC64
for (i = 0; i < ARRAY_SIZE(env->slb); i++) {
sregs.u.s.ppc64.slb[i].slbe = env->slb[i].esid;
if (env->slb[i].esid & SLB_ESID_V) {
sregs.u.s.ppc64.slb[i].slbe |= i;
}
sregs.u.s.ppc64.slb[i].slbv = env->slb[i].vsid;
}
#endif
/* Sync SRs */
for (i = 0; i < 16; i++) {
sregs.u.s.ppc32.sr[i] = env->sr[i];
}
/* Sync BATs */
for (i = 0; i < 8; i++) {
/* Beware. We have to swap upper and lower bits here */
sregs.u.s.ppc32.dbat[i] = ((uint64_t)env->DBAT[0][i] << 32)
| env->DBAT[1][i];
sregs.u.s.ppc32.ibat[i] = ((uint64_t)env->IBAT[0][i] << 32)
| env->IBAT[1][i];
}
return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS, &sregs);
}
int kvm_arch_put_registers(CPUState *cs, int level)
{
PowerPCCPU *cpu = POWERPC_CPU(cs);
CPUPPCState *env = &cpu->env;
struct kvm_regs regs;
int ret;
int i;
ret = kvm_vcpu_ioctl(cs, KVM_GET_REGS, &regs);
if (ret < 0) {
return ret;
}
regs.ctr = env->ctr;
regs.lr = env->lr;
regs.xer = cpu_read_xer(env);
regs.msr = env->msr;
regs.pc = env->nip;
regs.srr0 = env->spr[SPR_SRR0];
regs.srr1 = env->spr[SPR_SRR1];
regs.sprg0 = env->spr[SPR_SPRG0];
regs.sprg1 = env->spr[SPR_SPRG1];
regs.sprg2 = env->spr[SPR_SPRG2];
regs.sprg3 = env->spr[SPR_SPRG3];
regs.sprg4 = env->spr[SPR_SPRG4];
regs.sprg5 = env->spr[SPR_SPRG5];
regs.sprg6 = env->spr[SPR_SPRG6];
regs.sprg7 = env->spr[SPR_SPRG7];
regs.pid = env->spr[SPR_BOOKE_PID];
for (i = 0; i < 32; i++) {
regs.gpr[i] = env->gpr[i];
}
regs.cr = 0;
for (i = 0; i < 8; i++) {
regs.cr |= (env->crf[i] & 15) << (4 * (7 - i));
}
ret = kvm_vcpu_ioctl(cs, KVM_SET_REGS, &regs);
if (ret < 0) {
return ret;
}
kvm_put_fp(cs);
if (env->tlb_dirty) {
kvm_sw_tlb_put(cpu);
env->tlb_dirty = false;
}
if (cap_segstate && (level >= KVM_PUT_RESET_STATE)) {
ret = kvmppc_put_books_sregs(cpu);
if (ret < 0) {
return ret;
}
}
if (cap_hior && (level >= KVM_PUT_RESET_STATE)) {
kvm_put_one_spr(cs, KVM_REG_PPC_HIOR, SPR_HIOR);
}
if (cap_one_reg) {
int i;
/*
* We deliberately ignore errors here, for kernels which have
* the ONE_REG calls, but don't support the specific
* registers, there's a reasonable chance things will still
* work, at least until we try to migrate.
*/
for (i = 0; i < 1024; i++) {
uint64_t id = env->spr_cb[i].one_reg_id;
if (id != 0) {
kvm_put_one_spr(cs, id, i);
}
}
#ifdef TARGET_PPC64
if (msr_ts) {
for (i = 0; i < ARRAY_SIZE(env->tm_gpr); i++) {
kvm_set_one_reg(cs, KVM_REG_PPC_TM_GPR(i), &env->tm_gpr[i]);
}
for (i = 0; i < ARRAY_SIZE(env->tm_vsr); i++) {
kvm_set_one_reg(cs, KVM_REG_PPC_TM_VSR(i), &env->tm_vsr[i]);
}
kvm_set_one_reg(cs, KVM_REG_PPC_TM_CR, &env->tm_cr);
kvm_set_one_reg(cs, KVM_REG_PPC_TM_LR, &env->tm_lr);
kvm_set_one_reg(cs, KVM_REG_PPC_TM_CTR, &env->tm_ctr);
kvm_set_one_reg(cs, KVM_REG_PPC_TM_FPSCR, &env->tm_fpscr);
kvm_set_one_reg(cs, KVM_REG_PPC_TM_AMR, &env->tm_amr);
kvm_set_one_reg(cs, KVM_REG_PPC_TM_PPR, &env->tm_ppr);
kvm_set_one_reg(cs, KVM_REG_PPC_TM_VRSAVE, &env->tm_vrsave);
kvm_set_one_reg(cs, KVM_REG_PPC_TM_VSCR, &env->tm_vscr);
kvm_set_one_reg(cs, KVM_REG_PPC_TM_DSCR, &env->tm_dscr);
kvm_set_one_reg(cs, KVM_REG_PPC_TM_TAR, &env->tm_tar);
}
if (cap_papr) {
if (kvm_put_vpa(cs) < 0) {
trace_kvm_failed_put_vpa();
}
}
kvm_set_one_reg(cs, KVM_REG_PPC_TB_OFFSET, &env->tb_env->tb_offset);
if (level > KVM_PUT_RUNTIME_STATE) {
kvm_put_one_spr(cs, KVM_REG_PPC_DPDES, SPR_DPDES);
}
#endif /* TARGET_PPC64 */
}
return ret;
}
static void kvm_sync_excp(CPUPPCState *env, int vector, int ivor)
{
env->excp_vectors[vector] = env->spr[ivor] + env->spr[SPR_BOOKE_IVPR];
}
static int kvmppc_get_booke_sregs(PowerPCCPU *cpu)
{
CPUPPCState *env = &cpu->env;
struct kvm_sregs sregs;
int ret;
ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs);
if (ret < 0) {
return ret;
}
if (sregs.u.e.features & KVM_SREGS_E_BASE) {
env->spr[SPR_BOOKE_CSRR0] = sregs.u.e.csrr0;
env->spr[SPR_BOOKE_CSRR1] = sregs.u.e.csrr1;
env->spr[SPR_BOOKE_ESR] = sregs.u.e.esr;
env->spr[SPR_BOOKE_DEAR] = sregs.u.e.dear;
env->spr[SPR_BOOKE_MCSR] = sregs.u.e.mcsr;
env->spr[SPR_BOOKE_TSR] = sregs.u.e.tsr;
env->spr[SPR_BOOKE_TCR] = sregs.u.e.tcr;
env->spr[SPR_DECR] = sregs.u.e.dec;
env->spr[SPR_TBL] = sregs.u.e.tb & 0xffffffff;
env->spr[SPR_TBU] = sregs.u.e.tb >> 32;
env->spr[SPR_VRSAVE] = sregs.u.e.vrsave;
}
if (sregs.u.e.features & KVM_SREGS_E_ARCH206) {
env->spr[SPR_BOOKE_PIR] = sregs.u.e.pir;
env->spr[SPR_BOOKE_MCSRR0] = sregs.u.e.mcsrr0;
env->spr[SPR_BOOKE_MCSRR1] = sregs.u.e.mcsrr1;
env->spr[SPR_BOOKE_DECAR] = sregs.u.e.decar;
env->spr[SPR_BOOKE_IVPR] = sregs.u.e.ivpr;
}
if (sregs.u.e.features & KVM_SREGS_E_64) {
env->spr[SPR_BOOKE_EPCR] = sregs.u.e.epcr;
}
if (sregs.u.e.features & KVM_SREGS_E_SPRG8) {
env->spr[SPR_BOOKE_SPRG8] = sregs.u.e.sprg8;
}
if (sregs.u.e.features & KVM_SREGS_E_IVOR) {
env->spr[SPR_BOOKE_IVOR0] = sregs.u.e.ivor_low[0];
kvm_sync_excp(env, POWERPC_EXCP_CRITICAL, SPR_BOOKE_IVOR0);
env->spr[SPR_BOOKE_IVOR1] = sregs.u.e.ivor_low[1];
kvm_sync_excp(env, POWERPC_EXCP_MCHECK, SPR_BOOKE_IVOR1);
env->spr[SPR_BOOKE_IVOR2] = sregs.u.e.ivor_low[2];
kvm_sync_excp(env, POWERPC_EXCP_DSI, SPR_BOOKE_IVOR2);
env->spr[SPR_BOOKE_IVOR3] = sregs.u.e.ivor_low[3];
kvm_sync_excp(env, POWERPC_EXCP_ISI, SPR_BOOKE_IVOR3);
env->spr[SPR_BOOKE_IVOR4] = sregs.u.e.ivor_low[4];
kvm_sync_excp(env, POWERPC_EXCP_EXTERNAL, SPR_BOOKE_IVOR4);
env->spr[SPR_BOOKE_IVOR5] = sregs.u.e.ivor_low[5];
kvm_sync_excp(env, POWERPC_EXCP_ALIGN, SPR_BOOKE_IVOR5);
env->spr[SPR_BOOKE_IVOR6] = sregs.u.e.ivor_low[6];
kvm_sync_excp(env, POWERPC_EXCP_PROGRAM, SPR_BOOKE_IVOR6);
env->spr[SPR_BOOKE_IVOR7] = sregs.u.e.ivor_low[7];
kvm_sync_excp(env, POWERPC_EXCP_FPU, SPR_BOOKE_IVOR7);
env->spr[SPR_BOOKE_IVOR8] = sregs.u.e.ivor_low[8];
kvm_sync_excp(env, POWERPC_EXCP_SYSCALL, SPR_BOOKE_IVOR8);
env->spr[SPR_BOOKE_IVOR9] = sregs.u.e.ivor_low[9];
kvm_sync_excp(env, POWERPC_EXCP_APU, SPR_BOOKE_IVOR9);
env->spr[SPR_BOOKE_IVOR10] = sregs.u.e.ivor_low[10];
kvm_sync_excp(env, POWERPC_EXCP_DECR, SPR_BOOKE_IVOR10);
env->spr[SPR_BOOKE_IVOR11] = sregs.u.e.ivor_low[11];
kvm_sync_excp(env, POWERPC_EXCP_FIT, SPR_BOOKE_IVOR11);
env->spr[SPR_BOOKE_IVOR12] = sregs.u.e.ivor_low[12];
kvm_sync_excp(env, POWERPC_EXCP_WDT, SPR_BOOKE_IVOR12);
env->spr[SPR_BOOKE_IVOR13] = sregs.u.e.ivor_low[13];
kvm_sync_excp(env, POWERPC_EXCP_DTLB, SPR_BOOKE_IVOR13);
env->spr[SPR_BOOKE_IVOR14] = sregs.u.e.ivor_low[14];
kvm_sync_excp(env, POWERPC_EXCP_ITLB, SPR_BOOKE_IVOR14);
env->spr[SPR_BOOKE_IVOR15] = sregs.u.e.ivor_low[15];
kvm_sync_excp(env, POWERPC_EXCP_DEBUG, SPR_BOOKE_IVOR15);
if (sregs.u.e.features & KVM_SREGS_E_SPE) {
env->spr[SPR_BOOKE_IVOR32] = sregs.u.e.ivor_high[0];
kvm_sync_excp(env, POWERPC_EXCP_SPEU, SPR_BOOKE_IVOR32);
env->spr[SPR_BOOKE_IVOR33] = sregs.u.e.ivor_high[1];
kvm_sync_excp(env, POWERPC_EXCP_EFPDI, SPR_BOOKE_IVOR33);
env->spr[SPR_BOOKE_IVOR34] = sregs.u.e.ivor_high[2];
kvm_sync_excp(env, POWERPC_EXCP_EFPRI, SPR_BOOKE_IVOR34);
}
if (sregs.u.e.features & KVM_SREGS_E_PM) {
env->spr[SPR_BOOKE_IVOR35] = sregs.u.e.ivor_high[3];
kvm_sync_excp(env, POWERPC_EXCP_EPERFM, SPR_BOOKE_IVOR35);
}
if (sregs.u.e.features & KVM_SREGS_E_PC) {
env->spr[SPR_BOOKE_IVOR36] = sregs.u.e.ivor_high[4];
kvm_sync_excp(env, POWERPC_EXCP_DOORI, SPR_BOOKE_IVOR36);
env->spr[SPR_BOOKE_IVOR37] = sregs.u.e.ivor_high[5];
kvm_sync_excp(env, POWERPC_EXCP_DOORCI, SPR_BOOKE_IVOR37);
}
}
if (sregs.u.e.features & KVM_SREGS_E_ARCH206_MMU) {
env->spr[SPR_BOOKE_MAS0] = sregs.u.e.mas0;
env->spr[SPR_BOOKE_MAS1] = sregs.u.e.mas1;
env->spr[SPR_BOOKE_MAS2] = sregs.u.e.mas2;
env->spr[SPR_BOOKE_MAS3] = sregs.u.e.mas7_3 & 0xffffffff;
env->spr[SPR_BOOKE_MAS4] = sregs.u.e.mas4;
env->spr[SPR_BOOKE_MAS6] = sregs.u.e.mas6;
env->spr[SPR_BOOKE_MAS7] = sregs.u.e.mas7_3 >> 32;
env->spr[SPR_MMUCFG] = sregs.u.e.mmucfg;
env->spr[SPR_BOOKE_TLB0CFG] = sregs.u.e.tlbcfg[0];
env->spr[SPR_BOOKE_TLB1CFG] = sregs.u.e.tlbcfg[1];
}
if (sregs.u.e.features & KVM_SREGS_EXP) {
env->spr[SPR_BOOKE_EPR] = sregs.u.e.epr;
}
if (sregs.u.e.features & KVM_SREGS_E_PD) {
env->spr[SPR_BOOKE_EPLC] = sregs.u.e.eplc;
env->spr[SPR_BOOKE_EPSC] = sregs.u.e.epsc;
}
if (sregs.u.e.impl_id == KVM_SREGS_E_IMPL_FSL) {
env->spr[SPR_E500_SVR] = sregs.u.e.impl.fsl.svr;
env->spr[SPR_Exxx_MCAR] = sregs.u.e.impl.fsl.mcar;
env->spr[SPR_HID0] = sregs.u.e.impl.fsl.hid0;
if (sregs.u.e.impl.fsl.features & KVM_SREGS_E_FSL_PIDn) {
env->spr[SPR_BOOKE_PID1] = sregs.u.e.impl.fsl.pid1;
env->spr[SPR_BOOKE_PID2] = sregs.u.e.impl.fsl.pid2;
}
}
return 0;
}
static int kvmppc_get_books_sregs(PowerPCCPU *cpu)
{
CPUPPCState *env = &cpu->env;
struct kvm_sregs sregs;
int ret;
int i;
ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs);
if (ret < 0) {
return ret;
}
if (!cpu->vhyp) {
ppc_store_sdr1(env, sregs.u.s.sdr1);
}
/* Sync SLB */
#ifdef TARGET_PPC64
/*
* The packed SLB array we get from KVM_GET_SREGS only contains
* information about valid entries. So we flush our internal copy
* to get rid of stale ones, then put all valid SLB entries back
* in.
*/
memset(env->slb, 0, sizeof(env->slb));
for (i = 0; i < ARRAY_SIZE(env->slb); i++) {
target_ulong rb = sregs.u.s.ppc64.slb[i].slbe;
target_ulong rs = sregs.u.s.ppc64.slb[i].slbv;
/*
* Only restore valid entries
*/
if (rb & SLB_ESID_V) {
ppc_store_slb(cpu, rb & 0xfff, rb & ~0xfffULL, rs);
}
}
#endif
/* Sync SRs */
for (i = 0; i < 16; i++) {
env->sr[i] = sregs.u.s.ppc32.sr[i];
}
/* Sync BATs */
for (i = 0; i < 8; i++) {
env->DBAT[0][i] = sregs.u.s.ppc32.dbat[i] & 0xffffffff;
env->DBAT[1][i] = sregs.u.s.ppc32.dbat[i] >> 32;
env->IBAT[0][i] = sregs.u.s.ppc32.ibat[i] & 0xffffffff;
env->IBAT[1][i] = sregs.u.s.ppc32.ibat[i] >> 32;
}
return 0;
}
int kvm_arch_get_registers(CPUState *cs)
{
PowerPCCPU *cpu = POWERPC_CPU(cs);
CPUPPCState *env = &cpu->env;
struct kvm_regs regs;
uint32_t cr;
int i, ret;
ret = kvm_vcpu_ioctl(cs, KVM_GET_REGS, &regs);
if (ret < 0) {
return ret;
}
cr = regs.cr;
for (i = 7; i >= 0; i--) {
env->crf[i] = cr & 15;
cr >>= 4;
}
env->ctr = regs.ctr;
env->lr = regs.lr;
cpu_write_xer(env, regs.xer);
env->msr = regs.msr;
env->nip = regs.pc;
env->spr[SPR_SRR0] = regs.srr0;
env->spr[SPR_SRR1] = regs.srr1;
env->spr[SPR_SPRG0] = regs.sprg0;
env->spr[SPR_SPRG1] = regs.sprg1;
env->spr[SPR_SPRG2] = regs.sprg2;
env->spr[SPR_SPRG3] = regs.sprg3;
env->spr[SPR_SPRG4] = regs.sprg4;
env->spr[SPR_SPRG5] = regs.sprg5;
env->spr[SPR_SPRG6] = regs.sprg6;
env->spr[SPR_SPRG7] = regs.sprg7;
env->spr[SPR_BOOKE_PID] = regs.pid;
for (i = 0; i < 32; i++) {
env->gpr[i] = regs.gpr[i];
}
kvm_get_fp(cs);
if (cap_booke_sregs) {
ret = kvmppc_get_booke_sregs(cpu);
if (ret < 0) {
return ret;
}
}
if (cap_segstate) {
ret = kvmppc_get_books_sregs(cpu);
if (ret < 0) {
return ret;
}
}
if (cap_hior) {
kvm_get_one_spr(cs, KVM_REG_PPC_HIOR, SPR_HIOR);
}
if (cap_one_reg) {
int i;
/*
* We deliberately ignore errors here, for kernels which have
* the ONE_REG calls, but don't support the specific
* registers, there's a reasonable chance things will still
* work, at least until we try to migrate.
*/
for (i = 0; i < 1024; i++) {
uint64_t id = env->spr_cb[i].one_reg_id;
if (id != 0) {
kvm_get_one_spr(cs, id, i);
}
}
#ifdef TARGET_PPC64
if (msr_ts) {
for (i = 0; i < ARRAY_SIZE(env->tm_gpr); i++) {
kvm_get_one_reg(cs, KVM_REG_PPC_TM_GPR(i), &env->tm_gpr[i]);
}
for (i = 0; i < ARRAY_SIZE(env->tm_vsr); i++) {
kvm_get_one_reg(cs, KVM_REG_PPC_TM_VSR(i), &env->tm_vsr[i]);
}
kvm_get_one_reg(cs, KVM_REG_PPC_TM_CR, &env->tm_cr);
kvm_get_one_reg(cs, KVM_REG_PPC_TM_LR, &env->tm_lr);
kvm_get_one_reg(cs, KVM_REG_PPC_TM_CTR, &env->tm_ctr);
kvm_get_one_reg(cs, KVM_REG_PPC_TM_FPSCR, &env->tm_fpscr);
kvm_get_one_reg(cs, KVM_REG_PPC_TM_AMR, &env->tm_amr);
kvm_get_one_reg(cs, KVM_REG_PPC_TM_PPR, &env->tm_ppr);
kvm_get_one_reg(cs, KVM_REG_PPC_TM_VRSAVE, &env->tm_vrsave);
kvm_get_one_reg(cs, KVM_REG_PPC_TM_VSCR, &env->tm_vscr);
kvm_get_one_reg(cs, KVM_REG_PPC_TM_DSCR, &env->tm_dscr);
kvm_get_one_reg(cs, KVM_REG_PPC_TM_TAR, &env->tm_tar);
}
if (cap_papr) {
if (kvm_get_vpa(cs) < 0) {
trace_kvm_failed_get_vpa();
}
}
kvm_get_one_reg(cs, KVM_REG_PPC_TB_OFFSET, &env->tb_env->tb_offset);
kvm_get_one_spr(cs, KVM_REG_PPC_DPDES, SPR_DPDES);
#endif
}
return 0;
}
int kvmppc_set_interrupt(PowerPCCPU *cpu, int irq, int level)
{
unsigned virq = level ? KVM_INTERRUPT_SET_LEVEL : KVM_INTERRUPT_UNSET;
if (irq != PPC_INTERRUPT_EXT) {
return 0;
}
if (!kvm_enabled() || !cap_interrupt_unset) {
return 0;
}
kvm_vcpu_ioctl(CPU(cpu), KVM_INTERRUPT, &virq);
return 0;
}
#if defined(TARGET_PPC64)
#define PPC_INPUT_INT PPC970_INPUT_INT
#else
#define PPC_INPUT_INT PPC6xx_INPUT_INT
#endif
void kvm_arch_pre_run(CPUState *cs, struct kvm_run *run)
{
return;
}
MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run)
{
return MEMTXATTRS_UNSPECIFIED;
}
int kvm_arch_process_async_events(CPUState *cs)
{
return cs->halted;
}
static int kvmppc_handle_halt(PowerPCCPU *cpu)
{
CPUState *cs = CPU(cpu);
CPUPPCState *env = &cpu->env;
if (!(cs->interrupt_request & CPU_INTERRUPT_HARD) && (msr_ee)) {
cs->halted = 1;
cs->exception_index = EXCP_HLT;
}
return 0;
}
/* map dcr access to existing qemu dcr emulation */
static int kvmppc_handle_dcr_read(CPUPPCState *env,
uint32_t dcrn, uint32_t *data)
{
if (ppc_dcr_read(env->dcr_env, dcrn, data) < 0) {
fprintf(stderr, "Read to unhandled DCR (0x%x)\n", dcrn);
}
return 0;
}
static int kvmppc_handle_dcr_write(CPUPPCState *env,
uint32_t dcrn, uint32_t data)
{
if (ppc_dcr_write(env->dcr_env, dcrn, data) < 0) {
fprintf(stderr, "Write to unhandled DCR (0x%x)\n", dcrn);
}
return 0;
}
int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
{
/* Mixed endian case is not handled */
uint32_t sc = debug_inst_opcode;
if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn,
sizeof(sc), 0) ||
cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&sc, sizeof(sc), 1)) {
return -EINVAL;
}
return 0;
}
int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
{
uint32_t sc;
if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&sc, sizeof(sc), 0) ||
sc != debug_inst_opcode ||
cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn,
sizeof(sc), 1)) {
return -EINVAL;
}
return 0;
}
static int find_hw_breakpoint(target_ulong addr, int type)
{
int n;
assert((nb_hw_breakpoint + nb_hw_watchpoint)
<= ARRAY_SIZE(hw_debug_points));
for (n = 0; n < nb_hw_breakpoint + nb_hw_watchpoint; n++) {
if (hw_debug_points[n].addr == addr &&
hw_debug_points[n].type == type) {
return n;
}
}
return -1;
}
static int find_hw_watchpoint(target_ulong addr, int *flag)
{
int n;
n = find_hw_breakpoint(addr, GDB_WATCHPOINT_ACCESS);
if (n >= 0) {
*flag = BP_MEM_ACCESS;
return n;
}
n = find_hw_breakpoint(addr, GDB_WATCHPOINT_WRITE);
if (n >= 0) {
*flag = BP_MEM_WRITE;
return n;
}
n = find_hw_breakpoint(addr, GDB_WATCHPOINT_READ);
if (n >= 0) {
*flag = BP_MEM_READ;
return n;
}
return -1;
}
int kvm_arch_insert_hw_breakpoint(target_ulong addr,
target_ulong len, int type)
{
if ((nb_hw_breakpoint + nb_hw_watchpoint) >= ARRAY_SIZE(hw_debug_points)) {
return -ENOBUFS;
}
hw_debug_points[nb_hw_breakpoint + nb_hw_watchpoint].addr = addr;
hw_debug_points[nb_hw_breakpoint + nb_hw_watchpoint].type = type;
switch (type) {
case GDB_BREAKPOINT_HW:
if (nb_hw_breakpoint >= max_hw_breakpoint) {
return -ENOBUFS;
}
if (find_hw_breakpoint(addr, type) >= 0) {
return -EEXIST;
}
nb_hw_breakpoint++;
break;
case GDB_WATCHPOINT_WRITE:
case GDB_WATCHPOINT_READ:
case GDB_WATCHPOINT_ACCESS:
if (nb_hw_watchpoint >= max_hw_watchpoint) {
return -ENOBUFS;
}
if (find_hw_breakpoint(addr, type) >= 0) {
return -EEXIST;
}
nb_hw_watchpoint++;
break;
default:
return -ENOSYS;
}
return 0;
}
int kvm_arch_remove_hw_breakpoint(target_ulong addr,
target_ulong len, int type)
{
int n;
n = find_hw_breakpoint(addr, type);
if (n < 0) {
return -ENOENT;
}
switch (type) {
case GDB_BREAKPOINT_HW:
nb_hw_breakpoint--;
break;
case GDB_WATCHPOINT_WRITE:
case GDB_WATCHPOINT_READ:
case GDB_WATCHPOINT_ACCESS:
nb_hw_watchpoint--;
break;
default:
return -ENOSYS;
}
hw_debug_points[n] = hw_debug_points[nb_hw_breakpoint + nb_hw_watchpoint];
return 0;
}
void kvm_arch_remove_all_hw_breakpoints(void)
{
nb_hw_breakpoint = nb_hw_watchpoint = 0;
}
void kvm_arch_update_guest_debug(CPUState *cs, struct kvm_guest_debug *dbg)
{
int n;
/* Software Breakpoint updates */
if (kvm_sw_breakpoints_active(cs)) {
dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
}
assert((nb_hw_breakpoint + nb_hw_watchpoint)
<= ARRAY_SIZE(hw_debug_points));
assert((nb_hw_breakpoint + nb_hw_watchpoint) <= ARRAY_SIZE(dbg->arch.bp));
if (nb_hw_breakpoint + nb_hw_watchpoint > 0) {
dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
memset(dbg->arch.bp, 0, sizeof(dbg->arch.bp));
for (n = 0; n < nb_hw_breakpoint + nb_hw_watchpoint; n++) {
switch (hw_debug_points[n].type) {
case GDB_BREAKPOINT_HW:
dbg->arch.bp[n].type = KVMPPC_DEBUG_BREAKPOINT;
break;
case GDB_WATCHPOINT_WRITE:
dbg->arch.bp[n].type = KVMPPC_DEBUG_WATCH_WRITE;
break;
case GDB_WATCHPOINT_READ:
dbg->arch.bp[n].type = KVMPPC_DEBUG_WATCH_READ;
break;
case GDB_WATCHPOINT_ACCESS:
dbg->arch.bp[n].type = KVMPPC_DEBUG_WATCH_WRITE |
KVMPPC_DEBUG_WATCH_READ;
break;
default:
cpu_abort(cs, "Unsupported breakpoint type\n");
}
dbg->arch.bp[n].addr = hw_debug_points[n].addr;
}
}
}
static int kvm_handle_hw_breakpoint(CPUState *cs,
struct kvm_debug_exit_arch *arch_info)
{
int handle = 0;
int n;
int flag = 0;
if (nb_hw_breakpoint + nb_hw_watchpoint > 0) {
if (arch_info->status & KVMPPC_DEBUG_BREAKPOINT) {
n = find_hw_breakpoint(arch_info->address, GDB_BREAKPOINT_HW);
if (n >= 0) {
handle = 1;
}
} else if (arch_info->status & (KVMPPC_DEBUG_WATCH_READ |
KVMPPC_DEBUG_WATCH_WRITE)) {
n = find_hw_watchpoint(arch_info->address, &flag);
if (n >= 0) {
handle = 1;
cs->watchpoint_hit = &hw_watchpoint;
hw_watchpoint.vaddr = hw_debug_points[n].addr;
hw_watchpoint.flags = flag;
}
}
}
return handle;
}
static int kvm_handle_singlestep(void)
{
return 1;
}
static int kvm_handle_sw_breakpoint(void)
{
return 1;
}
static int kvm_handle_debug(PowerPCCPU *cpu, struct kvm_run *run)
{
CPUState *cs = CPU(cpu);
CPUPPCState *env = &cpu->env;
struct kvm_debug_exit_arch *arch_info = &run->debug.arch;
if (cs->singlestep_enabled) {
return kvm_handle_singlestep();
}
if (arch_info->status) {
return kvm_handle_hw_breakpoint(cs, arch_info);
}
if (kvm_find_sw_breakpoint(cs, arch_info->address)) {
return kvm_handle_sw_breakpoint();
}
/*
* QEMU is not able to handle debug exception, so inject
* program exception to guest;
* Yes program exception NOT debug exception !!
* When QEMU is using debug resources then debug exception must
* be always set. To achieve this we set MSR_DE and also set
* MSRP_DEP so guest cannot change MSR_DE.
* When emulating debug resource for guest we want guest
* to control MSR_DE (enable/disable debug interrupt on need).
* Supporting both configurations are NOT possible.
* So the result is that we cannot share debug resources
* between QEMU and Guest on BOOKE architecture.
* In the current design QEMU gets the priority over guest,
* this means that if QEMU is using debug resources then guest
* cannot use them;
* For software breakpoint QEMU uses a privileged instruction;
* So there cannot be any reason that we are here for guest
* set debug exception, only possibility is guest executed a
* privileged / illegal instruction and that's why we are
* injecting a program interrupt.
*/
cpu_synchronize_state(cs);
/*
* env->nip is PC, so increment this by 4 to use
* ppc_cpu_do_interrupt(), which set srr0 = env->nip - 4.
*/
env->nip += 4;
cs->exception_index = POWERPC_EXCP_PROGRAM;
env->error_code = POWERPC_EXCP_INVAL;
ppc_cpu_do_interrupt(cs);
return 0;
}
int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
{
PowerPCCPU *cpu = POWERPC_CPU(cs);
CPUPPCState *env = &cpu->env;
int ret;
qemu_mutex_lock_iothread();
switch (run->exit_reason) {
case KVM_EXIT_DCR:
if (run->dcr.is_write) {
trace_kvm_handle_dcr_write();
ret = kvmppc_handle_dcr_write(env, run->dcr.dcrn, run->dcr.data);
} else {
trace_kvm_handle_dcr_read();
ret = kvmppc_handle_dcr_read(env, run->dcr.dcrn, &run->dcr.data);
}
break;
case KVM_EXIT_HLT:
trace_kvm_handle_halt();
ret = kvmppc_handle_halt(cpu);
break;
#if defined(TARGET_PPC64)
case KVM_EXIT_PAPR_HCALL:
trace_kvm_handle_papr_hcall();
run->papr_hcall.ret = spapr_hypercall(cpu,
run->papr_hcall.nr,
run->papr_hcall.args);
ret = 0;
break;
#endif
case KVM_EXIT_EPR:
trace_kvm_handle_epr();
run->epr.epr = ldl_phys(cs->as, env->mpic_iack);
ret = 0;
break;
case KVM_EXIT_WATCHDOG:
trace_kvm_handle_watchdog_expiry();
watchdog_perform_action();
ret = 0;
break;
case KVM_EXIT_DEBUG:
trace_kvm_handle_debug_exception();
if (kvm_handle_debug(cpu, run)) {
ret = EXCP_DEBUG;
break;
}
/* re-enter, this exception was guest-internal */
ret = 0;
break;
default:
fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
ret = -1;
break;
}
qemu_mutex_unlock_iothread();
return ret;
}
int kvmppc_or_tsr_bits(PowerPCCPU *cpu, uint32_t tsr_bits)
{
CPUState *cs = CPU(cpu);
uint32_t bits = tsr_bits;
struct kvm_one_reg reg = {
.id = KVM_REG_PPC_OR_TSR,
.addr = (uintptr_t) &bits,
};
return kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
}
int kvmppc_clear_tsr_bits(PowerPCCPU *cpu, uint32_t tsr_bits)
{
CPUState *cs = CPU(cpu);
uint32_t bits = tsr_bits;
struct kvm_one_reg reg = {
.id = KVM_REG_PPC_CLEAR_TSR,
.addr = (uintptr_t) &bits,
};
return kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
}
int kvmppc_set_tcr(PowerPCCPU *cpu)
{
CPUState *cs = CPU(cpu);
CPUPPCState *env = &cpu->env;
uint32_t tcr = env->spr[SPR_BOOKE_TCR];
struct kvm_one_reg reg = {
.id = KVM_REG_PPC_TCR,
.addr = (uintptr_t) &tcr,
};
return kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
}
int kvmppc_booke_watchdog_enable(PowerPCCPU *cpu)
{
CPUState *cs = CPU(cpu);
int ret;
if (!kvm_enabled()) {
return -1;
}
if (!cap_ppc_watchdog) {
printf("warning: KVM does not support watchdog");
return -1;
}
ret = kvm_vcpu_enable_cap(cs, KVM_CAP_PPC_BOOKE_WATCHDOG, 0);
if (ret < 0) {
fprintf(stderr, "%s: couldn't enable KVM_CAP_PPC_BOOKE_WATCHDOG: %s\n",
__func__, strerror(-ret));
return ret;
}
return ret;
}
static int read_cpuinfo(const char *field, char *value, int len)
{
FILE *f;
int ret = -1;
int field_len = strlen(field);
char line[512];
f = fopen("/proc/cpuinfo", "r");
if (!f) {
return -1;
}
do {
if (!fgets(line, sizeof(line), f)) {
break;
}
if (!strncmp(line, field, field_len)) {
pstrcpy(value, len, line);
ret = 0;
break;
}
} while (*line);
fclose(f);
return ret;
}
uint32_t kvmppc_get_tbfreq(void)
{
char line[512];
char *ns;
uint32_t retval = NANOSECONDS_PER_SECOND;
if (read_cpuinfo("timebase", line, sizeof(line))) {
return retval;
}
ns = strchr(line, ':');
if (!ns) {
return retval;
}
ns++;
return atoi(ns);
}
bool kvmppc_get_host_serial(char **value)
{
return g_file_get_contents("/proc/device-tree/system-id", value, NULL,
NULL);
}
bool kvmppc_get_host_model(char **value)
{
return g_file_get_contents("/proc/device-tree/model", value, NULL, NULL);
}
/* Try to find a device tree node for a CPU with clock-frequency property */
static int kvmppc_find_cpu_dt(char *buf, int buf_len)
{
struct dirent *dirp;
DIR *dp;
dp = opendir(PROC_DEVTREE_CPU);
if (!dp) {
printf("Can't open directory " PROC_DEVTREE_CPU "\n");
return -1;
}
buf[0] = '\0';
while ((dirp = readdir(dp)) != NULL) {
FILE *f;
snprintf(buf, buf_len, "%s%s/clock-frequency", PROC_DEVTREE_CPU,
dirp->d_name);
f = fopen(buf, "r");
if (f) {
snprintf(buf, buf_len, "%s%s", PROC_DEVTREE_CPU, dirp->d_name);
fclose(f);
break;
}
buf[0] = '\0';
}
closedir(dp);
if (buf[0] == '\0') {
printf("Unknown host!\n");
return -1;
}
return 0;
}
static uint64_t kvmppc_read_int_dt(const char *filename)
{
union {
uint32_t v32;
uint64_t v64;
} u;
FILE *f;
int len;
f = fopen(filename, "rb");
if (!f) {
return -1;
}
len = fread(&u, 1, sizeof(u), f);
fclose(f);
switch (len) {
case 4:
/* property is a 32-bit quantity */
return be32_to_cpu(u.v32);
case 8:
return be64_to_cpu(u.v64);
}
return 0;
}
/*
* Read a CPU node property from the host device tree that's a single
* integer (32-bit or 64-bit). Returns 0 if anything goes wrong
* (can't find or open the property, or doesn't understand the format)
*/
static uint64_t kvmppc_read_int_cpu_dt(const char *propname)
{
char buf[PATH_MAX], *tmp;
uint64_t val;
if (kvmppc_find_cpu_dt(buf, sizeof(buf))) {
return -1;
}
tmp = g_strdup_printf("%s/%s", buf, propname);
val = kvmppc_read_int_dt(tmp);
g_free(tmp);
return val;
}
uint64_t kvmppc_get_clockfreq(void)
{
return kvmppc_read_int_cpu_dt("clock-frequency");
}
static int kvmppc_get_dec_bits(void)
{
int nr_bits = kvmppc_read_int_cpu_dt("ibm,dec-bits");
if (nr_bits > 0) {
return nr_bits;
}
return 0;
}
static int kvmppc_get_pvinfo(CPUPPCState *env, struct kvm_ppc_pvinfo *pvinfo)
{
CPUState *cs = env_cpu(env);
if (kvm_vm_check_extension(cs->kvm_state, KVM_CAP_PPC_GET_PVINFO) &&
!kvm_vm_ioctl(cs->kvm_state, KVM_PPC_GET_PVINFO, pvinfo)) {
return 0;
}
return 1;
}
int kvmppc_get_hasidle(CPUPPCState *env)
{
struct kvm_ppc_pvinfo pvinfo;
if (!kvmppc_get_pvinfo(env, &pvinfo) &&
(pvinfo.flags & KVM_PPC_PVINFO_FLAGS_EV_IDLE)) {
return 1;
}
return 0;
}
int kvmppc_get_hypercall(CPUPPCState *env, uint8_t *buf, int buf_len)
{
uint32_t *hc = (uint32_t *)buf;
struct kvm_ppc_pvinfo pvinfo;
if (!kvmppc_get_pvinfo(env, &pvinfo)) {
memcpy(buf, pvinfo.hcall, buf_len);
return 0;
}
/*
* Fallback to always fail hypercalls regardless of endianness:
*
* tdi 0,r0,72 (becomes b .+8 in wrong endian, nop in good endian)
* li r3, -1
* b .+8 (becomes nop in wrong endian)
* bswap32(li r3, -1)
*/
hc[0] = cpu_to_be32(0x08000048);
hc[1] = cpu_to_be32(0x3860ffff);
hc[2] = cpu_to_be32(0x48000008);
hc[3] = cpu_to_be32(bswap32(0x3860ffff));
return 1;
}
static inline int kvmppc_enable_hcall(KVMState *s, target_ulong hcall)
{
return kvm_vm_enable_cap(s, KVM_CAP_PPC_ENABLE_HCALL, 0, hcall, 1);
}
void kvmppc_enable_logical_ci_hcalls(void)
{
/*
* FIXME: it would be nice if we could detect the cases where
* we're using a device which requires the in kernel
* implementation of these hcalls, but the kernel lacks them and
* produce a warning.
*/
kvmppc_enable_hcall(kvm_state, H_LOGICAL_CI_LOAD);
kvmppc_enable_hcall(kvm_state, H_LOGICAL_CI_STORE);
}
void kvmppc_enable_set_mode_hcall(void)
{
kvmppc_enable_hcall(kvm_state, H_SET_MODE);
}
void kvmppc_enable_clear_ref_mod_hcalls(void)
{
kvmppc_enable_hcall(kvm_state, H_CLEAR_REF);
kvmppc_enable_hcall(kvm_state, H_CLEAR_MOD);
}
void kvmppc_enable_h_page_init(void)
{
kvmppc_enable_hcall(kvm_state, H_PAGE_INIT);
}
void kvmppc_set_papr(PowerPCCPU *cpu)
{
CPUState *cs = CPU(cpu);
int ret;
if (!kvm_enabled()) {
return;
}
ret = kvm_vcpu_enable_cap(cs, KVM_CAP_PPC_PAPR, 0);
if (ret) {
error_report("This vCPU type or KVM version does not support PAPR");
exit(1);
}
/*
* Update the capability flag so we sync the right information
* with kvm
*/
cap_papr = 1;
}
int kvmppc_set_compat(PowerPCCPU *cpu, uint32_t compat_pvr)
{
return kvm_set_one_reg(CPU(cpu), KVM_REG_PPC_ARCH_COMPAT, &compat_pvr);
}
void kvmppc_set_mpic_proxy(PowerPCCPU *cpu, int mpic_proxy)
{
CPUState *cs = CPU(cpu);
int ret;
ret = kvm_vcpu_enable_cap(cs, KVM_CAP_PPC_EPR, 0, mpic_proxy);
if (ret && mpic_proxy) {
error_report("This KVM version does not support EPR");
exit(1);
}
}
int kvmppc_smt_threads(void)
{
return cap_ppc_smt ? cap_ppc_smt : 1;
}
int kvmppc_set_smt_threads(int smt)
{
int ret;
ret = kvm_vm_enable_cap(kvm_state, KVM_CAP_PPC_SMT, 0, smt, 0);
if (!ret) {
cap_ppc_smt = smt;
}
return ret;
}
void kvmppc_error_append_smt_possible_hint(Error **errp_in)
{
int i;
GString *g;
char *s;
assert(kvm_enabled());
if (cap_ppc_smt_possible) {
g = g_string_new("Available VSMT modes:");
for (i = 63; i >= 0; i--) {
if ((1UL << i) & cap_ppc_smt_possible) {
g_string_append_printf(g, " %lu", (1UL << i));
}
}
s = g_string_free(g, false);
error_append_hint(errp_in, "%s.\n", s);
g_free(s);
} else {
error_append_hint(errp_in,
"This KVM seems to be too old to support VSMT.\n");
}
}
#ifdef TARGET_PPC64
uint64_t kvmppc_rma_size(uint64_t current_size, unsigned int hash_shift)
{
struct kvm_ppc_smmu_info info;
long rampagesize, best_page_shift;
int i;
/*
* Find the largest hardware supported page size that's less than
* or equal to the (logical) backing page size of guest RAM
*/
kvm_get_smmu_info(&info, &error_fatal);
rampagesize = qemu_minrampagesize();
best_page_shift = 0;
for (i = 0; i < KVM_PPC_PAGE_SIZES_MAX_SZ; i++) {
struct kvm_ppc_one_seg_page_size *sps = &info.sps[i];
if (!sps->page_shift) {
continue;
}
if ((sps->page_shift > best_page_shift)
&& ((1UL << sps->page_shift) <= rampagesize)) {
best_page_shift = sps->page_shift;
}
}
return MIN(current_size,
1ULL << (best_page_shift + hash_shift - 7));
}
#endif
bool kvmppc_spapr_use_multitce(void)
{
return cap_spapr_multitce;
}
int kvmppc_spapr_enable_inkernel_multitce(void)
{
int ret;
ret = kvm_vm_enable_cap(kvm_state, KVM_CAP_PPC_ENABLE_HCALL, 0,
H_PUT_TCE_INDIRECT, 1);
if (!ret) {
ret = kvm_vm_enable_cap(kvm_state, KVM_CAP_PPC_ENABLE_HCALL, 0,
H_STUFF_TCE, 1);
}
return ret;
}
void *kvmppc_create_spapr_tce(uint32_t liobn, uint32_t page_shift,
uint64_t bus_offset, uint32_t nb_table,
int *pfd, bool need_vfio)
{
long len;
int fd;
void *table;
/*
* Must set fd to -1 so we don't try to munmap when called for
* destroying the table, which the upper layers -will- do
*/
*pfd = -1;
if (!cap_spapr_tce || (need_vfio && !cap_spapr_vfio)) {
return NULL;
}
if (cap_spapr_tce_64) {
struct kvm_create_spapr_tce_64 args = {
.liobn = liobn,
.page_shift = page_shift,
.offset = bus_offset >> page_shift,
.size = nb_table,
.flags = 0
};
fd = kvm_vm_ioctl(kvm_state, KVM_CREATE_SPAPR_TCE_64, &args);
if (fd < 0) {
fprintf(stderr,
"KVM: Failed to create TCE64 table for liobn 0x%x\n",
liobn);
return NULL;
}
} else if (cap_spapr_tce) {
uint64_t window_size = (uint64_t) nb_table << page_shift;
struct kvm_create_spapr_tce args = {
.liobn = liobn,
.window_size = window_size,
};
if ((window_size != args.window_size) || bus_offset) {
return NULL;
}
fd = kvm_vm_ioctl(kvm_state, KVM_CREATE_SPAPR_TCE, &args);
if (fd < 0) {
fprintf(stderr, "KVM: Failed to create TCE table for liobn 0x%x\n",
liobn);
return NULL;
}
} else {
return NULL;
}
len = nb_table * sizeof(uint64_t);
/* FIXME: round this up to page size */
table = mmap(NULL, len, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);
if (table == MAP_FAILED) {
fprintf(stderr, "KVM: Failed to map TCE table for liobn 0x%x\n",
liobn);
close(fd);
return NULL;
}
*pfd = fd;
return table;
}
int kvmppc_remove_spapr_tce(void *table, int fd, uint32_t nb_table)
{
long len;
if (fd < 0) {
return -1;
}
len = nb_table * sizeof(uint64_t);
if ((munmap(table, len) < 0) ||
(close(fd) < 0)) {
fprintf(stderr, "KVM: Unexpected error removing TCE table: %s",
strerror(errno));
/* Leak the table */
}
return 0;
}
int kvmppc_reset_htab(int shift_hint)
{
uint32_t shift = shift_hint;
if (!kvm_enabled()) {
/* Full emulation, tell caller to allocate htab itself */
return 0;
}
if (kvm_vm_check_extension(kvm_state, KVM_CAP_PPC_ALLOC_HTAB)) {
int ret;
ret = kvm_vm_ioctl(kvm_state, KVM_PPC_ALLOCATE_HTAB, &shift);
if (ret == -ENOTTY) {
/*
* At least some versions of PR KVM advertise the
* capability, but don't implement the ioctl(). Oops.
* Return 0 so that we allocate the htab in qemu, as is
* correct for PR.
*/
return 0;
} else if (ret < 0) {
return ret;
}
return shift;
}
/*
* We have a kernel that predates the htab reset calls. For PR
* KVM, we need to allocate the htab ourselves, for an HV KVM of
* this era, it has allocated a 16MB fixed size hash table
* already.
*/
if (kvmppc_is_pr(kvm_state)) {
/* PR - tell caller to allocate htab */
return 0;
} else {
/* HV - assume 16MB kernel allocated htab */
return 24;
}
}
static inline uint32_t mfpvr(void)
{
uint32_t pvr;
asm ("mfpvr %0"
: "=r"(pvr));
return pvr;
}
static void alter_insns(uint64_t *word, uint64_t flags, bool on)
{
if (on) {
*word |= flags;
} else {
*word &= ~flags;
}
}
static void kvmppc_host_cpu_class_init(ObjectClass *oc, void *data)
{
PowerPCCPUClass *pcc = POWERPC_CPU_CLASS(oc);
uint32_t dcache_size = kvmppc_read_int_cpu_dt("d-cache-size");
uint32_t icache_size = kvmppc_read_int_cpu_dt("i-cache-size");
/* Now fix up the class with information we can query from the host */
pcc->pvr = mfpvr();
alter_insns(&pcc->insns_flags, PPC_ALTIVEC,
qemu_getauxval(AT_HWCAP) & PPC_FEATURE_HAS_ALTIVEC);
alter_insns(&pcc->insns_flags2, PPC2_VSX,
qemu_getauxval(AT_HWCAP) & PPC_FEATURE_HAS_VSX);
alter_insns(&pcc->insns_flags2, PPC2_DFP,
qemu_getauxval(AT_HWCAP) & PPC_FEATURE_HAS_DFP);
if (dcache_size != -1) {
pcc->l1_dcache_size = dcache_size;
}
if (icache_size != -1) {
pcc->l1_icache_size = icache_size;
}
#if defined(TARGET_PPC64)
pcc->radix_page_info = kvm_get_radix_page_info();
if ((pcc->pvr & 0xffffff00) == CPU_POWERPC_POWER9_DD1) {
/*
* POWER9 DD1 has some bugs which make it not really ISA 3.00
* compliant. More importantly, advertising ISA 3.00
* architected mode may prevent guests from activating
* necessary DD1 workarounds.
*/
pcc->pcr_supported &= ~(PCR_COMPAT_3_00 | PCR_COMPAT_2_07
| PCR_COMPAT_2_06 | PCR_COMPAT_2_05);
}
#endif /* defined(TARGET_PPC64) */
}
bool kvmppc_has_cap_epr(void)
{
return cap_epr;
}
bool kvmppc_has_cap_fixup_hcalls(void)
{
return cap_fixup_hcalls;
}
bool kvmppc_has_cap_htm(void)
{
return cap_htm;
}
bool kvmppc_has_cap_mmu_radix(void)
{
return cap_mmu_radix;
}
bool kvmppc_has_cap_mmu_hash_v3(void)
{
return cap_mmu_hash_v3;
}
static bool kvmppc_power8_host(void)
{
bool ret = false;
#ifdef TARGET_PPC64
{
uint32_t base_pvr = CPU_POWERPC_POWER_SERVER_MASK & mfpvr();
ret = (base_pvr == CPU_POWERPC_POWER8E_BASE) ||
(base_pvr == CPU_POWERPC_POWER8NVL_BASE) ||
(base_pvr == CPU_POWERPC_POWER8_BASE);
}
#endif /* TARGET_PPC64 */
return ret;
}
static int parse_cap_ppc_safe_cache(struct kvm_ppc_cpu_char c)
{
bool l1d_thread_priv_req = !kvmppc_power8_host();
if (~c.behaviour & c.behaviour_mask & H_CPU_BEHAV_L1D_FLUSH_PR) {
return 2;
} else if ((!l1d_thread_priv_req ||
c.character & c.character_mask & H_CPU_CHAR_L1D_THREAD_PRIV) &&
(c.character & c.character_mask
& (H_CPU_CHAR_L1D_FLUSH_ORI30 | H_CPU_CHAR_L1D_FLUSH_TRIG2))) {
return 1;
}
return 0;
}
static int parse_cap_ppc_safe_bounds_check(struct kvm_ppc_cpu_char c)
{
if (~c.behaviour & c.behaviour_mask & H_CPU_BEHAV_BNDS_CHK_SPEC_BAR) {
return 2;
} else if (c.character & c.character_mask & H_CPU_CHAR_SPEC_BAR_ORI31) {
return 1;
}
return 0;
}
static int parse_cap_ppc_safe_indirect_branch(struct kvm_ppc_cpu_char c)
{
if ((~c.behaviour & c.behaviour_mask & H_CPU_BEHAV_FLUSH_COUNT_CACHE) &&
(~c.character & c.character_mask & H_CPU_CHAR_CACHE_COUNT_DIS) &&
(~c.character & c.character_mask & H_CPU_CHAR_BCCTRL_SERIALISED)) {
return SPAPR_CAP_FIXED_NA;
} else if (c.behaviour & c.behaviour_mask & H_CPU_BEHAV_FLUSH_COUNT_CACHE) {
return SPAPR_CAP_WORKAROUND;
} else if (c.character & c.character_mask & H_CPU_CHAR_CACHE_COUNT_DIS) {
return SPAPR_CAP_FIXED_CCD;
} else if (c.character & c.character_mask & H_CPU_CHAR_BCCTRL_SERIALISED) {
return SPAPR_CAP_FIXED_IBS;
}
return 0;
}
static int parse_cap_ppc_count_cache_flush_assist(struct kvm_ppc_cpu_char c)
{
if (c.character & c.character_mask & H_CPU_CHAR_BCCTR_FLUSH_ASSIST) {
return 1;
}
return 0;
}
bool kvmppc_has_cap_xive(void)
{
return cap_xive;
}
static void kvmppc_get_cpu_characteristics(KVMState *s)
{
struct kvm_ppc_cpu_char c;
int ret;
/* Assume broken */
cap_ppc_safe_cache = 0;
cap_ppc_safe_bounds_check = 0;
cap_ppc_safe_indirect_branch = 0;
ret = kvm_vm_check_extension(s, KVM_CAP_PPC_GET_CPU_CHAR);
if (!ret) {
return;
}
ret = kvm_vm_ioctl(s, KVM_PPC_GET_CPU_CHAR, &c);
if (ret < 0) {
return;
}
cap_ppc_safe_cache = parse_cap_ppc_safe_cache(c);
cap_ppc_safe_bounds_check = parse_cap_ppc_safe_bounds_check(c);
cap_ppc_safe_indirect_branch = parse_cap_ppc_safe_indirect_branch(c);
cap_ppc_count_cache_flush_assist =
parse_cap_ppc_count_cache_flush_assist(c);
}
int kvmppc_get_cap_safe_cache(void)
{
return cap_ppc_safe_cache;
}
int kvmppc_get_cap_safe_bounds_check(void)
{
return cap_ppc_safe_bounds_check;
}
int kvmppc_get_cap_safe_indirect_branch(void)
{
return cap_ppc_safe_indirect_branch;
}
int kvmppc_get_cap_count_cache_flush_assist(void)
{
return cap_ppc_count_cache_flush_assist;
}
bool kvmppc_has_cap_nested_kvm_hv(void)
{
return !!cap_ppc_nested_kvm_hv;
}
int kvmppc_set_cap_nested_kvm_hv(int enable)
{
return kvm_vm_enable_cap(kvm_state, KVM_CAP_PPC_NESTED_HV, 0, enable);
}
bool kvmppc_has_cap_spapr_vfio(void)
{
return cap_spapr_vfio;
}
int kvmppc_get_cap_large_decr(void)
{
return cap_large_decr;
}
int kvmppc_enable_cap_large_decr(PowerPCCPU *cpu, int enable)
{
CPUState *cs = CPU(cpu);
uint64_t lpcr;
kvm_get_one_reg(cs, KVM_REG_PPC_LPCR_64, &lpcr);
/* Do we need to modify the LPCR? */
if (!!(lpcr & LPCR_LD) != !!enable) {
if (enable) {
lpcr |= LPCR_LD;
} else {
lpcr &= ~LPCR_LD;
}
kvm_set_one_reg(cs, KVM_REG_PPC_LPCR_64, &lpcr);
kvm_get_one_reg(cs, KVM_REG_PPC_LPCR_64, &lpcr);
if (!!(lpcr & LPCR_LD) != !!enable) {
return -1;
}
}
return 0;
}
PowerPCCPUClass *kvm_ppc_get_host_cpu_class(void)
{
uint32_t host_pvr = mfpvr();
PowerPCCPUClass *pvr_pcc;
pvr_pcc = ppc_cpu_class_by_pvr(host_pvr);
if (pvr_pcc == NULL) {
pvr_pcc = ppc_cpu_class_by_pvr_mask(host_pvr);
}
return pvr_pcc;
}
static void pseries_machine_class_fixup(ObjectClass *oc, void *opaque)
{
MachineClass *mc = MACHINE_CLASS(oc);
mc->default_cpu_type = TYPE_HOST_POWERPC_CPU;
}
static int kvm_ppc_register_host_cpu_type(void)
{
TypeInfo type_info = {
.name = TYPE_HOST_POWERPC_CPU,
.class_init = kvmppc_host_cpu_class_init,
};
PowerPCCPUClass *pvr_pcc;
ObjectClass *oc;
DeviceClass *dc;
int i;
pvr_pcc = kvm_ppc_get_host_cpu_class();
if (pvr_pcc == NULL) {
return -1;
}
type_info.parent = object_class_get_name(OBJECT_CLASS(pvr_pcc));
type_register(&type_info);
/* override TCG default cpu type with 'host' cpu model */
object_class_foreach(pseries_machine_class_fixup, TYPE_SPAPR_MACHINE,
false, NULL);
oc = object_class_by_name(type_info.name);
g_assert(oc);
/*
* Update generic CPU family class alias (e.g. on a POWER8NVL host,
* we want "POWER8" to be a "family" alias that points to the current
* host CPU type, too)
*/
dc = DEVICE_CLASS(ppc_cpu_get_family_class(pvr_pcc));
for (i = 0; ppc_cpu_aliases[i].alias != NULL; i++) {
if (strcasecmp(ppc_cpu_aliases[i].alias, dc->desc) == 0) {
char *suffix;
ppc_cpu_aliases[i].model = g_strdup(object_class_get_name(oc));
suffix = strstr(ppc_cpu_aliases[i].model, POWERPC_CPU_TYPE_SUFFIX);
if (suffix) {
*suffix = 0;
}
break;
}
}
return 0;
}
int kvmppc_define_rtas_kernel_token(uint32_t token, const char *function)
{
struct kvm_rtas_token_args args = {
.token = token,
};
if (!kvm_check_extension(kvm_state, KVM_CAP_PPC_RTAS)) {
return -ENOENT;
}
strncpy(args.name, function, sizeof(args.name) - 1);
return kvm_vm_ioctl(kvm_state, KVM_PPC_RTAS_DEFINE_TOKEN, &args);
}
int kvmppc_get_htab_fd(bool write, uint64_t index, Error **errp)
{
struct kvm_get_htab_fd s = {
.flags = write ? KVM_GET_HTAB_WRITE : 0,
.start_index = index,
};
int ret;
if (!cap_htab_fd) {
error_setg(errp, "KVM version doesn't support %s the HPT",
write ? "writing" : "reading");
return -ENOTSUP;
}
ret = kvm_vm_ioctl(kvm_state, KVM_PPC_GET_HTAB_FD, &s);
if (ret < 0) {
error_setg(errp, "Unable to open fd for %s HPT %s KVM: %s",
write ? "writing" : "reading", write ? "to" : "from",
strerror(errno));
return -errno;
}
return ret;
}
int kvmppc_save_htab(QEMUFile *f, int fd, size_t bufsize, int64_t max_ns)
{
int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
uint8_t buf[bufsize];
ssize_t rc;
do {
rc = read(fd, buf, bufsize);
if (rc < 0) {
fprintf(stderr, "Error reading data from KVM HTAB fd: %s\n",
strerror(errno));
return rc;
} else if (rc) {
uint8_t *buffer = buf;
ssize_t n = rc;
while (n) {
struct kvm_get_htab_header *head =
(struct kvm_get_htab_header *) buffer;
size_t chunksize = sizeof(*head) +
HASH_PTE_SIZE_64 * head->n_valid;
qemu_put_be32(f, head->index);
qemu_put_be16(f, head->n_valid);
qemu_put_be16(f, head->n_invalid);
qemu_put_buffer(f, (void *)(head + 1),
HASH_PTE_SIZE_64 * head->n_valid);
buffer += chunksize;
n -= chunksize;
}
}
} while ((rc != 0)
&& ((max_ns < 0) ||
((qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) < max_ns)));
return (rc == 0) ? 1 : 0;
}
int kvmppc_load_htab_chunk(QEMUFile *f, int fd, uint32_t index,
uint16_t n_valid, uint16_t n_invalid)
{
struct kvm_get_htab_header *buf;
size_t chunksize = sizeof(*buf) + n_valid * HASH_PTE_SIZE_64;
ssize_t rc;
buf = alloca(chunksize);
buf->index = index;
buf->n_valid = n_valid;
buf->n_invalid = n_invalid;
qemu_get_buffer(f, (void *)(buf + 1), HASH_PTE_SIZE_64 * n_valid);
rc = write(fd, buf, chunksize);
if (rc < 0) {
fprintf(stderr, "Error writing KVM hash table: %s\n",
strerror(errno));
return rc;
}
if (rc != chunksize) {
/* We should never get a short write on a single chunk */
fprintf(stderr, "Short write, restoring KVM hash table\n");
return -1;
}
return 0;
}
bool kvm_arch_stop_on_emulation_error(CPUState *cpu)
{
return true;
}
void kvm_arch_init_irq_routing(KVMState *s)
{
}
void kvmppc_read_hptes(ppc_hash_pte64_t *hptes, hwaddr ptex, int n)
{
int fd, rc;
int i;
fd = kvmppc_get_htab_fd(false, ptex, &error_abort);
i = 0;
while (i < n) {
struct kvm_get_htab_header *hdr;
int m = n < HPTES_PER_GROUP ? n : HPTES_PER_GROUP;
char buf[sizeof(*hdr) + m * HASH_PTE_SIZE_64];
rc = read(fd, buf, sizeof(buf));
if (rc < 0) {
hw_error("kvmppc_read_hptes: Unable to read HPTEs");
}
hdr = (struct kvm_get_htab_header *)buf;
while ((i < n) && ((char *)hdr < (buf + rc))) {
int invalid = hdr->n_invalid, valid = hdr->n_valid;
if (hdr->index != (ptex + i)) {
hw_error("kvmppc_read_hptes: Unexpected HPTE index %"PRIu32
" != (%"HWADDR_PRIu" + %d", hdr->index, ptex, i);
}
if (n - i < valid) {
valid = n - i;
}
memcpy(hptes + i, hdr + 1, HASH_PTE_SIZE_64 * valid);
i += valid;
if ((n - i) < invalid) {
invalid = n - i;
}
memset(hptes + i, 0, invalid * HASH_PTE_SIZE_64);
i += invalid;
hdr = (struct kvm_get_htab_header *)
((char *)(hdr + 1) + HASH_PTE_SIZE_64 * hdr->n_valid);
}
}
close(fd);
}
void kvmppc_write_hpte(hwaddr ptex, uint64_t pte0, uint64_t pte1)
{
int fd, rc;
struct {
struct kvm_get_htab_header hdr;
uint64_t pte0;
uint64_t pte1;
} buf;
fd = kvmppc_get_htab_fd(true, 0 /* Ignored */, &error_abort);
buf.hdr.n_valid = 1;
buf.hdr.n_invalid = 0;
buf.hdr.index = ptex;
buf.pte0 = cpu_to_be64(pte0);
buf.pte1 = cpu_to_be64(pte1);
rc = write(fd, &buf, sizeof(buf));
if (rc != sizeof(buf)) {
hw_error("kvmppc_write_hpte: Unable to update KVM HPT");
}
close(fd);
}
int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
uint64_t address, uint32_t data, PCIDevice *dev)
{
return 0;
}
int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route,
int vector, PCIDevice *dev)
{
return 0;
}
int kvm_arch_release_virq_post(int virq)
{
return 0;
}
int kvm_arch_msi_data_to_gsi(uint32_t data)
{
return data & 0xffff;
}
int kvmppc_enable_hwrng(void)
{
if (!kvm_enabled() || !kvm_check_extension(kvm_state, KVM_CAP_PPC_HWRNG)) {
return -1;
}
return kvmppc_enable_hcall(kvm_state, H_RANDOM);
}
void kvmppc_check_papr_resize_hpt(Error **errp)
{
if (!kvm_enabled()) {
return; /* No KVM, we're good */
}
if (cap_resize_hpt) {
return; /* Kernel has explicit support, we're good */
}
/* Otherwise fallback on looking for PR KVM */
if (kvmppc_is_pr(kvm_state)) {
return;
}
error_setg(errp,
"Hash page table resizing not available with this KVM version");
}
int kvmppc_resize_hpt_prepare(PowerPCCPU *cpu, target_ulong flags, int shift)
{
CPUState *cs = CPU(cpu);
struct kvm_ppc_resize_hpt rhpt = {
.flags = flags,
.shift = shift,
};
if (!cap_resize_hpt) {
return -ENOSYS;
}
return kvm_vm_ioctl(cs->kvm_state, KVM_PPC_RESIZE_HPT_PREPARE, &rhpt);
}
int kvmppc_resize_hpt_commit(PowerPCCPU *cpu, target_ulong flags, int shift)
{
CPUState *cs = CPU(cpu);
struct kvm_ppc_resize_hpt rhpt = {
.flags = flags,
.shift = shift,
};
if (!cap_resize_hpt) {
return -ENOSYS;
}
return kvm_vm_ioctl(cs->kvm_state, KVM_PPC_RESIZE_HPT_COMMIT, &rhpt);
}
/*
* This is a helper function to detect a post migration scenario
* in which a guest, running as KVM-HV, freezes in cpu_post_load because
* the guest kernel can't handle a PVR value other than the actual host
* PVR in KVM_SET_SREGS, even if pvr_match() returns true.
*
* If we don't have cap_ppc_pvr_compat and we're not running in PR
* (so, we're HV), return true. The workaround itself is done in
* cpu_post_load.
*
* The order here is important: we'll only check for KVM PR as a
* fallback if the guest kernel can't handle the situation itself.
* We need to avoid as much as possible querying the running KVM type
* in QEMU level.
*/
bool kvmppc_pvr_workaround_required(PowerPCCPU *cpu)
{
CPUState *cs = CPU(cpu);
if (!kvm_enabled()) {
return false;
}
if (cap_ppc_pvr_compat) {
return false;
}
return !kvmppc_is_pr(cs->kvm_state);
}
void kvmppc_set_reg_ppc_online(PowerPCCPU *cpu, unsigned int online)
{
CPUState *cs = CPU(cpu);
if (kvm_enabled()) {
kvm_set_one_reg(cs, KVM_REG_PPC_ONLINE, &online);
}
}
void kvmppc_set_reg_tb_offset(PowerPCCPU *cpu, int64_t tb_offset)
{
CPUState *cs = CPU(cpu);
if (kvm_enabled()) {
kvm_set_one_reg(cs, KVM_REG_PPC_TB_OFFSET, &tb_offset);
}
}